JPH11117007A - Operation of blast furnace - Google Patents

Operation of blast furnace

Info

Publication number
JPH11117007A
JPH11117007A JP28197197A JP28197197A JPH11117007A JP H11117007 A JPH11117007 A JP H11117007A JP 28197197 A JP28197197 A JP 28197197A JP 28197197 A JP28197197 A JP 28197197A JP H11117007 A JPH11117007 A JP H11117007A
Authority
JP
Japan
Prior art keywords
blast furnace
pellets
charge
charged
sinter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28197197A
Other languages
Japanese (ja)
Other versions
JP3522508B2 (en
Inventor
Junpei Kiguchi
淳平 木口
Yoshiyuki Matsui
良行 松井
Yoshio Kimura
吉雄 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP28197197A priority Critical patent/JP3522508B2/en
Publication of JPH11117007A publication Critical patent/JPH11117007A/en
Application granted granted Critical
Publication of JP3522508B2 publication Critical patent/JP3522508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the stagnation of reduction at the center part of a blast furnace and to execute the stable operation with low fuel consumption, even in the case that the blending ratio of pellets is high in the blast furnace charging materials composed of sintered ore and the pellets. SOLUTION: The increasing effect of the blending ratio of the sintered ore is not simply increased according to the increase, but the property of the pellets is singly and firstly changed at the time of becoming >=70 wt.%. Therefore, since the stagnation of the reduction at the center part and the peripheral part of the blast furnace can efficiently be prevented even with the low fuel consumption by charging the blast furnace charging materials containing >=70 wt.% sintered ore and the balance pellets into the center part of the blast furnace where the reducing condition is not good, and charging the blast furnace charging materials containing >=70 wt.% pellets and the balance sintered ore into the peripheral part where the reducing condition is good, the stable operation of the blast furnace can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はベルレス式の装入装
置で高炉に高炉装入物を装入する高炉操業方法の改善に
関し、特にペレットを多く含む高炉装入物を装入した高
炉操業に際して、高炉の安定操業を維持する上において
最適な高炉操業方法の技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a blast furnace operating method for charging a blast furnace charge into a blast furnace with a bellless type charging apparatus, and more particularly to a blast furnace operating with a blast furnace charge containing a large amount of pellets. Belongs to the technical field of blast furnace operation method most suitable for maintaining stable operation of blast furnace.

【0002】[0002]

【従来の技術】周知のように、高炉に装入されるペレッ
トと焼結鉱との物理的、化学的性質は異なっている。先
ず、第一にペレットは形状が丸いため焼結鉱よりも安息
角が小さく、高炉の炉頂から装入すると炉中心部へ流れ
込んで高炉の中心部の通気性を悪化させるので、ガス流
は不安定な周辺流になる傾向がある。第二に、ペレット
は焼結鉱よりも気孔率が小さいため、還元ポテンシャル
が低いと還元停滞を起こし高温性状が悪化し易くなると
いう傾向がある。
2. Description of the Related Art As is well known, the physical and chemical properties of pellets and sinter charged in a blast furnace are different. First, the pellets have a smaller angle of repose than the sintered ore because of their round shape, and when charged from the top of the blast furnace, they flow into the center of the furnace and deteriorate the permeability of the center of the blast furnace. There is a tendency for unstable peripheral flows. Second, since the porosity of the pellet is smaller than that of the sintered ore, if the reduction potential is low, the reduction stagnation tends to occur, and the high-temperature property tends to deteriorate.

【0003】そのため、ペレット装入による高炉操業で
は、ペレットの装入量が多くなると通気障害が発生し、
高炉内におけるガス流分布が不安定になるので、高炉の
安定操業が困難になる。一般に、高炉の安定操業を維持
すると共に、高炉の炉体を保護するためには、高炉内の
ガス流が中心流になるように維持し続けることが極めて
重要である。
[0003] Therefore, in the blast furnace operation by charging the pellets, if the charging amount of the pellets increases, a ventilation obstacle occurs,
Since the gas flow distribution in the blast furnace becomes unstable, stable operation of the blast furnace becomes difficult. Generally, in order to maintain the stable operation of the blast furnace and to protect the furnace body of the blast furnace, it is extremely important to keep the gas flow in the blast furnace at a central flow.

【0004】より詳しくは、ガス流分布が不安定になる
と、高炉の径方向において、高炉装入物の還元に必要な
ガス量を確保できない個所が生じる。このようなガス量
不足個所を通過した高炉装入物が高炉の下部に降下して
くると、未還元溶融物の融着による通気障害が発生し、
棚吊り、スリップ等による炉況悪化や炉熱低下を誘発す
る。これと同時に、ガス流は周辺流となる傾向を示し出
し、亜鉛、アルカリを含んだ高温のガスが炉内壁に沿っ
て上昇していくので、炉体煉瓦、ステーブ等の炉体冷却
設備の損傷を誘発する。このような不具合を避けるため
に、従来から高炉装入物の種々の装入方法が提案されて
いる。
[0004] More specifically, when the gas flow distribution becomes unstable, there may be places in the radial direction of the blast furnace where it is impossible to secure a gas amount necessary for reducing the blast furnace charge. When the blast furnace charge that has passed such a gas-deficient location falls to the lower part of the blast furnace, a ventilation obstacle due to fusion of the unreduced melt occurs,
Induction of furnace condition and furnace heat decrease due to shelf hanging and slipping. At the same time, the gas flow tends to be a peripheral flow, and high-temperature gas containing zinc and alkali rises along the inner wall of the furnace, causing damage to furnace body cooling equipment such as furnace bricks and staves. Trigger. In order to avoid such a problem, various charging methods of a blast furnace charge have been conventionally proposed.

【0005】例えば、特開昭58−157905号公報
あるいは特公平3−14883号公報には、ペレットを
高炉の径方向に均一に分布させるのが望ましいと考え、
事前にコンベヤベルト上や原料堆積ホッパー内において
ペレットと他鉱石とを均一に混合させて高炉に均一に装
入することが開示されている。(従来例1)
For example, JP-A-58-157905 or JP-B-3-14883 consider that it is desirable to distribute the pellets uniformly in the radial direction of the blast furnace.
It is disclosed that pellets and other ores are uniformly mixed in advance on a conveyor belt or in a raw material deposition hopper and then uniformly charged into a blast furnace. (Conventional example 1)

【0006】また、特開平2−254112号公報ある
いは特公昭57−45288号公報には、ペレットまわ
りの還元ポテンシャルを高めるために、ペレット層中に
炭材あるいは高反応性コークス(例えば、小粒コークス
等)を混合することが開示されている。(従来例2)
Further, Japanese Patent Application Laid-Open No. 2-254112 or Japanese Patent Publication No. 57-45288 discloses that a carbonaceous material or a highly reactive coke (for example, small-grain coke, etc.) ) Is disclosed. (Conventional example 2)

【0007】また、特公平2−51962号公報あるい
は特公昭59−10404号公報には、ガス流分布の安
定化を図るために、ベルアーマー式、ベルレス式の装入
装置により、コークスを高炉の径方向の中心側に、鉱石
をその周辺側に装入することを基本として、高炉の径方
向の鉱石層とコークス層との層厚比O/Cの調整を確実
に行うことによって、高炉の中心部に適正なガス流が発
生するようにすることが開示されている。(従来例3)
Further, Japanese Patent Publication No. 2-51962 or Japanese Patent Publication No. 59-10404 discloses that in order to stabilize the gas flow distribution, coke is supplied to a blast furnace by a bell armor type or bellless type charging device. On the basis of charging the ore into the peripheral side at the center in the radial direction, the layer thickness ratio O / C of the ore layer and the coke layer in the radial direction of the blast furnace is surely adjusted, so that the blast furnace is It is disclosed that a proper gas flow is generated at the center. (Conventional example 3)

【0008】[0008]

【発明が解決しようとする課題】ペレットを多量に配合
した焼結鉱とペレットとからなる高炉装入物を装入する
高炉操業の場合、上記のとおり、ペレットの持つ欠点を
補うと共に、ガス流分布の安定化を図るために、ペレッ
トと焼結鉱とを均一に混合して装入装置で装入し、鉱石
層とコークス層との層厚比O/Cの調整を行うことが基
本になっている。実際の高炉操業では、ペレット配合率
(%)に対する燃料比(kg/t)の関係説明図の図7
に示すように、ガス流分布に多少の変動が生じても安定
操業を第一に考え、コストアップにはなるものの、鉱石
の還元に悪影響を与えないように予め燃料比を大きくし
て、高炉全体の通気性と還元ポテンシャルとを上げるよ
うにしている。ところで、低コスト、高生産性を狙うた
めには、コークス比や燃料比の低減が必須要件である。
そのため、上記従来例に係る高炉装入物の装入方法、ガ
ス流分布制御では、実操業結果が示しているように燃料
比の低減に限界があり、より低コスト、高生産性という
目的を達成することができない。また、高反応性コーク
スをペレット層中に混入すれば、コークススリットとし
てのコークス量を減らさなければならないので、高反応
性コークスの混入量にも限界がある。
In the case of a blast furnace operation in which a blast furnace charge consisting of sinter ore and pellets containing a large amount of pellets is charged, as described above, the disadvantages of the pellets are compensated for and the gas flow is reduced. In order to stabilize the distribution, it is basically to mix the pellets and the sintered ore uniformly, charge them with a charging device, and adjust the layer thickness ratio O / C between the ore layer and the coke layer. Has become. In the actual blast furnace operation, FIG. 7 is an explanatory diagram showing the relationship between the pellet blending ratio (%) and the fuel ratio (kg / t).
As shown in the figure, even if there is some fluctuation in the gas flow distribution, stable operation is considered first, and although the cost increases, the fuel ratio is increased in advance so as not to adversely affect the ore reduction, and the blast furnace The overall air permeability and reduction potential are increased. By the way, in order to aim for low cost and high productivity, reduction of coke ratio and fuel ratio is an essential requirement.
Therefore, in the method of charging the blast furnace charge and the gas flow distribution control according to the conventional example described above, there is a limit to the reduction of the fuel ratio as shown in the actual operation results, and the objective of lower cost and high productivity is achieved. Cannot be achieved. Further, if highly reactive coke is mixed in the pellet layer, the amount of coke as a coke slit must be reduced, and thus the amount of highly reactive coke mixed is also limited.

【0009】従って、本発明の目的とするところは、焼
結鉱とペレットからなる高炉装入物のペレットの配合割
合が高くても、高炉全体の通気性と還元ポテンシャルと
を確保し得て、しかも低燃料比で安定操業を行うことを
可能ならしめる高炉操業方法を提供することである。
Therefore, an object of the present invention is to ensure the permeability and reduction potential of the entire blast furnace even if the blending ratio of the pellets of the blast furnace charge composed of the sintered ore and the pellets is high, Moreover, it is an object of the present invention to provide a blast furnace operating method which enables stable operation with a low fuel ratio.

【0010】[0010]

【課題を解決するための手段】発明者等は、高炉の径方
向の各還元条件の相違と高炉装入物の性状とに着目し
て、それぞれの還元条件に見合った高炉装入物を分配装
入することを考えた。そして、基本的なガス流は中心流
として維持し続けなければならないので、ガス流分布が
中心流として維持されているときの高炉の径方向のそれ
ぞれの還元条件に対して、還元停滞を起こさないための
ペレットと焼結鉱との配合割合を明確にして本発明をな
したものである。
Means for Solving the Problems The present inventors pay attention to the difference in each reduction condition in the radial direction of the blast furnace and the properties of the blast furnace charge, and distribute the blast furnace charge appropriate for each reduction condition. I thought about charging. And, since the basic gas flow must be maintained as the central flow, the reduction stagnation does not occur for each radial reduction condition of the blast furnace when the gas flow distribution is maintained as the central flow. The present invention has been made by clarifying the mixing ratio of the pellets and the sintered ore.

【0011】従って、上記課題を解決するために、本発
明の請求項1に係る高炉操業方法が採用した手段の要旨
は、焼結鉱とペレットとをベルレス式の装入装置により
高炉に装入して、高炉内に30Wt%以上のペレットを
含む焼結鉱とペレットとからなる装入物層をコークステ
ラスの上に形成させると共に、ガス流を中心流にする高
炉操業方法において、70Wt%以上の焼結鉱と残ペレ
ットとからなる高炉装入物Aを高炉内半径Rの0.6R
の範囲内の中心部に装入すると共に、70Wt%以上の
ペレットと残焼結鉱とからなる高炉装入物Bを高炉に装
入された高炉装入物Aの外側の外周部に装入することを
特徴とする。
Therefore, in order to solve the above-mentioned problems, the gist of the means adopted by the blast furnace operating method according to claim 1 of the present invention is that the sintered ore and the pellets are charged into the blast furnace by a bellless type charging device. In the blast furnace operating method in which a sinter containing pellets of 30 Wt% or more and pellets and pellets are formed on the coke terrace in the blast furnace and the gas flow is a central flow, 70 Wt% or more is used. The blast furnace charge A consisting of the sintered ore and the remaining pellets is replaced with a blast furnace radius R of 0.6R.
And a blast furnace charge B composed of pellets of 70 Wt% or more and residual sinter is charged into the outer peripheral portion of the blast furnace charge A charged in the blast furnace. It is characterized by doing.

【0012】また、上記課題を解決するために、本発明
の請求項2に係る高炉操業方法が採用した手段の要旨
は、焼結鉱とペレットとをベルレス式の装入装置により
高炉に装入して、高炉内に30Wt%以上のペレットを
含む焼結鉱とペレットとからなる装入物層をコークステ
ラスの上に形成させると共に、ガス流を中心流にする高
炉操業方法において、70Wt%以上の焼結鉱と残ペレ
ットとからなる高炉装入物Aを高炉内半径Rの0.6R
の範囲内の中心部に装入し、次に装入するペレットでコ
ークステラスを崩さないようにした後に、ペレットだけ
を高炉に装入された高炉装入物Aの外側の外周部のコー
クステラス上に装入してペレットテラスを形成させると
共に、このペレットテラスの上に焼結鉱を装入して、前
記高炉装入物Aの外側の外周部に70Wt%以上のペレ
ットと残焼結鉱とからなる高炉装入物Bの層を形成させ
ることを特徴とする。
In order to solve the above problems, the gist of the means adopted by the blast furnace operating method according to the second aspect of the present invention is that a sinter ore and pellets are charged into a blast furnace by a bellless type charging device. In the blast furnace operating method in which a sinter containing pellets of 30 Wt% or more and pellets in the blast furnace and pellets are formed on the coke terrace, and the blast furnace operation method in which the gas flow is a central flow, 70 Wt% or more is used. The blast furnace charge A consisting of the sintered ore and the remaining pellets is replaced with a blast furnace radius R of 0.6R.
After the coke terrace is charged into the center within the range of the above and the coke terrace is not broken with the pellets to be charged next, only the pellets are coke terraces on the outer peripheral portion of the blast furnace charge A charged into the blast furnace. A pellet ore is charged on the pellet terrace, and a sintered ore is charged on the pellet terrace. A layer of the blast furnace charge B consisting of

【0013】[0013]

【発明の実施の形態】以下、ベルレス式の装入装置を備
えた高炉による本発明の高炉操業方法に係る実施の形態
1を、高炉装入物の望ましい高温性状説明図の図1と、
ガス流が中心流に維持されるときの高炉内温度分布説明
図の図2と、昇温パターンおよびガス組成パターン説明
図の図3と、図3に示す条件における焼結鉱の還元率と
収縮率との説明図の図4と、図3に示す条件におけるペ
レットの還元率と収縮率との説明図の図5と、焼結鉱の
配合率と圧損急上昇温度との関係説明図の図6と、ペレ
ット配合率と燃料比との関係説明図の図9とを参照しな
がら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1 according to a blast furnace operating method of the present invention using a blast furnace equipped with a bellless type charging device will be described below with reference to FIG.
FIG. 2 is an explanatory diagram of the temperature distribution in the blast furnace when the gas flow is maintained at the central flow, FIG. 3 is an explanatory diagram of the heating pattern and the gas composition pattern, and the reduction rate and shrinkage of the sinter under the conditions shown in FIG. FIG. 4 showing the relationship between the reduction ratio and the shrinkage ratio of the pellet under the conditions shown in FIG. 3 and FIG. 6 showing the relationship between the compounding ratio of the sinter and the pressure drop rapid rise temperature. And FIG. 9 showing the relationship between the blending ratio of the pellets and the fuel ratio.

【0014】なお、図1、図4、図5はそれぞれ左側の
縦軸に収縮率と還元率とをとり、右側の縦軸に圧力損失
をとり、横軸に温度をとって示したものであり、図3は
縦軸に温度をとり、横軸に時間(分)をとって示したも
のであり、図6は縦軸に圧損急上昇温度をとり、横軸に
焼結鉱配合率をとって示したものであり、図9は縦軸に
燃料比をとり、横軸にペレット配合率をとって示したも
のである。
1, 4 and 5 show the contraction rate and the reduction rate on the left vertical axis, the pressure loss on the right vertical axis, and the temperature on the horizontal axis, respectively. FIG. 3 shows temperature on the vertical axis and time (minutes) on the horizontal axis, and FIG. 6 shows pressure drop rapid rise temperature on the vertical axis and the sinter mixing ratio on the horizontal axis. FIG. 9 shows the fuel ratio on the vertical axis and the pellet blending ratio on the horizontal axis.

【0015】一般に、高炉装入物の望ましい高温性状、
つまり温度−収縮率、温度−還元率および温度−圧力損
失は、図1においてそれぞれ破線(実線は通常状態を示
している。)で示すように、圧損急上昇温度が高く溶融
開始、終了の温度幅が狭く圧損レベルが低い、いわゆる
高炉内の融着帯幅が狭いものが良好とされている。高炉
装入物の高温性状を、このような高温性状に近付けるた
めには酸化カルシウム、二酸化珪素、酸化マグネシウム
等の含有成分を変化させて高炉装入物を改質してやれば
良いのであるが、成分変更等が困難な場合には使用方法
の工夫、例えば高炉に鉱石と高反応コークス等を混合し
て装入し、還元条件を変更(還元ポテンシャルの増大)
したりして、ペレット粒子間の融着防止を図らなければ
ならないが、コークススリット幅の狭小化の観点から好
ましくない。
In general, the desired high temperature properties of the blast furnace charge,
That is, the temperature-shrinkage rate, the temperature-reduction rate, and the temperature-pressure loss are indicated by broken lines (solid lines indicate a normal state) in FIG. It is considered that a material having a narrow cohesive zone in a so-called blast furnace having a small pressure drop level and a low pressure loss level is good. In order to bring the high-temperature properties of the blast furnace charge close to such high-temperature properties, the contents of calcium oxide, silicon dioxide, magnesium oxide, etc. may be changed to modify the blast furnace charge. If it is difficult to change, etc., devise the method of use, for example, mix ore and high-reaction coke into the blast furnace and change the reduction conditions (increase the reduction potential)
However, it is necessary to prevent the fusion between the pellet particles, but this is not preferable from the viewpoint of narrowing the coke slit width.

【0016】さて、ガス流が中心流に維持されていると
きの高炉内の温度分布は、図2に示すように、高炉の中
心部では温度勾配が急になっており、周辺部では比較的
緩やかになっている。そこで、このように高炉の中心部
と周辺部とで相違する温度勾配が高炉装入物に与える影
響を確認するために、高炉内の還元条件(高炉の中心近
傍である中心部、中間部および周辺部の温度やガス組
成)と高炉装入物(焼結鉱、ペレット)の高温性状との
関係を調べた。
As shown in FIG. 2, the temperature distribution in the blast furnace when the gas flow is maintained at the central flow has a steep temperature gradient in the center of the blast furnace and a relatively high temperature gradient in the peripheral part. It has become moderate. Therefore, in order to confirm the influence of the different temperature gradient between the central portion and the peripheral portion of the blast furnace on the charge in the blast furnace, the reduction conditions in the blast furnace (the central portion, the intermediate portion, and the central portion near the center of the blast furnace) were used. The relationship between the temperature and gas composition in the surrounding area) and the high-temperature properties of the blast furnace charge (sinter ore, pellets) were investigated.

【0017】先ず、高炉装入物の還元条件については、
実測された高炉内の温度分布を参考にして、高炉の内径
をRとしたときの高炉の径方向を、0〜0.6R未満の
範囲の中心部と、0.6R〜0.8R未満の範囲の中間
部と、0.8R〜1.0Rの範囲の周辺部との3ゾーン
に分割し、それぞれのゾーンにおける昇温パターンおよ
びガス組成パターンを図3(昇温パターンとガス組成パ
ターンとはともに、中心部は実線で、中間部は破線で、
周辺部は点線でそれぞれ示している。)に示すように定
めた。このような条件下での各ゾーンにおける焼結鉱の
還元率(%)、収縮率(%)および圧力損失(mmH2
O)は図4に示すとおりであり、またペレットの還元率
(%)、収縮率(%)および圧力損失(mmH2 O)は
図5に示すとおりである。なお、図4,5では、図3と
同様に、中心部は実線で、中間部は破線で、周辺部は点
線でそれぞれ示してある。
First, the conditions for reducing the blast furnace charge are as follows.
With reference to the actually measured temperature distribution in the blast furnace, the radial direction of the blast furnace when the inner diameter of the blast furnace is R, the center of the range of 0 to less than 0.6 R, and 0.6R to less than 0.8 R The zone is divided into three zones: a middle portion of the range and a peripheral portion in the range of 0.8R to 1.0R, and the heating pattern and the gas composition pattern in each zone are shown in FIG. In both cases, the center is a solid line, the middle is a dashed line,
The peripheral portions are indicated by dotted lines. ). Under such conditions, the reduction ratio (%), shrinkage ratio (%), and pressure loss (mmH 2)
O) is as shown in FIG. 4, and the reduction ratio (%), shrinkage ratio (%) and pressure loss (mmH 2 O) of the pellet are as shown in FIG. In FIGS. 4 and 5, as in FIG. 3, the center is indicated by a solid line, the middle is indicated by a broken line, and the periphery is indicated by a dotted line.

【0018】焼結鉱では、図4に示すように、高炉の中
心部から周辺部にいたるそれぞれの温度条件を変化させ
ても高温性状に大きな影響が認められない。しかしなが
ら、ペレットでは、図5に示すように、昇温速度の増大
に伴って高温性状が悪くなり、特に高炉の中心部では高
温性状が著しく悪化しており、還元停滞が起こっている
ことが示めされている。
In the sinter, as shown in FIG. 4, even if the respective temperature conditions from the central portion to the peripheral portion of the blast furnace are changed, there is no significant effect on the high-temperature properties. However, in the pellets, as shown in FIG. 5, the high-temperature properties deteriorated with an increase in the heating rate, and the high-temperature properties particularly deteriorated at the center of the blast furnace, indicating that reduction stagnation occurred. Have been

【0019】高炉の中心部における還元停滞を緩和する
手段としては、例えば高炉の中心部に、焼結鉱とペレッ
トとを混合した高炉装入物を装入するということが考え
られる。そこで、焼結鉱とペレットとを混合した高炉装
入物の焼結鉱の配合率と高温性状との関係を調べた。そ
の調査結果は、図6に示すとおりである。
As a means for alleviating the reduction stagnation in the central part of the blast furnace, for example, it is conceivable to charge the central part of the blast furnace with a blast furnace charge in which a sintered ore and a pellet are mixed. Therefore, the relationship between the mixing ratio of the sintered ore and the high-temperature properties of the blast furnace charge in which the sintered ore and the pellet were mixed was examined. The investigation results are as shown in FIG.

【0020】この図6によれば、焼結鉱の配合率の増大
効果は、配合率の増大に伴って単調に増大していくので
はなく、焼結鉱の配合率が70Wt%以上になって初め
てペレット単独の性質が変化することが判る。これらの
結果から、高炉内に焼結鉱とペレットとからなる高炉装
入物を装入する場合、高炉の中心部の昇温速度が高くペ
レットに対して還元条件が比較的良好でない範囲、つま
り高炉の径方向の0〜0.6R以内の範囲では70Wt
%以上の焼結鉱を配合した焼結鉱とペレットとからなる
高炉装入物Aを装入すれば良いことになる。
According to FIG. 6, the effect of increasing the compounding ratio of the sintered ore does not increase monotonically with the increase in the compounding ratio, but the compounding ratio of the sintered ore becomes 70 Wt% or more. It is only after that that the properties of the pellet alone change. From these results, when charging the blast furnace charge consisting of sintered ore and pellets in the blast furnace, the range in which the heating conditions at the center of the blast furnace are high and the reduction conditions for the pellets are relatively poor, that is, 70Wt in the range of 0 to 0.6R in the radial direction of the blast furnace
% Of the blast furnace charge A, which is composed of sinter ore and pellets in which sinter ore of not less than% is blended.

【0021】従って、上記のような配合割合になる高炉
装入物Aを高炉に装入することによって、高炉の中心部
の還元条件が比較的良好でない範囲におけるペレットに
起因する還元停滞を防止することができる。勿論、周辺
部の還元条件が良好な範囲では、高炉装入物Bのペレッ
ト配合率が70Wt%で高いものの、ペレットに起因す
る還元停滞が発生するような恐れがない。なお、還元性
については、図5から良く理解されるように、高炉の
0.6R〜0.8R未満の範囲の中間部であっても、0
〜0.6R未満の範囲の中心部と大きな差はない。しか
しながら、最少限0〜0.6R以内の範囲では70Wt
%以上の焼結鉱を配合した焼結鉱とペレットとからなる
高炉装入物Aを装入することにより、全体で30Wt%
以上のペレットを配合して安定した高炉操業を可能とす
るものである。
Therefore, by charging the blast furnace charge A having the above mixing ratio into the blast furnace, reduction stagnation caused by pellets in a range where the reduction conditions in the center of the blast furnace are relatively poor is prevented. be able to. Of course, in a range where the reduction conditions in the peripheral portion are good, although the pellet blending ratio of the blast furnace charge B is as high as 70 Wt%, there is no possibility that reduction stagnation due to the pellets occurs. Note that, as is well understood from FIG. 5, the reducibility is 0 even in the middle part of the blast furnace in the range of 0.6R to less than 0.8R.
There is no significant difference from the central part in the range of less than ~ 0.6R. However, at least in the range of 0 to 0.6R, 70Wt
% Of sinter ore and pellets containing sinter ore containing at least 30 wt% of sinter ore.
The above pellets are blended to enable stable blast furnace operation.

【0022】因みに、この実施の形態1に係る高炉操業
方法における高炉装入物のペレットの配合率は約56W
t%である。このように、56Wt%のペレットが配合
された高炉装入物を装入して従来法で高炉操業をする
と、図9に示されているように、燃料比は500〜52
0kg/tであるが、この実施の形態に係る高炉操業方
法によればペレットの悪影響を防止することができ、あ
たかもオール焼結鉱操業と同様な効果、即ち燃料比は4
90kg/tで、従来法による場合よりも4%ほどの低
減効果を期待することができる。
Incidentally, in the blast furnace operating method according to the first embodiment, the blending ratio of the pellets of the blast furnace charge is about 56 W.
t%. In this way, when the blast furnace charge mixed with the 56 Wt% pellets is charged and the blast furnace is operated by the conventional method, the fuel ratio becomes 500 to 52 as shown in FIG.
Although it is 0 kg / t, the blast furnace operating method according to this embodiment can prevent the adverse effect of the pellets, and has the same effect as in the all-sintering operation, that is, the fuel ratio is 4%.
At 90 kg / t, a reduction effect of about 4% can be expected as compared with the conventional method.

【0023】従って、従来のように燃料比を大きくし
て、高炉全体の通気性と還元ポテンシャルとを上げるま
でもなく、従来よりも低燃料比で高炉全体の通気性と還
元ポテンシャルとを上げ得て、安定操業を行うことがで
きる。なお、ベルレス式の装入装置により高炉の頂部に
設けられたホッパー内の高炉装入物を高炉の径方向の中
心部分に装入する場合には、より急な傾斜角度範囲で旋
回シュートを連続旋回させ、また周辺部に装入する場合
にはより緩やかな傾斜角度範囲で旋回シュートを連続旋
回させるものである。
Therefore, it is possible to increase the permeability and the reduction potential of the entire blast furnace at a lower fuel ratio than before, without increasing the fuel ratio and increasing the permeability and the reduction potential of the entire blast furnace as in the prior art. Therefore, stable operation can be performed. When charging the blast furnace charge in the hopper provided at the top of the blast furnace into the radial center of the blast furnace using a bellless charging device, the swirling chute should be continuously applied within a steeper inclination angle range. When the swing chute is turned and the peripheral chute is charged, the swing chute is continuously turned in a gentler inclination angle range.

【0024】次に、本発明の実施の形態2に係る高炉操
業方法を、50Wt%ずつの焼結鉱とペレットとからな
る高炉装入物の高炉の径方向のペレット分布説明図の図
7と、ペレットを多量配合した高炉装入物を高炉の炉壁
側に装入したときの高炉の径方向のO/C分布およびペ
レット分布説明図の図8とを参照しながら説明する。
Next, the method for operating the blast furnace according to the second embodiment of the present invention will be described with reference to FIG. 7 which is an explanatory diagram of the distribution of pellets in the radial direction of the blast furnace of the blast furnace charge composed of sintered ore and pellets of 50 wt% each. A description will be given with reference to FIG. 8 showing the O / C distribution in the radial direction of the blast furnace and the pellet distribution when the blast furnace charge containing a large amount of pellets is charged into the furnace wall side of the blast furnace.

【0025】ところで、従来例に係る高炉操業方法のよ
うに、ペレットと焼結鉱とを事前に混合して高炉に装入
すると、図7(各印は装入条件の相違を示すもので、丸
印は旋回シュートの傾動角度や旋回数を変えて高炉の壁
側のO/Cを小さくした場合を、三角印は壁側のO/C
を大きくした場合を、四角印は壁側のO/Cを両者の中
間にした場合をそれぞれ示している。)に示すように、
旋回シュートの傾動角度や旋回数を変えて高炉装入物の
落下位置を変更しても、高炉の径方向の中心から内壁に
至るまでほぼ均一な分布となり、高炉の径方向のペレッ
ト分布を変えることができない。また、ペレットが配合
された高炉装入物は高炉内に落下し、装入物層の斜面に
沿って高炉の中心部に流れ込む際に分離現象が起こり、
高炉の中心側では安息角の小さいペレットが比較的多く
なり、その周辺側では逆に焼結鉱が多くなる。
By the way, when pellets and sintered ore are mixed in advance and charged into a blast furnace as in the blast furnace operating method according to the conventional example, FIG. 7 (each mark shows a difference in charging conditions. The circles indicate the cases where the O / C on the wall side of the blast furnace was reduced by changing the tilt angle and the number of turns of the swirling chute, and the triangles indicate the O / C on the wall side.
And the square marks indicate the case where the O / C on the wall side is intermediate between the two. ),
Even if the falling position of the charge in the blast furnace is changed by changing the tilt angle and the number of turns of the swirling chute, the distribution becomes almost uniform from the radial center of the blast furnace to the inner wall, and the pellet distribution in the radial direction of the blast furnace is changed. Can not do. Also, the blast furnace charge containing the pellets falls into the blast furnace, and a separation phenomenon occurs when flowing into the center of the blast furnace along the slope of the charge layer,
Pellets with a small angle of repose are relatively large on the center side of the blast furnace, and conversely, sinter is large on the peripheral side.

【0026】このようなことから、目標とする装入物分
布を得て、しかも低燃料比で高炉操業を行うためには、
ペレットと焼結鉱とを事前に混合して高炉に装入するよ
りもペレットと焼結鉱とを別々に分け、高炉の中心側に
おいては高温性状が還元条件によって影響を受け難い焼
結鉱を装入し、その周辺側にペレットを装入する方法が
効果的であると考えられる。
Therefore, in order to obtain the target charge distribution and to operate the blast furnace at a low fuel ratio,
Rather than mixing the pellets and the sinter in advance and charging the blast furnace, the pellets and the sinter are separated separately.At the center side of the blast furnace, the sinter whose high-temperature properties are not easily affected by the reducing conditions is used. It is considered that the method of charging and charging the pellets on the peripheral side is effective.

【0027】そこで、70Wt%以上の焼結鉱と残ペレ
ットとからなる高炉装入物Aを高炉の中心で、かつ高炉
内半径Rの0.6Rの範囲内に装入し、次に装入するペ
レットでコークステラスを崩さないようにした後に、ペ
レットだけを高炉に装入された前記高炉装入物Aの外側
の範囲のコークステラス上に装入すると共に、ペレット
テラスの上に焼結鉱を装入して、O/Cが所定の比にな
るように調整した。
Therefore, a blast furnace charge A consisting of sintered ore of 70 Wt% or more and residual pellets is charged at the center of the blast furnace and within a range of 0.6R of the blast furnace radius R, and then charged. After the coke terrace is not broken with the pellets to be crushed, only the pellets are charged on the coke terrace in the range outside the blast furnace charge A charged into the blast furnace, and the sinter is placed on the pellet terrace. Was adjusted to adjust the O / C to a predetermined ratio.

【0028】その結果は、図8に示すとおりであって、
高炉の径方向の実線で示すO/Cの分布は、ほぼ斜線で
示す目標値の範囲内になり、また高炉の径方向の高炉装
入物のペレット分布は0.6Rの範囲内において20W
%以下、つまり70Wt%以上の焼結鉱分布が得られて
いる。従って、この実施の形態2に係る高炉操業方法に
よれば、高炉の径方向の0.6Rの範囲内の焼結鉱分布
が70Wt%以上になっているので、上記実施の形態1
と同効である。
The result is as shown in FIG.
The distribution of O / C indicated by the solid line in the radial direction of the blast furnace is substantially within the range of the target value indicated by oblique lines, and the pellet distribution of the blast furnace charge in the radial direction of the blast furnace is 20 W in the range of 0.6R.
% Or less, that is, 70 Wt% or more. Therefore, according to the blast furnace operating method according to the second embodiment, the sinter distribution in the range of 0.6R in the radial direction of the blast furnace is 70 Wt% or more.
Is the same as

【0029】[0029]

【発明の効果】以上詳述したように、本発明の請求項1
または2に係る高炉操業方法によれば、高炉の中心部の
高炉装入物の還元条件が比較的良好でない範囲、つまり
高炉の径方向の0〜0.6R未満の範囲では70Wt%
以上の焼結鉱を配合した焼結鉱とペレットとからなる高
炉装入物が装入され、また周辺部の高炉装入物の還元条
件が良好な範囲に70Wt%以上のペレットを配合した
焼結鉱とペレットとからなる高炉装入物が装入されるの
で、従来のように燃料比を上げるまでもなくペレットに
起因する還元停滞が防止され、高炉全体の通気性と還元
ポテンシャルとを上げて、安定操業を行うことができる
という極めて優れた効果がある。
As described in detail above, claim 1 of the present invention
According to the blast furnace operating method according to (2), 70 Wt% is in a range where the reduction condition of the blast furnace charge in the center of the blast furnace is relatively poor, that is, in a range of 0 to less than 0.6 R in the radial direction of the blast furnace.
A blast furnace charge composed of the sintered ore and the pellets containing the above-mentioned sinter was charged, and the blast furnace charged with the pellets of 70 Wt% or more in a range where the reduction conditions of the blast furnace charge in the peripheral portion were good. Since the blast furnace charge consisting of condensed matter and pellets is charged, reduction stagnation caused by pellets is prevented without increasing the fuel ratio as in the past, increasing the permeability and reduction potential of the entire blast furnace. Thus, there is an extremely excellent effect that stable operation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1に係り、高炉装入物の望
ましい高温性状説明図である。
FIG. 1 is an explanatory diagram of desirable high-temperature properties of a blast furnace charge according to the first embodiment of the present invention.

【図2】本発明の実施の形態1に係り、ガス流が中心流
に維持されるときの高炉内温度分布説明図である。
FIG. 2 is an explanatory diagram of a temperature distribution in a blast furnace when a gas flow is maintained at a central flow according to the first embodiment of the present invention.

【図3】本発明の実施の形態1に係り、昇温パターンお
よびガス組成パターン説明図である。
FIG. 3 is an explanatory view of a heating pattern and a gas composition pattern according to the first embodiment of the present invention.

【図4】図3に示す条件における焼結鉱の還元率、収縮
率および圧力損失の説明図である。
4 is an explanatory diagram of a reduction ratio, a shrinkage ratio, and a pressure loss of a sintered ore under the conditions shown in FIG.

【図5】図3に示す条件におけるペレットの還元率,収
縮率および圧力損失の説明図である。
5 is an explanatory diagram of a reduction rate, a shrinkage rate, and a pressure loss of a pellet under the conditions shown in FIG.

【図6】本発明の実施の形態1に係り、焼結鉱の配合率
と高温性状(圧損急上昇温度)との関係説明図である。
FIG. 6 is a diagram illustrating the relationship between the mixing ratio of sintered ore and high-temperature properties (pressure drop rapid rise temperature) according to Embodiment 1 of the present invention.

【図7】50Wt%ずつの焼結鉱とペレットとからなる
高炉装入物の高炉の径方向のペレット分布説明図であ
る。
FIG. 7 is an explanatory diagram of a pellet distribution in a radial direction of a blast furnace of a blast furnace charge composed of sintered ore and pellets of 50 Wt% each.

【図8】本発明の実施の形態2に係り、ペレットを多量
配合した高炉装入物を高炉の炉壁側に装入したときの高
炉の径方向のO/C分布およびペレット分布説明図であ
る。
FIG. 8 is an explanatory diagram of O / C distribution and pellet distribution in the radial direction of a blast furnace when a blast furnace charge containing a large amount of pellets is charged on the furnace wall side of the blast furnace according to the second embodiment of the present invention. is there.

【図9】従来例に係り、ペレット配合率(%)に対する
燃料比(kg/t)の関係説明図である。
FIG. 9 is a diagram illustrating the relationship between a blending ratio (%) of a pellet and a fuel ratio (kg / t) according to a conventional example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 焼結鉱とペレットとをベルレス式の装入
装置により高炉に装入して、高炉内に30Wt%以上の
ペレットを含む焼結鉱とペレットとからなる装入物層を
コークステラスの上に形成させると共に、ガス流を中心
流にする高炉操業方法において、70Wt%以上の焼結
鉱と残ペレットとからなる高炉装入物Aを高炉内半径R
の0.6Rの範囲内の中心部に装入すると共に、70W
t%以上のペレットと残焼結鉱とからなる高炉装入物B
を高炉に装入された高炉装入物Aの外側の外周部に装入
することを特徴とする高炉操業方法。
1. A sinter ore and pellets are charged into a blast furnace by a bell-less charging device, and a charge layer composed of sinter and pellets containing 30 Wt% or more pellets is coke in the blast furnace. In the blast furnace operating method in which a gas flow is formed as a central flow while being formed on a terrace, a blast furnace charge A comprising 70 Wt% or more of sintered ore and remaining pellets is subjected to a blast furnace radius R.
At the center within the range of 0.6R and 70W
Blast furnace charge B consisting of pellets of at least t% and residual sinter
Blast furnace is charged into the outer peripheral portion of the blast furnace charge A charged into the blast furnace.
【請求項2】 焼結鉱とペレットとをベルレス式の装入
装置により高炉に装入して、高炉内に30Wt%以上の
ペレットを含む焼結鉱とペレットとからなる装入物層を
コークステラスの上に形成させると共に、ガス流を中心
流にする高炉操業方法において、70Wt%以上の焼結
鉱と残ペレットとからなる高炉装入物Aを高炉内半径R
の0.6Rの範囲内の中心部に装入し、次に装入するペ
レットでコークステラスを崩さないようにした後に、ペ
レットだけを高炉に装入された高炉装入物Aの外側の外
周部のコークステラス上に装入してペレットテラスを形
成させると共に、このペレットテラスの上に焼結鉱を装
入して、前記高炉装入物Aの外側の外周部に70Wt%
以上のペレットと残焼結鉱とからなる高炉装入物Bの層
を形成させることを特徴とする高炉操業方法。
2. A sinter ore and pellets are charged into a blast furnace by a bell-less charging device, and a charge layer comprising sinter and pellets containing 30 Wt% or more pellets is coke in the blast furnace. In the blast furnace operating method in which a gas flow is formed as a central flow while being formed on a terrace, a blast furnace charge A comprising 70 Wt% or more of sintered ore and remaining pellets is subjected to a blast furnace radius R.
Of the blast furnace charge A in which only the pellets were charged into the blast furnace after charging the coke terrace with the pellets charged in the center within the range of 0.6R. To form a pellet terrace, and charge sinter ore on the pellet terrace to form 70 Wt% on the outer periphery of the blast furnace charge A.
A method for operating a blast furnace, comprising forming a layer of the blast furnace charge B comprising the above pellets and residual sinter.
JP28197197A 1997-10-15 1997-10-15 Blast furnace operation method Expired - Fee Related JP3522508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28197197A JP3522508B2 (en) 1997-10-15 1997-10-15 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28197197A JP3522508B2 (en) 1997-10-15 1997-10-15 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH11117007A true JPH11117007A (en) 1999-04-27
JP3522508B2 JP3522508B2 (en) 2004-04-26

Family

ID=17646458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28197197A Expired - Fee Related JP3522508B2 (en) 1997-10-15 1997-10-15 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP3522508B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228046A (en) * 2008-03-21 2009-10-08 Kobe Steel Ltd Method for operating blast furnace
CN111363871A (en) * 2020-03-04 2020-07-03 首钢京唐钢铁联合有限责任公司 Coal gas control method in blast furnace smelting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228046A (en) * 2008-03-21 2009-10-08 Kobe Steel Ltd Method for operating blast furnace
CN111363871A (en) * 2020-03-04 2020-07-03 首钢京唐钢铁联合有限责任公司 Coal gas control method in blast furnace smelting

Also Published As

Publication number Publication date
JP3522508B2 (en) 2004-04-26

Similar Documents

Publication Publication Date Title
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
JP2004107794A (en) Method for charging raw material into bell-less blast furnace
JPS63153385A (en) Method and system of operating vertical type furnace
CN104302787A (en) Method for loading raw material into blast furnace
JP4114626B2 (en) Blast furnace operation method
JPH11117007A (en) Operation of blast furnace
JP3573780B2 (en) Raw material charging method for bellless blast furnace
JP3700457B2 (en) Blast furnace operation method
EP3896177B1 (en) Method for charging raw material into bell-less blast furnace, and blast furnace operation method
JP6354810B2 (en) Raw material charging method to blast furnace
JP3588877B2 (en) Ore and coke charging method in bellless blast furnace
JPH08120311A (en) Method for charging raw material of blast furnace
KR100376480B1 (en) Burden distribution control method in blast furnace by using coke
CN106133151B (en) To the method for blast furnace charging feedstock
JP3700458B2 (en) Low Si hot metal manufacturing method
JPH08239705A (en) Method for suppressing formation of deposition in blast furnace
JP5842738B2 (en) Blast furnace operation method
JPH06271908A (en) Method for charging raw material in multi-batches into bell-less blast furnace
JP4052047B2 (en) Raw material charging method to blast furnace
JP2933468B2 (en) Method of charging molded coke into blast furnace
JPH06220511A (en) Method for charging formed coke into blast furnace
KR101510546B1 (en) Method for charging materials into blast furnace
JPH1060507A (en) Operation of blast furnace
KR100800541B1 (en) Blast furnace lower part belly activation operation method of Stave cooling form
JPH01191714A (en) Operation of blast furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040120

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040204

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130220

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20140220

LAPS Cancellation because of no payment of annual fees