JPH01240627A - Method for sintering iron ore fines - Google Patents

Method for sintering iron ore fines

Info

Publication number
JPH01240627A
JPH01240627A JP6713688A JP6713688A JPH01240627A JP H01240627 A JPH01240627 A JP H01240627A JP 6713688 A JP6713688 A JP 6713688A JP 6713688 A JP6713688 A JP 6713688A JP H01240627 A JPH01240627 A JP H01240627A
Authority
JP
Japan
Prior art keywords
sintering
hopper
mgo
ore
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6713688A
Other languages
Japanese (ja)
Inventor
Motoo Yasuda
安田 素郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6713688A priority Critical patent/JPH01240627A/en
Publication of JPH01240627A publication Critical patent/JPH01240627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve the product yield of sintered ore and coke consumption unit by charging the upper layer of a pallet with a sintering material increased in the component content, also charging the lower layer with a sintering material reduced in the component content and other material, and then carrying out sintering. CONSTITUTION:A sintering material of high Al2O3.MgO content and a sintering material of low Al2O3.MgO content are dividedly placed in a hopper 11 and a hopper 14, respectively. The material reduced in the content of the above component from the hopper 14 is mixed with sinter fines from a sinter-fine hopper 15 in which sinter fines produced in a sintering stage are placed. Subsequently, the resulting mixture is charged into the lower layer on a pallet 1. Further, the material increased in the above component content is charged from the above hopper 11 onto the above lower layer, and then, the upper and the lower layers are sintered.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、2層焼結法による高炉装入用原料の焼結方法
に関し、史に詳しくは焼結鉱の成品歩留りおよびコーク
ス原単位の改善を目的とする粉鉄鉱石の焼結方法に関す
る。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for sintering raw materials for blast furnace charging using a two-layer sintering method, and more specifically, the present invention relates to a method for sintering raw materials for blast furnace charging using a two-layer sintering method. This invention relates to a method for sintering fine iron ore for the purpose of improvement.

[従来の技術] 一般に焼結鉱は、高炉において炉下部まである程度の原
形を保ち炉下部で溶解するような高温性状を有すること
、スラブの融点や粘性が適切となること等の面から高M
gO成分を含有する焼結鉱が要求されている。また、最
近では水砕スラグの成分調整のため2〜3%の高MgO
1高、6f2203成分を含有する焼結鉱が要求されて
いる。
[Prior Art] Generally, sintered ore has a high temperature property in which it retains its original shape to some extent up to the lower part of the furnace and melts in the lower part of the furnace, and the melting point and viscosity of the slab are appropriate.
Sintered ore containing gO components is required. Recently, 2 to 3% high MgO has been added to adjust the composition of granulated slag.
1 high, sintered ore containing the 6f2203 component is required.

従来、これらのMgO1AI2203成分を調整するた
め、MgOについてはドロマイト、蛇紋岩のような副原
料を配合し、Al2203については高へβ203成分
を含有する鉄鉱石の配合を行っていた。
Conventionally, in order to adjust these MgO1AI2203 components, auxiliary raw materials such as dolomite and serpentine were blended for MgO, and iron ore containing a high β203 component was blended for Al2203.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来法では、配合原料中のAl2203、MgOの成分
%が高いために、そのまま焼結した場合、焼結過程にお
いてスラグの融点が高くなり、焼結過程における生成ス
ラグ量の減少に起因する焼結鉱の粒子間の結合力が低下
し、焼結鉱の強度低下や歩留低下を招き、その結果コー
クス原単位の上昇、生産性の低下を招来すると云った問
題があった。
In the conventional method, since the component percentages of Al2203 and MgO in the mixed raw materials are high, when sintered as is, the melting point of the slag becomes high in the sintering process, resulting in a decrease in the amount of slag produced during the sintering process. There has been a problem in that the bonding force between particles of the ore decreases, leading to a decrease in the strength and yield of the sintered ore, resulting in an increase in coke consumption and a decrease in productivity.

本、発明は上述の問題点を解決する。ために提案された
ものであり、焼結配合原料中(7)’ A Q 203
 。
The present invention solves the above problems. (7)' A Q 203
.

MgOの賦存状態を変化させて焼結反応性を改善し、生
産性やコークス原単位を損なうことなく。
Improves sintering reactivity by changing the MgO abundance state without impairing productivity or coke consumption.

高Al2203、MgO焼結鉱を製造することができる
粉鉄鉱石の焼結方法を提供することを目的とするもので
ある。
The object of the present invention is to provide a method for sintering fine iron ore that can produce high Al2203, MgO sintered ore.

r問題点を解決するための手段] 、本発明者は問題を解決するために鋭意研究の結果1次
の知見を得た。すなわち、焼結層の上層に高/120a
、MgO成分の原料を供給して焼結すれば、表層はその
殆どが返鉱となる。しかもこの返鉱は不十分とは言え一
旦焼結されたものであるから、これを下層に混入して焼
結すれば、焼結用コークス量は同量であっても高Aβ2
03゜MgOの返鉱粒子間を接合するだけですむので、
容易に高AI!203.MgOの焼結鉱を得ることがで
きる。
Means for Solving Problems] The inventors of the present invention have obtained the following findings as a result of intensive research in order to solve the problems. That is, the upper layer of the sintered layer has a high
If raw materials of MgO components are supplied and sintered, most of the surface layer becomes return ore. Moreover, this return ore has already been sintered, although it is insufficient, so if it is mixed into the lower layer and sintered, even if the amount of coke for sintering is the same, it will have a high Aβ2
Since it is only necessary to bond between the return ore particles of 03゜MgO,
High AI easily! 203. Sintered ore of MgO can be obtained.

本発明はこのような基本的知見を得て原料成分により2
層に分けて装入するようにしたものである。
Based on this basic knowledge, the present invention has developed two
It is designed to be charged in layers.

焼結装入原料を2層に分けて装入する方法は。What is the method of charging raw materials for sintering in two layers?

特開昭62−130227号で開示されているように、
塩基度を調整する際に用い・られる手段である。このよ
うな手段は通気性の改善1強度維持の点から上層に塩基
度の低い原料を、下層に塩基度の高い原料を装入して□
焼結層るものであり、高炉スラグや水砕スラグ製造時に
要求される高Al2203、MgO焼結鉱を得る技術と
しては未開発の状態にある。
As disclosed in Japanese Patent Application Laid-Open No. 62-130227,
This is a means used to adjust basicity. In order to improve air permeability and maintain strength, such means charge raw materials with low basicity in the upper layer and raw materials with high basicity in the lower layer.
It is a sintered layer, and the technology for obtaining high Al2203 and MgO sintered ore, which is required when producing blast furnace slag and granulated slag, is in an undeveloped state.

本発明は上述の問題点を解決するもので、焼結原料をパ
レット上に上下2層に分けて装入し焼結する粉鉄鉱石の
焼結方法であって1次の技術手段を採った。すなわち、
焼結装入原料を高AR203、MgO成分の原料と低A
l2203、M g O成分の原料に分け、上層には高
Al22 oa 。
The present invention solves the above-mentioned problems, and is a method for sintering powdered iron ore, in which sintering raw materials are charged and sintered in two layers, upper and lower, on a pallet, and the following technical means are adopted. . That is,
The sintering charge raw materials are high AR203, MgO component raw materials and low A
The upper layer contains high Al22 oa.

MgO成分の原料を装入し、下層には低へβ203、M
gO成分の原料とこの工程の返鉱との混合原料を装入し
て焼結することを特徴とする。
The raw material for the MgO component is charged, and the lower layer contains low β203, M
It is characterized in that a mixed raw material of the raw material for the gO component and the return ore from this process is charged and sintered.

〔作用1 成品焼結鉱のAg2O3、MgO成分を1.5重量%以
上とするためには、Al2203、MgO成分が3重量
%以上の焼結原料を焼結パレット上層に層厚50mm以
下で装入し、この上層で焼成された高へβ203、Mg
O焼結鉱を返鉱として優先的に回収し、これを再び下層
の配合原料として使用することにより実現することがで
きる。このようにしてAg2O3、MgOの賦存状態を
変化させ焼結反応性を改善することが本発明の特徴であ
る。
[Action 1: In order to make the Ag2O3 and MgO components of the finished sintered ore 1.5% by weight or more, a sintering raw material containing 3% by weight or more of Al2203 and MgO components is loaded on the upper layer of the sintered pallet with a layer thickness of 50 mm or less. The high β203, Mg
This can be achieved by preferentially recovering O sintered ore as return ore and using it again as a raw material for the lower layer. A feature of the present invention is to improve the sintering reactivity by changing the presence state of Ag2O3 and MgO in this way.

一方、成品焼結鉱中のAl2203、MgOが余り高い
と高炉操業や水砕スラグの品質に支障を来すので、成品
焼結鉱中のAl203 、MgOを2〜3%に管理する
必要がある。従って、層厚にもよるが、上層に装入する
原料中のAl2203、MgOの上限は10%を限度と
する。
On the other hand, if the Al2203 and MgO in the finished sintered ore are too high, it will interfere with blast furnace operation and the quality of granulated slag, so it is necessary to control the Al203 and MgO in the finished sintered ore to 2 to 3%. . Therefore, although it depends on the layer thickness, the upper limit of Al2203 and MgO in the raw material charged to the upper layer is 10%.

一般に焼結層全体の層厚は約650mmであり、そのう
ち、上層の表面以下的50mmは冷風吸引により、焼成
中の温度が十分上昇せずその60〜70%は返鉱となっ
て回収される。さらにこの上層において/1203、M
gO成分5〜7重量%の原料を焼成すれば、強度が低下
し70〜90%が返鉱となって回収されることになる。
Generally, the thickness of the entire sintered layer is about 650 mm, of which 60-70% of the 50 mm below the surface of the upper layer becomes return ore and is recovered because the temperature during firing does not rise sufficiently due to cold air suction. . Furthermore, in this upper layer /1203, M
If a raw material containing 5 to 7% by weight of gO is fired, the strength will decrease and 70 to 90% will be recovered as return ore.

厚さが50mmを越えると返鉱となって回収されること
が少なくなるので50mm以下とする。
If the thickness exceeds 50 mm, it becomes return ore and is less likely to be recovered, so the thickness should be 50 mm or less.

本発明によれば熱的な損失なしで高AR203、MgO
原料を製造することができる。この高Aβ203、Mg
Oの返鉱を下層に混入することにより主原料中のAg2
O3、MgOはそれだけ目標成分より低下させることが
できる。このことは下層において低Aβ203、MgO
部を溶融させ返鉱粒子を焼結すれば良く、焼結性は大幅
に改善されることになる。
According to the present invention, high AR203, MgO without thermal loss
Raw materials can be manufactured. This high Aβ203, Mg
By mixing O return ore into the lower layer, Ag2 in the main raw material is
O3 and MgO can be lowered by that much lower than the target components. This means that the lower layer has low Aβ203, MgO
It is only necessary to melt the part and sinter the return ore particles, and the sinterability will be significantly improved.

予め/’Ml!203、MgOを5重量%含有する焼結
鉱を試験的に作り一5mmに粉砕した返鉱を原料として
調整したものと、従来どおり鉄鉱石と副原料のみで成分
調整したものをそれぞれ鍋試験した結果を第1表に示し
た。第1表から分るように、Aff203.MgOの成
品成分は同一でも、゛コークス原単位および歩留りが大
幅に改善されている。
In advance/'Ml! 203. Sintered ore containing 5% by weight of MgO was experimentally prepared using return ore crushed to 15 mm as raw material, and the other was prepared using only iron ore and auxiliary materials as before, and pot tests were conducted on both. The results are shown in Table 1. As can be seen from Table 1, Aff203. Even though the MgO product components are the same, the coke consumption rate and yield are significantly improved.

第   1   表 〔実施例1 本発明を好適に実施できる粉鉄鉱石の焼結装置のフロー
シートを第1図に示す。
Table 1 [Example 1] FIG. 1 shows a flow sheet of a sintering apparatus for fine iron ore in which the present invention can be carried out suitably.

第1図において、パレットl上には、床敷ホッパ2から
床敷鉱が装入され、その上に下層原料用ホッパ3から下
層原料がドラムフィーダ4、シュート5を介して装入さ
れ、さらに、その上に上層原料用ホッパ6から上層原料
がドラムフィーダ7、シュート8を介して装入される。
In FIG. 1, bedding ore is charged onto a pallet l from a bedding hopper 2, and on top of it, a lower layer raw material is charged from a lower layer raw material hopper 3 via a drum feeder 4 and a chute 5. The upper layer raw material is charged thereon from the upper layer raw material hopper 6 via the drum feeder 7 and the chute 8.

コークスホッパ9、石灰石ホッパlO1および高へε2
03、MgO鉄鉱石ホッパ11からの各原料はミキサ1
7で混合され上層原料用ホッパ6に装入される。また、
コークスホッパ12.石灰石ホッパ13および低Aβ2
03、MgO鉄鉱石ホッパ14からの各原料および返鉱
15はミキサ18で混合され下層原料用ホッパ3に装入
されるよう構成されている。返鉱15は焼結鉱を破砕機
19で破砕し成品篩16で分級し返鉱ホッパ15に装入
されている。このとき焼結後の上層の高AJ2203、
MgO部は殆ど返鉱15中に回収される。
Coke hopper 9, limestone hopper lO1 and high ε2
03, Each raw material from MgO iron ore hopper 11 is transferred to mixer 1
7 and charged into the upper layer raw material hopper 6. Also,
Coke hopper 12. Limestone hopper 13 and low Aβ2
03, each raw material and return ore 15 from the MgO iron ore hopper 14 are mixed in a mixer 18 and charged into the lower layer raw material hopper 3. The return ore 15 is made by crushing sintered ore with a crusher 19, classifying it with a finished product sieve 16, and charging it into the return ore hopper 15. At this time, the upper layer high AJ2203 after sintering,
Most of the MgO part is recovered in the return ore 15.

上層の層厚は50mm以下の範囲で最適な高さで装入さ
れる。一般に上層の50mmの部分は通常の焼結法でも
60〜70%は返鉱として回収される。
The upper layer is charged at an optimal height within a range of 50 mm or less in thickness. Generally, 60 to 70% of the 50 mm portion of the upper layer is recovered as return ore even with the normal sintering method.

従って、上層の高Al2O3、MgO焼結鉱をいかに歩
留り良く返鉱として回収するかがポイントでありAR2
03、Mg0%およびコークス添加量を変えて調査した
結果、コークス添加量を通常の添加量に対して20%減
とすればその部分の90%が返鉱として回収されること
が分かった。
Therefore, the key point is how to recover the high Al2O3 and MgO sintered ore in the upper layer as return ore with a high yield, and AR2
03. As a result of investigating the amount of Mg0% and the amount of coke added, it was found that if the amount of coke added was reduced by 20% from the normal amount, 90% of the amount could be recovered as return ore.

次に実際の焼結操業に適用した例を説明する。生産量6
000 ton/day 、吸引風i7000Nrn”
/minのDL焼結機で第1図に示すような2層装入装
置を用い、上層の層厚を45mm、下層の層厚を600
mmとし、上下層の配合原料成分およびコークス配合比
を第2表に示す内容で操業を行った。
Next, an example applied to an actual sintering operation will be explained. Production amount 6
000 ton/day, suction wind i7000Nrn”
/min DL sintering machine using a two-layer charging device as shown in Figure 1, the layer thickness of the upper layer was 45 mm and the layer thickness of the lower layer was 60 mm.
mm, and the operation was carried out with the blended raw material components and coke blending ratio of the upper and lower layers shown in Table 2.

その結果1本発明法と従来法の操業比較を第3表に示し
ている。本発明法では、成品成分のAg2O3、MgO
はほぼ同一であっても、歩留り(生産性〕、コークス原
単位が大幅に改暦されていることが分る。
As a result, Table 3 shows a comparison of operation between the method of the present invention and the conventional method. In the method of the present invention, the product components Ag2O3, MgO
It can be seen that even though the values are almost the same, the yield (productivity) and coke consumption rate have been significantly revised.

第   2   表 第   3   表 [発明の効果1 不発明によれば歩留りおよびコークス原単位が大幅に改
菩され生産性の向上に優れた効果を奏する。
Table 2 Table 3 [Effect of the invention 1 According to the invention, the yield and the coke consumption rate are significantly improved, resulting in an excellent effect of improving productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を好適に実施できる粉鉄鉱石の焼結装置
のフローシートである。 1・・・パレット、2・・・床敷ホッパ、3・・・下層
原料用ホッパ、4・・・ドラムフィーダ、5・・・シュ
ート、6−・・上層原料用ホッパ、7・・・ドラムフィ
ーダ、8・・・シュート、9・・・コークスホッパ、I
O・・・石灰石ホッパ、11・・・高Aβ203、M 
g Oホッパ、12・・・コークスホッパ、13・・・
石灰石ホッパ、14・・・低Aβ20g、MgOホッパ
、15・・−返鉱ホッパ、I6・・・成品篩。 17.18−・・ミキサ、19・・・破砕機。
FIG. 1 is a flow sheet of a fine iron ore sintering apparatus in which the present invention can be suitably implemented. 1... Pallet, 2... Bedding hopper, 3... Hopper for lower layer raw material, 4... Drum feeder, 5... Chute, 6-... Hopper for upper layer raw material, 7... Drum Feeder, 8... Chute, 9... Coke hopper, I
O... Limestone hopper, 11... High Aβ203, M
g O hopper, 12...Coke hopper, 13...
Limestone hopper, 14...low Aβ 20g, MgO hopper, 15...-return hopper, I6... finished product sieve. 17.18-...Mixer, 19...Crusher.

Claims (1)

【特許請求の範囲】 1 焼結原料をパレット上に上下層に分けて装入する粉
鉄鉱石の焼結方法において、 原料を高Al_2O_3、MgO成分の原料と低Al_
2O_3、MgO成分の原料とに分け、上層には高Al
_2O_3、MgO成分の原料を装入し、下層には低A
l_2O_3、MgO成分の原料と該焼結工程の返鉱と
の混合原料を装入して焼結することを特徴とする粉鉄鉱
石の焼結方法。
[Claims] 1. A method for sintering powdered iron ore in which sintering raw materials are charged separately into upper and lower layers on a pallet, in which the raw materials are high Al_2O_3, raw materials with MgO components, and low Al_
Separated into 2O_3 and MgO component raw materials, the upper layer contains high Al
_2O_3, MgO component raw materials are charged, and the lower layer is a low-A
A method for sintering powdered iron ore, which comprises charging and sintering a mixed raw material of l_2O_3 and MgO component raw materials and return ore from the sintering process.
JP6713688A 1988-03-23 1988-03-23 Method for sintering iron ore fines Pending JPH01240627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6713688A JPH01240627A (en) 1988-03-23 1988-03-23 Method for sintering iron ore fines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6713688A JPH01240627A (en) 1988-03-23 1988-03-23 Method for sintering iron ore fines

Publications (1)

Publication Number Publication Date
JPH01240627A true JPH01240627A (en) 1989-09-26

Family

ID=13336183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6713688A Pending JPH01240627A (en) 1988-03-23 1988-03-23 Method for sintering iron ore fines

Country Status (1)

Country Link
JP (1) JPH01240627A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916511B1 (en) * 2002-12-28 2009-09-08 주식회사 포스코 Method for producting sinter cake using input of return fine in sinter machine process
WO2010032466A1 (en) * 2008-09-17 2010-03-25 新日本製鐵株式会社 Sintered ore manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916511B1 (en) * 2002-12-28 2009-09-08 주식회사 포스코 Method for producting sinter cake using input of return fine in sinter machine process
WO2010032466A1 (en) * 2008-09-17 2010-03-25 新日本製鐵株式会社 Sintered ore manufacturing method
JP4528362B2 (en) * 2008-09-17 2010-08-18 新日本製鐵株式会社 Method for producing sintered ore
CN102159733A (en) * 2008-09-17 2011-08-17 新日本制铁株式会社 Sintered ore manufacturing method
JPWO2010032466A1 (en) * 2008-09-17 2012-02-09 新日本製鐵株式会社 Method for producing sintered ore

Similar Documents

Publication Publication Date Title
JPH01240627A (en) Method for sintering iron ore fines
JP3344151B2 (en) Sinter production method
JP3247276B2 (en) Blast furnace charging method
JP2003301205A (en) Method for charging blast furnace material
JPH0816249B2 (en) Pretreatment method in agglomerated ore production
JPH01147023A (en) Manufacture of sintered ore
JP2711735B2 (en) Sinter production method
CN112322889B (en) Method for producing sinter of vanadium-titanium-iron concentrate
KR102458931B1 (en) Method for manufacturing sintered ore
JPH0377259B2 (en)
KR100228217B1 (en) Method of pretreating sintering material
JP3006884B2 (en) Sinter for iron making using pisolite iron ore as raw material and method for producing the same
JPH0259849B2 (en)
JPH0881717A (en) Production of sintered ore
JPH10317069A (en) Sintering raw material treatment
JPH05311251A (en) Manufacture of sintered ore for blast furnace pig making with pisolite iron ore as raw material
JPH066754B2 (en) Sintering method of iron ore
JP2515639B2 (en) Method for producing agglomerated ore using converter slag
JPH0586458B2 (en)
KR100383271B1 (en) Sintered ore manufacturing method with improved recovery
JPH01156430A (en) Manufacture of briquetted ore
JP2002332526A (en) Method for pretreating sintering raw material
EP0015085A1 (en) An improved raw materials mix and process for producing self-fluxing, sintered ores
JPH04304326A (en) Manufacture of sintered ore
JPH0625758A (en) Sintering accelerator and production of sintered ore by using this accelerator