JPH0377259B2 - - Google Patents

Info

Publication number
JPH0377259B2
JPH0377259B2 JP7553885A JP7553885A JPH0377259B2 JP H0377259 B2 JPH0377259 B2 JP H0377259B2 JP 7553885 A JP7553885 A JP 7553885A JP 7553885 A JP7553885 A JP 7553885A JP H0377259 B2 JPH0377259 B2 JP H0377259B2
Authority
JP
Japan
Prior art keywords
slag
ferro
ferronic
raw material
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7553885A
Other languages
Japanese (ja)
Other versions
JPS61235519A (en
Inventor
Kazuaki Tanigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Jiryoku Senko Co Ltd
Original Assignee
Nippon Jiryoku Senko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Jiryoku Senko Co Ltd filed Critical Nippon Jiryoku Senko Co Ltd
Priority to JP60075538A priority Critical patent/JPS61235519A/en
Publication of JPS61235519A publication Critical patent/JPS61235519A/en
Publication of JPH0377259B2 publication Critical patent/JPH0377259B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、フエロニツケルスラグの有効利用方
法に係り、特にフエロニツケルスラグから焼結原
料を製造する方法に関するものである。 〔従来の技術〕 高炉の能率は近年急激に増加しているが、これ
は炉容の拡大による生産性の向上というよりは、
原料予備処理の充実、焼結鉱の高度利用等による
ものであるといえる。 この焼結鉱は、適当に粉砕された鉄鉱石、粉コ
ークス、蛇紋岩、珪石、石灰岩、生石灰を返し鉱
と共にミキサーで混合し、焼結機の上で連続的に
焼くことによつて生産されている。 ここで、蛇紋岩はMgO源として混入され、こ
れによつて、後の工程で脱硫効率を向上させてお
り、生石灰はバインダーとして混入されるもので
ある。 一方、製鋼過程で発生するフエロニツケルスラ
グは、第1表に示す組成を示すように、有価金属
であるNiの含有量は極めて小さく、これを適当
に処理してNi分を回収することはコスト高にな
るので、通常は行われず、その殆どは廃棄処分さ
れているのが現状であつた。
[Industrial Field of Application] The present invention relates to a method for effectively utilizing ferro-nickel slag, and particularly to a method for producing a sintering raw material from ferro-nickel slag. [Conventional technology] The efficiency of blast furnaces has increased rapidly in recent years, but this is not due to improved productivity due to expansion of furnace capacity.
This can be attributed to improvements in raw material pre-processing and advanced use of sintered ore. This sintered ore is produced by mixing suitably crushed iron ore, coke powder, serpentine, silica stone, limestone, and quicklime with return ore in a mixer and continuously baking it on a sintering machine. ing. Here, serpentinite is mixed as a MgO source, thereby improving the desulfurization efficiency in the subsequent process, and quicklime is mixed as a binder. On the other hand, as shown in the composition shown in Table 1, ferronic slag generated during the steelmaking process has an extremely low content of Ni, which is a valuable metal, and it is difficult to recover the Ni content by appropriately treating it. Due to the high cost, this is not normally done and most of it is currently disposed of.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記フエロニツケルスラグには重金
属が含まれていることもあつて、これを単に投棄
する分けにはいかず、一定の処理を施した後投棄
するのでその作業が大変であるという問題点があ
つた。 本発明は、このような事情に鑑みなされたもの
で、フエロニツケルスラグが第1表に示す如く
MgOを比較的多量に含有する点に着目し、更に
これを改質して、前記焼結の原料とする製造方法
を提供することを目的とする。 〔問題点を解決する手段〕 上記目的に沿う第1の発明に係るフエロニツケ
ルスラグから焼結原料を製造する方法は、溶融状
態のフエロニツケルスラグに所定量の急結性改質
材を混合する第1工程と、上記工程で処理された
フエロニツケルスラグを水滓処理して固化破砕す
る第2工程と、該水滓処理されたフエロニツケル
スラグを乾燥して粉砕する第3工程と、該粉砕さ
れたフエロニツケルスラグに所定量のアルカリ性
刺激材を混入する第4工程とからなつている。 ここで、急結性改質材とは、溶融状態のフエロ
ニツケルスラグに混入してフエロニツケルスラグ
を改質し、最終的な焼結の原料として使用する場
合、通気性のあるバインダーとして働き水硬性効
果を促進するような材料をいい、具体的には石灰
(CaO、Ca(OH)2、CaCO3等をいう)、酸化鉄、
アルミナ等をいう。 また、上記目的に沿う第2の発明に係るフエロ
ニツケルスラグから焼結原料を製造する方法は、
溶融状態のフエロニツケルスラグを水滓処理して
固化破砕する第1工程と、該水滓処理されたフエ
ロニツケルスラグを乾燥して粉砕する第2工程
と、該粉砕されたフエロニツケルスラグに所定量
のアルカリ性刺激材を混入する第3工程とからな
つている。 ここで、第1の発明においても同様であるが、
アルカリ性刺激材とは、具体的には石膏、生石
灰、Ca(OH)2、NaOH、Na2CO3、CaCl2
CaCO3、セメント、セメントクリンカー等をい
う。なお、ここで、このようなアルカリ性刺激材
を混入する理由は、フエロニツケルスラグの急冷
処理してガラス主体とし、これに所定量のアルカ
リ性刺激材を混入し、水を加えて混練すると水硬
性を有することを発見したからである。 〔実施例〕 続いて本願方法の一実施例につき説明し、本発
明の理解に供する。 ここに、第1図は第1の発明に係るフエロニツ
ケルスラグから焼結原料を製造する方法を説明す
る為の工程図である。 第1図に示すように、溶融状態のフエロニツケ
ルスラグ10が入つている取鍋11内に、ホツパ
ー13からフイダー14で以て、所定量の急結性
改質材12を入れ、必要によりランスパイプ状物
15で空気、O2、N2等の気体を送り撹拌する
(以上、第1工程)。 上記処理されたフエロニツケルスラグ10を該
取鍋11または他の取鍋16(図面では他の取鍋
16を示している)で、水滓設備18の原料投入
口ある水滓用樋17に流し込む。 この水滓設備18の下部には高圧水発生装置1
9に接続されるノズル20が設けられ、流れてく
る溶融状態のフエロニツケルスラグ10を水流ジ
エツトで吹き飛ばし、水槽21の中に沈降させ
る。この水槽21の中にはエーキンス分級機22
が配設され、固化破砕されたフエロニツケルスラ
グ(以下、水滓物という)と水とを分離する。こ
の固液分離された水滓物23は、コンベア24で
搬送されてホツパー25内に一時貯蔵される(以
上、第2工程)。 この後、乾燥室26で乾燥されて、必要により
磁選機27(またはその他の選鉱手段)によつて
メタル分が取り除かれる。ここで、メタル分が取
り除かれた水滓物23は、砂状となつている。 次に、この水滓物23をコンベア29で搬送し
粉砕機の一例であるロツドミル28に入れ、粉状
化する(以上、第3工程)。 一方、磁選機27で分離されたメタル分はコン
ベア30で搬送され、ホツパー31に一時貯蔵さ
れ、製鋼原料に戻される。 上記ロツドミル28で粉砕された水滓物23は
一旦、ホツパー32に貯蔵された後コンベア33
で切り出してミキサー34に投入されると共に、
ホツパー35には、粉砕処理した前記アルカリ性
刺激材を貯蔵しておき、コンベア36で所定量切
り出して上記ミキサー34に投入して、混練する
(以上、第4工程)。 これによつて、フエロニツケルスラグを主原料
とした焼結原料ができあがる。 なお、第2の発明に係るフエロニツケルスラグ
から焼結原料を製造する方法は上記工程で、溶融
状態のフエロニツケルスラグに急結性改質材を加
えない点にあるので、その詳しい説明を省略す
る。このように第2の発明に係るフエロニツケル
スラグから焼結原料を製造する方法において、急
結性改質材の混入を省略したのは、フエロニツケ
ルスラグの性質によつては、水滓化処理した後、
十分な量のアルカリ性刺激材を加えることによつ
て、焼結原料としての役目を果たす物があるから
である。 次に、本発明に係るフエロニツケルスラグから
焼結原料を製造する方法の一実施例について、更
に具体的した実験を行い、本発明の作用及び効果
を確認した。 まず、上記実施例に使用した原料の割合を第2
表に示す。
However, since the ferronic slag contains heavy metals, it cannot be simply dumped, but must be treated before being dumped, which poses the problem of arduous work. It was hot. The present invention was made in view of these circumstances, and the ferronitkel slag is as shown in Table 1.
Focusing on the fact that it contains a relatively large amount of MgO, it is an object of the present invention to provide a manufacturing method in which MgO is further modified and used as a raw material for the sintering. [Means for Solving the Problems] A method for producing a sintering raw material from ferronic slag according to the first invention in accordance with the above object includes adding a predetermined amount of a rapid setting modifier to molten ferronic slag. A first step of mixing, a second step of subjecting the ferro-nickel slag treated in the above step to a slag treatment to solidify and crush it, and a third step of drying and pulverizing the ferro-nitkel slag treated with the dregs. and a fourth step of mixing a predetermined amount of an alkaline stimulant into the pulverized ferronickel slag. Here, the rapid setting modifier is used as an air-permeable binder when mixed into molten ferro-nickel slag to modify the ferro-nickel slag and used as a raw material for final sintering. It refers to materials that work to promote hydraulic effects, specifically lime (CaO, Ca(OH) 2 , CaCO 3 , etc.), iron oxide,
Refers to alumina, etc. In addition, a method for producing a sintering raw material from ferronic slag according to a second invention in accordance with the above object,
A first step of treating ferronic slag in a molten state with a water slag to solidify and crush it, a second step of drying and pulverizing the ferro nickel slag treated with a slag, and a second step of drying and pulverizing the ferro nickel slag that has been subjected to the slag treatment; and a third step of mixing a predetermined amount of alkaline stimulant into the stimulant. Here, although the same applies to the first invention,
Alkaline stimulants include gypsum, quicklime, Ca(OH) 2 , NaOH, Na 2 CO 3 , CaCl 2 ,
Refers to CaCO 3 , cement, cement clinker, etc. The reason why such an alkaline stimulant is mixed here is that the ferronic slag is rapidly cooled to make it mainly glass, and when a predetermined amount of an alkaline stimulant is mixed into this and water is added and kneaded, it becomes hydraulic. This is because it was discovered that [Example] Next, an example of the method of the present application will be described to provide an understanding of the present invention. Here, FIG. 1 is a process diagram for explaining a method for producing a sintering raw material from ferronic slag according to the first invention. As shown in FIG. 1, a predetermined amount of rapid-setting modifier 12 is put into a ladle 11 containing molten ferronickel slag 10 using a feeder 14 from a hopper 13, and as needed. A gas such as air, O 2 , N 2 , etc. is sent and stirred using a lance pipe-like member 15 (the above is the first step). The treated ferronic slag 10 is transferred to the slag gutter 17 which is the raw material input port of the slag equipment 18 using the ladle 11 or another ladle 16 (the other ladle 16 is shown in the drawing). Pour. At the bottom of this water slag equipment 18 is a high pressure water generator 1.
A nozzle 20 connected to a water tank 9 is provided to blow away the flowing molten ferronickel slag 10 with a water jet and settle it into a water tank 21. Inside this water tank 21 is an Akins classifier 22.
is installed to separate solidified and crushed ferronic slag (hereinafter referred to as water slag) from water. This solid-liquid separated water slag 23 is conveyed by the conveyor 24 and temporarily stored in the hopper 25 (the above is the second step). Thereafter, it is dried in a drying chamber 26, and if necessary, metals are removed by a magnetic separator 27 (or other ore beneficiation means). Here, the water slag 23 from which metal has been removed has a sand-like appearance. Next, this water slag 23 is conveyed by a conveyor 29 and put into a rod mill 28, which is an example of a pulverizer, to be pulverized (the above is the third step). On the other hand, the metal separated by the magnetic separator 27 is conveyed by a conveyor 30, temporarily stored in a hopper 31, and returned to steelmaking raw materials. The water slag 23 pulverized by the rod mill 28 is once stored in a hopper 32 and then transferred to a conveyor 33.
It is cut out and put into the mixer 34, and
The pulverized alkaline stimulant is stored in the hopper 35, and a predetermined amount is cut out by the conveyor 36 and fed into the mixer 34 for kneading (this is the fourth step). As a result, a sintered raw material containing ferronic slag as a main raw material is completed. Note that the method for producing a sintering raw material from ferronic slag according to the second invention is that the quick setting modifier is not added to the molten ferronic slag in the above steps, so a detailed explanation thereof will be given below. omitted. In this way, in the method for producing a sintering raw material from ferronic slag according to the second invention, the inclusion of the rapid setting modifier is omitted because, depending on the properties of the ferronic slag, water slag may After processing,
This is because some materials can serve as sintering raw materials by adding a sufficient amount of alkaline stimulant. Next, regarding one embodiment of the method of producing a sintering raw material from ferronic slag according to the present invention, a more specific experiment was conducted to confirm the operation and effect of the present invention. First, the ratio of the raw materials used in the above example was changed to
Shown in the table.

【表】 次に、第2表に示す原料で出来た製品(以下本
願方法によつて製造された焼結材という)を使用
し、第3表に示す配分及び条件で行つた。
[Table] Next, using a product made from the raw materials shown in Table 2 (hereinafter referred to as sintered material produced by the method of the present application), testing was conducted under the distribution and conditions shown in Table 3.

【表】 この焼結の結果を第4示す。【table】 The results of this sintering are shown in the fourth section.

【表】 この表から分かるように、焼結工程において本
願方法によつて製造された焼結材を使用しても従
来法による材料を使用した焼結工程と略同等の生
産性、製品歩留、強度を得ることができる。従つ
て、本願方法によつて製造された焼結材はバイン
ダーとしても作用し、焼結工程において通気性改
善材としても作用することになる。 従つて、従来廃棄処分されていたフエロニツケ
ルスラグを焼結原料として有効に使用できること
になる。また、このフエロニツケルスラグには、
十分にMgOが含有されているので、従来の焼結
原料として使用されていた蛇紋岩は不要となる。 〔発明の効果〕 本発明方法は以上のように構成され、フエロニ
ツケルスラグを主原料としているので、従来廃棄
処分されていたフエロニツケルスラグの特性を活
かして有効利用を図ることができる。 更には、このフエロニツケルスラグを改質して
急結性を持たせているので、焼結過程において通
気性改善材と使用でき、従つて、本願方法によつ
て出来た製品は、含MgO通気性改善材として有
効に利用できるものである。
[Table] As can be seen from this table, even if the sintered material manufactured by the method of the present invention is used in the sintering process, the productivity and product yield are approximately the same as those of the sintering process using the material made by the conventional method. , strength can be obtained. Therefore, the sintered material produced by the method of the present application also acts as a binder, and also acts as an air permeability improving material in the sintering process. Therefore, ferronic slag, which was conventionally disposed of, can be effectively used as a sintering raw material. In addition, this ferronic slag has
Since it contains sufficient MgO, serpentine, which was conventionally used as a sintering raw material, is no longer necessary. [Effects of the Invention] Since the method of the present invention is constructed as described above and uses ferro-nickel slag as the main raw material, it is possible to effectively utilize the characteristics of ferro-nickel slag, which was conventionally disposed of. Furthermore, since this ferronic slag has been modified to have rapid setting properties, it can be used as an air permeability improving material in the sintering process. It can be effectively used as an air permeability improving material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の発明に係るフエロニツケルスラ
グから焼結原料を製造する方法の工程説明図であ
る。
FIG. 1 is a process explanatory diagram of a method for producing a sintering raw material from ferronic slag according to the first invention.

Claims (1)

【特許請求の範囲】 1 溶融状態のフエロニツケルスラグに所定量の
急結性改質材を混合する第1工程と、上記工程で
処理されたフエロニツケルスラグを水滓処理して
固化破砕する第2工程と、該水滓処理されたフエ
ロニツケルスラグを乾燥して粉砕する第3工程
と、該粉砕されたフエロニツケルスラグに所定量
のアルカリ性刺激材を混入する第4工程とからな
ることを特徴とするフエロニツケルスラグから焼
結原料を製造する方法。 2 急結性改質材が、石灰、酸化鉄、アルミナの
1種または2種以上からなる特許請求の範囲第1
項記載のフエロニツケルスラグから焼結原料を製
造する方法。 3 溶融状態のフエロニツケルスラグを水滓処理
して固化破砕する第1工程と、該水滓処理された
フエロニツケルスラグを乾燥して粉砕する第2工
程と、該粉砕されたフエロニツケルスラグに所定
量のアルカリ性刺激材を混入する第3工程とから
なることを特徴とするフエロニツケルスラグから
焼結原料を製造する方法。
[Scope of Claims] 1. A first step of mixing a predetermined amount of rapid-setting modifier into molten ferro-nickel slag, and a step of treating the ferro-nickel slag treated in the above step with a water dregs to solidify and crush it. a second step of drying and pulverizing the ferronickel slag treated with the water scale, and a fourth step of mixing a predetermined amount of an alkaline stimulant into the pulverized ferronickel slag. A method for producing a sintering raw material from ferronic slag, characterized by: 2. Claim 1, in which the rapid setting modifier comprises one or more of lime, iron oxide, and alumina.
A method for producing a sintering raw material from the ferronic slag described in Section 1. 3. A first step of treating the molten ferro-nickel slag with a water slag to solidify and crush it, a second step of drying and pulverizing the ferro-nickel slag treated with the water slag, and a second step of drying and pulverizing the ferro-nickel slag that has been subjected to the ferro-nickel treatment. A method for producing a sintering raw material from ferronic slag, comprising a third step of mixing a predetermined amount of an alkaline stimulant into the slag.
JP60075538A 1985-04-09 1985-04-09 Production of sintered raw material from ferro nickel slag Granted JPS61235519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60075538A JPS61235519A (en) 1985-04-09 1985-04-09 Production of sintered raw material from ferro nickel slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60075538A JPS61235519A (en) 1985-04-09 1985-04-09 Production of sintered raw material from ferro nickel slag

Publications (2)

Publication Number Publication Date
JPS61235519A JPS61235519A (en) 1986-10-20
JPH0377259B2 true JPH0377259B2 (en) 1991-12-10

Family

ID=13579083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60075538A Granted JPS61235519A (en) 1985-04-09 1985-04-09 Production of sintered raw material from ferro nickel slag

Country Status (1)

Country Link
JP (1) JPS61235519A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433344B1 (en) * 2000-12-06 2004-05-27 주식회사 포스코 Apparatus of separating pure slag granulation in blast furnace
KR101205537B1 (en) 2010-07-22 2012-11-27 한국세라믹기술원 Preparation method for magnesium compound using ferronickel slag
KR101162873B1 (en) 2010-10-11 2012-07-05 전남대학교산학협력단 Method for extracting useful resources from ferronickel slag
CN102212711B (en) * 2011-06-08 2012-07-18 鞍山鑫普新材料有限公司 Method for treating hydrogen storage alloy waste residues

Also Published As

Publication number Publication date
JPS61235519A (en) 1986-10-20

Similar Documents

Publication Publication Date Title
CN104529312A (en) High-admixing amount high-strength nickel slag brick and preparation method of high-admixing amount high-strength nickel slag brick
CN109929961A (en) A kind of purposes for the technique and magnesium ball preparing magnesium ball with tundish paint
Bizhanov et al. Blast furnace operation with 100% extruded briquettes charge
KR100604549B1 (en) Steel refinery flux
KR100759862B1 (en) Steel refinery flux composition of low temperature form
CN105039681A (en) Method for manufacturing alkaline magnesium-rich pellet ore
US4814005A (en) Flux material for steelmaking
JPH0377259B2 (en)
CN102808081A (en) Steelmaking slag former and preparation method thereof
KR100566595B1 (en) Steel refinery flux
KR101366835B1 (en) Cement composition using desulphurizing dust
EP3670677A1 (en) Process for manufacturing a slag conditioning agent for steel desulfurization
KR100875449B1 (en) Low-temperature solvent composition for steel refining using hand slag
CN105884235A (en) Method for preparing superhigh-strength binding material from granulated blast-furnace slag
JPH01126246A (en) Blast-furnace cement using converter slag as modifier
CN108611543B (en) A method of rare earth magnesium ferrosilicon alloy is produced based on comprehensive utilization of resources means
JPH08198647A (en) Production of cement clinker
JPS6240326A (en) Manufacture of binder
US4909844A (en) Flux material for steelmaking
JPS62253735A (en) Production of binder
US3345191A (en) Dolomite sinter and a process of its production
Singh Studies on the cement-bonded briquettes of iron and steel plant by-products as burden material for blast furnaces
JP2006265687A (en) Method for manufacturing sintered ore using magnesium oxide-containing refractory
JP7216462B2 (en) Slag fine aggregate used for spraying mortar, spraying mortar using the same, and method for producing slag fine aggregate used for spraying mortar
JPS6354663B2 (en)