JP4580114B2 - Pseudo particles for sintering - Google Patents

Pseudo particles for sintering Download PDF

Info

Publication number
JP4580114B2
JP4580114B2 JP2001035121A JP2001035121A JP4580114B2 JP 4580114 B2 JP4580114 B2 JP 4580114B2 JP 2001035121 A JP2001035121 A JP 2001035121A JP 2001035121 A JP2001035121 A JP 2001035121A JP 4580114 B2 JP4580114 B2 JP 4580114B2
Authority
JP
Japan
Prior art keywords
layer
cao
sio
melt
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001035121A
Other languages
Japanese (ja)
Other versions
JP2002241851A (en
Inventor
潤 岡崎
陽三 細谷
潔 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001035121A priority Critical patent/JP4580114B2/en
Publication of JP2002241851A publication Critical patent/JP2002241851A/en
Application granted granted Critical
Publication of JP4580114B2 publication Critical patent/JP4580114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、製鉄原料となる焼結鉱の製造時において、歩留、生産性を向上させ、かつ、高強度、低RDIの焼結鉱を安定的に製造する焼結原料の事前処理技術に関するものである。
【0002】
【従来の技術】
従来、焼結原料の事前処理として、主原料の鉄鉱石、副原料の石灰石および蛇紋岩とコークス、返鉱を、水を添加しながらドラム型のミキサーで混合、造粒し、顆粒状の粒子を作製していた。これを擬似粒子と呼び、この擬似粒子を焼結ベッドに装入し、表面のコークスにバーナーで点火し、下方吸引型の焼結機で、熱を上層から下層に伝熱して焼結鉱を製造していた。装入密度は、1.7t/m3〜1.9t/m3、充填層の厚みは500mm〜600mmである。また、焼結原料組成は一般に、T.Fe=55質量%〜57質量%、CaO=9.5質量%〜11.0質量%、SiO2=5.0質量%〜5.3質量%、Al23=1.7質量%〜1.8質量%、MgO=1.0質量%〜2.0質量%程度である。
【0003】
焼結反応は、まず、1200℃付近で石灰石中CaOと鉄鉱石中のFe23が反応し、初期融液を生成する。この融液に鉄鉱石あるいは副原料が溶け込みながら焼結が進行するが、その間わずか数分の反応である。従って、焼結鉱の歩留および生産性や焼結鉱の品質を向上させるためには、生成した融液を核粒子表面に確保し、結合材として利用することが重要である。
【0004】
ところで、近年の鉄鉱石資源をみると、鉄鉱石最大供給源(シェア約55%)の豪州では、鉄品位の高いヘマタイト鉄鉱石の枯渇化が進み、褐鉄鉱が増加している。一般に、配合原料中に褐鉄鉱が増加すると、焼結鉱の歩留や強度が低下することが知られている(材料とプロセス,5(1992),145.および材料とプロセス,7(1994),133.等)。褐鉄鉱は結晶水を多量に含有しており、この結晶水はゲーサイト(Fe23・2H2O)として鉱石中に存在している。ゲーサイトは、300℃付近から結晶水の脱水が始まり、初期融液が生成する1200℃付近では、脱水による気孔、亀裂が多数発生し多孔質構造を形成する。そのため、生成した融液は気孔、亀裂を介して核となる鉱石内へ浸透してしまう。そのため、結合に寄与する融液量が減少し、操業面では、歩留、生産性の低下を引き起こし、品質面では、強度(SI)および耐還元粉化性(RDI)の悪化を引き起こす原因となっていた。
【0005】
その対策として、特開昭63−69926号公報には、鉄鉱石と返鉱を予め混合した後に、粉コークス、石灰石、その他副原料と造粒することで、焼結生産性を向上させる技術が記載されている。これは、粉コークスの燃焼性改善を目的とするもので、焼結原料で3重構造の擬似粒子を作製するものである。
【0006】
次に、特開昭62−37328号公報には、水分調整した原料を圧縮ロールで圧密化し、焼結鉱の強度を向上させる技術が記載されているが、これは原料に圧力をかけて塊成化することを示しているのみであり、擬似粒子の構造あるいは組成等に関しては記載されていない。
【0007】
さらに、特開平3−166321号公報には、微粉末状の原料を圧密媒体を有する混練機中でフレーク状とした後、造粒機にて転動塊成化することで、63μm以下の鉄鉱石原料を60質量%使用できることが記載されているが、これも、圧密層の密度や組成は示していない。
【0008】
また、特開昭57−171631号公報でも、三重構造の擬似粒子で、RDI、RIの優れたものが記載されている。しかし、これは、鉄鉱石を中心核として、第二層はCaO系融液組成にするものである。CaO系融液は粘性が低いため、上述した如く生成した融液は多孔質化した鉱石内へ浸透してしまい、歩留、生産性の低下を引き起こすことが懸念される。
【0009】
【発明が解決しようとする課題】
本発明は、擬似粒子の中核となる鉱石への融液の浸透を抑制し、歩留、生産性を向上させ、かつ、焼結鉱の強度、RDIを向上させることを目的とするものである。
【0010】
【課題を解決するための手段】
本発明の要旨は以下の通りである。
【0011】
(1)鉄鉱石または返鉱を核粒子とし、その表面に第二層として石灰石とコークス以外の原料からなる融液浸透抑制層を付着させ、さらにその外側に第三層として石灰石、コークス及び珪石からなる融液発生部層を付着させて造粒し、前記第二層のCaO/SiO を0.5以下とし、かつ前記第二層の嵩密度を1.7g/cm 以上に圧密したことを特徴とする焼結用擬似粒子。
(2)前記第二層の厚みを100〜500μmとしたことを特徴とする上記(1)記載の焼結用擬似粒子。
【0014】
【発明の実施の形態】
焼結鉱の強度、歩留を向上させるためには、融液を多量に生成させる擬似粒子構造か、あるいは、融液の核粒子への浸透を抑制する擬似粒子構造が望まれる。
しかし、前者の場合は、融液増加による通気阻害から焼けムラが発生し、歩留、強度を低下させることが懸念される。従って、本発明では、融液の核粒子への浸透を抑制する擬似粒子構造を追求した。以下に詳しく説明する。
【0015】
融液となる付着粉量は一定で、生成した融液を結合剤として有効に使用するためには、核粒子への融液の浸透を抑制することが重要であるため、図1に示すように、擬似粒子4中の核粒子1の表面に第二層2として石灰石とコークス以外の原料からなる100〜500μmの融液浸透抑制層を設け、その外側に第三層3として石灰石とコークスの層を設ける擬似粒子構造を採用した。
【0016】
まず、融液浸透抑制層である第二層については、石灰石とコークス以外の原料から構成することにした。第二層に石灰石を含んではいけない理由は、第二層の主体は鉄鉱石であるため、石灰石が混合されると1200℃の低温域でFe23とCaOが反応し、融液を生成してこの融液が核粒子内へ浸透してしまうためである。また、第二層にコークスを含んではいけない理由は、コークスは表面の凹凸が大きいため、微粉鉱石が付着し易い構造になっており、したがって、コークス表面を微粉鉱石が厚く覆ってしまい、コークスの反応面積が小さくなることで、燃焼性に悪影響を及ぼすためである。
【0017】
このように石灰石とコークス以外の原料から構成する第二層の厚みは100〜500μmとする。100μm未満では核粒子への融液の浸透を十分抑制することができず、500μm超では付着粉層が厚くなりすぎて微粉が剥離し易くなるためである。
【0018】
次に、第三層については、石灰石とコークスから構成することにした。第三層は融液発生部となるものであるが、この第三層の成分をこのように限定した理由は、石灰石を第二層の表面部にある鉄鉱石と反応させ、CaO/SiO2の高い融液を発生させるためである。CaO/SiO2の高い融液は、被還元性に富むカルシウムフェライトが生成しやすいことが知られている。さらに、融液の粘性が低いため擬似粒子を十分に包み込む結合相が形成しやすいためである。さらに、コークスについては、第三層には微粉鉱石が少ないため、コークス表面に付着する微粉は少なく、したがって、反応面積が大きくなり、燃焼性が向上するためである。
【0019】
さらに、融液の浸透を抑制する第二層の条件について詳細に検討するため、Fe23、CaO、SiO2、試薬から成るCaO/SiO2の異なる8種のタブレットA〜H(8mmφ×10mmH)を成形した。成形圧力は7800kPa一定とした。最初に、タブレット焼成後、タブレットの強度、気孔構造を調べた。
CaO/SiO2は、タブレットAが0.25、タブレットBが0.5と0.25ずつ増加させ、タブレットHの2.0まで変化させた。焼成条件は、実機焼結機に近似させ、室温から1100℃までを3分間かけて昇温し、1100℃から1300℃までを1分間、1300℃から1100℃までを3分間かけた焼成パターンとし(1300℃パターン)、焼成後、タブレットの圧潰強度と100μm以上の気孔率と気孔個数を測定した。気孔率は、縦垂直断面を研磨し、画像処理にて測定した。測定対象の気孔径を100μm以上としたのは、解析装置の分解能が100μmであるためである。
【0020】
タブレットのCaO/SiO2と圧潰強度との関係を図2に示す。CaO/SiO2が0.25と0.5ではほとんど差はない。しかし、CaO/SiO2が0.75以上になると強度は徐々に低下し、CaO/SiO2=2.0で一番低い値となった。
【0021】
CaO/SiO2と気孔率との関係を図3に示す。いずれのタブレットにおいても25%の前後であり、ほとんど差はないといえる。しかし、図4に示すように、気孔個数は、CaO/SiO2が0.75以上になると徐々に減少していることがわかる。これは、CaO/SiO2が高いほど融液の粘性が低下するため、生成した気孔が集合、合体したためと推察した。図5にはCaO−SiO2−FeO系融液の等粘度曲線を示すが、CaO/SiO2が高いほど粘度が低くなることが明瞭である。
【0022】
以上の結果から、CaO/SiO2が低いほど焼成後に生成する気孔が細かく、強度が向上することがわかった。
【0023】
次に、第二層の充填密度について検討した。実験方法は、上記試薬タブレットの成形圧力を変えることで充填密度を変化させ、焼成試験を実施した。使用したタブレット(8mmφ×10mmH)は、図2で圧潰強度の高かったタブレットAとタブレットB、最も強度が低かったタブレットHである。充填密度はタブレットの体積とその質量から計算した。成形したタブレットを1300℃パターンで焼成し、焼成後タブレットの圧潰強度を測定した結果を図6に示す。タブレットA、Bでは、充填密度が1.7g/cm3で最大強度が現れ、充填密度を2.2g/cm3まで高くしても大きな変化はなかった。一方、CaO/SiO2の高いタブレットHは、充填密度を高くしてもタブレットA、Bの様な強度は発現しなかった。この結果から、CaO/SiO2が0.5以下のタブレットでは、充填密度を高くすると気孔率が低下し強度が向上することが分かった。
【0024】
以上のように、第二層のCaO/SiO2と充填密度について検討した結果、CaO/SiO2は0.5以下とし、充填密度は1.7g/cm3以上にすることが、強度を向上させ、気孔を低減させる最適条件であることが確認された。さらに、この条件が初期融液の浸透抑制に効果があるか確認試験をおこなった。試験方法は、Fe23、CaO、SiO2試薬により、CaO/SiO2と充填密度を変化させた15mmφ×5mmHのタブレットを作製し、そのタブレットの上に、5mmφ×5mmHに成形した初期融液組成のCaO−Fe23タブレットを乗せ、1300℃パターンで焼成し、焼成後タブレット中心部の縦垂直断面を研磨し、CaO−Fe23融液のタブレット内への浸透状態を実測し、浸透距離とした。実験は、CaO/SiO2を0.5一定として、充填密度を1.0、1.5、1.7、2.2g/cm3と変化させた場合と、充填密度を1.7g/cm3一定として、CaO/SiO2を0.25、0.5、0.75、1.0、1.25、1.5と変化させた場合の2水準とした。
【0025】
まず、CaO/SiO2を一定とし、充填密度を変化させた時の結果を図7に示す。CaO−Fe23の融液の浸透は、充填密度が1.7g/cm3以上で大きく抑制された。従って、CaO/SiO2が0.5でも充填密度が1.7g/cm3以上でないと初期融液の浸透抑制効果は発現しないことがわかった。一方、充填密度を1.7g/cm3一定として、CaO/SiO2を変化させた場合の結果を図8に示す。充填密度が1.7g/cm3一定でも、CaO/SiO2が0.75以上であれば融液浸透抑制効果は低下することが明瞭である。従って、充填密度が1.7g/cm3でもCaO/SiO2が0.5以下でないと初期融液の浸透抑制効果は発現しないことがわかった。
【0026】
【実施例】
図1に示した構造の擬似粒子を作製し、焼結鍋試験を行った。配合条件を表1に示す。また、造粒フローを図9に示す。
【0027】
【表1】

Figure 0004580114
【0028】
まず、ベース擬似粒子の造粒方法は、図9(a)に示すように、鉄鉱石、返鉱、副原料、コークスをドラムミキサーで2分間混合し、その後水を添加しながら7分間造粒した。次にテスト擬似粒子の造粒は、図9(b)に示すように、最初に鉄鉱石と返鉱をドラムミキサーで2分間混合し、その後、球形整粒機(マルメライザー)で3分間強制造粒して、核粒子の表面に鉱石微粉で構成された第二層を生成させる。
そして、マルメライザーで強制造粒した造粒物と副原料とコークスをドラムミキサーで2分間造粒し、第二層の上に融液発生部である第三層を形成させる。これらの擬似粒子を用いて、層高500mm、コークスは配合原料に対して4.5質量%(外数)を添加し、吸引負圧9.8kPaの条件で焼結鍋試験を行った。ここでは、第二層の形成にマルメライザーを用いたが、擬似粒子の付着粉部を圧密化できる装置であればマルメライザーにこだわる必要はない。
【0029】
次に、擬似粒子の第二層となる付着粉部の充填密度と組成を測定した。充填密度の測定は、まず、マルメライザーで鉱石と返鉱を造粒した後、1mm以上の擬似粒子100gを3分間超音波洗浄し、剥離した付着粉の乾燥後質量Wを測定する。超音波洗浄を3分間としたのは、3分間未満では核粒子表面に付着粉が残留しているが、3分間以上洗浄すると核粒子表面の付着粉は殆ど剥離したためである。また、3分間以上洗浄しても剥離量が変化しないことも確認した。次に、超音波洗浄で剥離した擬似粒子を樹脂埋め後、顔面を鏡面研磨し、1mm以上の粒子50個について画像解析により各擬似粒子の面積を測定し、個々の半径r0を求める。次に、マルメライザーで鉱石と返鉱を造粒した後の1mm以上の擬似粒子の核粒子の面積を測定し、個々の半径r1を求める。その後、(1)式により各擬似粒子の付着粉部の体積Vを求め、(2)式により充填密度を求めた。
【0030】
V=4/3π(r0−r1)3 (cm3) (1)
ρ=W/V (g/cm3) (2)
【0031】
測定の結果、第二層の充填密度は1.72g/cm3であった。また、ベース擬似粒子のそれは1.30g/cm3であった。
【0032】
次に、第二層の組成は以下のように測定した。鉄鉱石と返鉱をドラムミキサーで2分間混合し、その後、マルメライザーで2分間造粒した。次に、マルメライザーで強制造粒した原料と副原料とコークスをドラムミキサーで2分間造粒し、擬似粒子を作製した。その中から、1mm以上の擬似粒子を樹脂埋め後鏡面研磨し、EPMAにより第二層の組成を分析した。測定範囲は200μm×200μmとした。これは、今回の擬似粒子第二層の厚みが約200〜250μmだったため、測定面積を最大にとり、分析値の代表性を向上させるためである。また、測定対象粒子は、樹脂埋め試料中の褐鉄鉱全てとした。測定の結果、テスト擬似粒子第二層のCaO/SiO2は0.28であった。また、ベース擬似粒子付着粉層のCaO/SiO2は2.8であった。
【0033】
以上述べたように、焼結鍋試験用テスト擬似粒子の第二層は、充填密度が1.7g/cm3以上、CaO/SiO2が0.5以下である。
【0034】
焼結鍋試験結果を表2に示す。本発明により、成品歩留はベースの69.5%から79.3%と9.8%向上した。また、焼結時間もベースの33.9分から25.3分と8.6分短縮され、その結果として生産率が17.9t/D/m2から27.1t/D/m2まで9.2t/D/m2向上した。さらに、強度の指標である成品焼結鉱中+10mm%も、ベースの45.1%から53.5%と8.4%向上した。一方、被還元性(RI)はベース時71.7%、テスト時71.5%とほぼ同等であり、耐還元粉化性(RDI)もベース時40.3%、テスト時41.0%と殆ど差はなかった。これで、本発明により成品歩留、生産率および焼結強度が向上することを確認した。
【0035】
【表2】
Figure 0004580114
【0036】
鍋試験と同一配合にて、実機試験を行った。鉱石と返鉱事前造粒は、直径6mのパンペレタイザーで行った。ここで、テスト擬似粒子第二層のCaO/SiO2は0.33であり、充填密度は1.81g/cm3であった。
【0037】
焼結実機試験結果を表3に示す。本発明により、成品歩留はベースの78.6%から80.7%と2.1%向上した。また、生産率も25.3t/D/m2から28.6t/D/m2と3.3t/D/m2向上した。さらに、SI強度は、89.0%から91.3%と2.3%向上した。一方、被還元性(RI)はベースが69.6%、テスト時70.2%とほぼ同等であり、耐還元粉化性(RDI)もベース時38.8%、テスト時39.2%と殆ど差はなかった。
【0038】
【表3】
Figure 0004580114
【0039】
【発明の効果】
本発明により、RI、RDIを悪化させることなく、成品歩留、生産率、焼結強度を向上させることが可能となる。
【図面の簡単な説明】
【図1】本発明の焼結用擬似粒子の構造を示す図である。
【図2】試薬タブレットのCaO/SiO2と圧潰強度との関係を示す図である。
【図3】試薬タブレットのCaO/SiO2と100μm以上の気孔率との関係を示す図である。
【図4】試薬タブレットのCaO/SiO2と100μm以上の気孔個数との関係を示す図である。
【図5】CaO−SiO2−FeO三元系融液の等粘度曲線を示す図である。
【図6】試薬タブレットの充填密度と圧潰強度との関係を示す図である。
【図7】試薬タブレットの充填密度と融液浸透距離との関係を示す図である。
【図8】試薬タブレットのCaO/SiO2と融液浸透距離との関係を示す図である。
【図9】焼結原料の造粒フローを示す図である。
【符号の説明】
1 核粒子
2 第二層
3 第三層
4 擬似粒子[0001]
BACKGROUND OF THE INVENTION
[Technical Field] The present invention relates to a pretreatment technique for a sintered raw material that improves yield and productivity and stably manufactures a high-strength, low-RDI sintered ore at the time of manufacturing a sintered ore as an iron-making raw material. Is.
[0002]
[Prior art]
Conventionally, as a pre-treatment of the sintering raw material, the main raw material iron ore, auxiliary raw material limestone and serpentine and coke, and the return ore are mixed and granulated with a drum-type mixer while adding water, and granulated particles Was making. This is called quasi-particles.The quasi-particles are charged into the sintering bed, the coke on the surface is ignited with a burner, and heat is transferred from the upper layer to the lower layer with a lower suction type sintering machine to produce the sintered ore. It was manufactured. The charging density is 1.7 t / m 3 to 1.9 t / m 3 , and the thickness of the packed bed is 500 mm to 600 mm. Also, the sintering raw material composition is generally T.M. Fe = 55 wt% to 57 wt%, CaO = 9.5 wt% to 11.0 wt%, SiO 2 = 5.0 wt% ~5.3 wt%, Al 2 O 3 = 1.7% by weight to 1.8% by mass and MgO = about 1.0% by mass to 2.0% by mass.
[0003]
In the sintering reaction, first, CaO in limestone and Fe 2 O 3 in iron ore react at around 1200 ° C. to generate an initial melt. Sintering proceeds while iron ore or auxiliary materials are dissolved in the melt, but the reaction takes only a few minutes. Therefore, in order to improve the yield and productivity of sintered ore and the quality of sintered ore, it is important to secure the generated melt on the surface of the core particles and use it as a binder.
[0004]
By the way, looking at iron ore resources in recent years, in Australia, the largest source of iron ore (share about 55%), depletion of high-grade hematite iron ore has progressed and limonite is increasing. In general, it is known that the increase in limonite content in blended raw materials reduces the yield and strength of sintered ore (Materials and Processes, 5 (1992), 145. and Materials and Processes, 7 (1994), 133. etc.). Limonite contains a large amount of water of crystallization, and this water of crystallization is present in the ore as goethite (Fe 2 O 3 .2H 2 O). In the goethite, dehydration of crystal water starts from around 300 ° C., and around 1200 ° C. where an initial melt is generated, many pores and cracks are generated due to dehydration to form a porous structure. Therefore, the produced melt penetrates into the core ore through pores and cracks. Therefore, the amount of melt contributing to bonding is reduced, causing a decrease in yield and productivity in terms of operation, and in terms of quality causing a decrease in strength (SI) and reduction dust resistance (RDI). It was.
[0005]
As a countermeasure, Japanese Patent Laid-Open No. 63-69926 discloses a technique for improving sintering productivity by mixing iron ore and return ore in advance and then granulating with coke breeze, limestone and other auxiliary materials. Are listed. This is for the purpose of improving the combustibility of the powder coke, and is for producing pseudo-particles having a triple structure with a sintering raw material.
[0006]
Next, Japanese Patent Laid-Open No. Sho 62-37328 describes a technique for improving the strength of sintered ore by compressing moisture-adjusted raw material with a compression roll. It only shows that it forms, and it does not describe the structure or composition of pseudo particles.
[0007]
Further, JP-A-3-166321 discloses that a fine powdery raw material is made into flakes in a kneader having a compacting medium, and is then subjected to rolling agglomeration in a granulator so that an iron ore of 63 μm or less is obtained. Although it is described that 60% by mass of a stone raw material can be used, this also does not show the density and composition of the consolidated layer.
[0008]
Japanese Patent Application Laid-Open No. 57-171631 also describes triple-structured pseudo particles having excellent RDI and RI. However, this is one in which iron ore is the central core and the second layer has a CaO-based melt composition. Since the CaO-based melt has a low viscosity, there is a concern that the melt produced as described above will permeate into the porous ore and cause a decrease in yield and productivity.
[0009]
[Problems to be solved by the invention]
The object of the present invention is to suppress the penetration of the melt into the ore which is the core of the pseudo particle, improve the yield and productivity, and improve the strength and RDI of the sintered ore. .
[0010]
[Means for Solving the Problems]
The gist of the present invention is as follows.
[0011]
(1) Iron ore or return ore is used as a core particle, and a melt infiltration suppression layer made of a raw material other than limestone and coke is attached to the surface as a second layer, and limestone, coke, and silica as a third layer on the outside. The melt generation part layer made of is adhered and granulated , the CaO / SiO 2 of the second layer is 0.5 or less, and the bulk density of the second layer is consolidated to 1.7 g / cm 3 or more. A pseudo particle for sintering characterized by the above.
(2) The pseudo particle for sintering according to (1 ), wherein the thickness of the second layer is 100 to 500 μm.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In order to improve the strength and yield of the sintered ore, a pseudo particle structure that produces a large amount of melt or a pseudo particle structure that suppresses penetration of the melt into the core particles is desired.
However, in the former case, there is a concern that burn unevenness may occur due to aeration inhibition due to an increase in melt, resulting in a decrease in yield and strength. Therefore, in the present invention, a pseudo particle structure that suppresses the penetration of the melt into the core particles was pursued. This will be described in detail below.
[0015]
As shown in FIG. 1, the amount of adhering powder to be melt is constant, and in order to effectively use the generated melt as a binder, it is important to suppress the penetration of the melt into the core particles. In addition, a 100 to 500 μm melt infiltration suppressing layer made of a raw material other than limestone and coke is provided as the second layer 2 on the surface of the core particle 1 in the pseudo particle 4, and the limestone and coke as the third layer 3 on the outside. A pseudo-particle structure with a layer was adopted.
[0016]
First, about the 2nd layer which is a melt osmosis | permeation suppression layer, it decided to comprise from raw materials other than limestone and coke. The reason why the second layer should not contain limestone is that the main component of the second layer is iron ore. Therefore, when limestone is mixed, Fe 2 O 3 and CaO react at a low temperature of 1200 ° C to form a melt. This is because the melt penetrates into the core particles. Moreover, the reason why coke should not be included in the second layer is that the surface of the coke has a large surface irregularity, so that fine ore tends to adhere to it. This is because the reaction area is reduced, and the flammability is adversely affected.
[0017]
Thus, the thickness of the 2nd layer comprised from raw materials other than limestone and coke shall be 100-500 micrometers. If the thickness is less than 100 μm, the penetration of the melt into the core particles cannot be sufficiently suppressed, and if it exceeds 500 μm, the adhered powder layer becomes too thick and the fine powder is easily peeled off.
[0018]
Next, the third layer is composed of limestone and coke. The third layer is a melt generation part. The reason for limiting the components of the third layer in this way is that limestone reacts with iron ore on the surface of the second layer, and CaO / SiO 2 This is for generating a high melt. It is known that a high CaO / SiO 2 melt easily produces calcium ferrite rich in reducibility. Furthermore, because the viscosity of the melt is low, it is easy to form a binder phase that sufficiently encloses the pseudo particles. Furthermore, with respect to coke, since the third layer has a small amount of fine ore, the amount of fine powder adhering to the coke surface is small, and thus the reaction area is increased and the combustibility is improved.
[0019]
Furthermore, in order to examine in detail the conditions of the second layer that suppresses the permeation of the melt, eight kinds of tablets A to H (8 mmφ × 8 mm different in CaO / SiO 2 composed of Fe 2 O 3 , CaO, SiO 2 , and reagents). 10 mmH). The molding pressure was constant at 7800 kPa. First, after the tablet baking, the strength and pore structure of the tablet were examined.
CaO / SiO 2 was increased by 0.25 for tablet A and 0.5 and 0.25 for tablet B, and changed to 2.0 for tablet H. The firing conditions are similar to those of an actual sintering machine, the temperature is raised from room temperature to 1100 ° C. over 3 minutes, 1100 ° C. to 1300 ° C. for 1 minute, and 1300 ° C. to 1100 ° C. over 3 minutes. (1300 degreeC pattern) After baking, the crushing strength of a tablet, the porosity of 100 micrometers or more, and the number of pores were measured. The porosity was measured by polishing a vertical and vertical cross section and performing image processing. The reason why the pore diameter of the measurement target is set to 100 μm or more is that the resolution of the analyzer is 100 μm.
[0020]
The relationship between the CaO / SiO 2 of the tablet and the crushing strength is shown in FIG. There is almost no difference between CaO / SiO 2 of 0.25 and 0.5. However, when CaO / SiO 2 became 0.75 or more, the strength gradually decreased and became the lowest value at CaO / SiO 2 = 2.0.
[0021]
FIG. 3 shows the relationship between CaO / SiO 2 and porosity. In any tablet, it is around 25%, and it can be said that there is almost no difference. However, as shown in FIG. 4, it can be seen that the number of pores gradually decreases when CaO / SiO 2 is 0.75 or more. This is presumably because the higher the CaO / SiO 2, the lower the viscosity of the melt, and the generated pores gathered and coalesced. FIG. 5 shows an isoviscosity curve of the CaO—SiO 2 —FeO-based melt. It is clear that the higher the CaO / SiO 2, the lower the viscosity.
[0022]
From the above results, it was found that the lower the CaO / SiO 2, the finer the pores generated after firing and the higher the strength.
[0023]
Next, the packing density of the second layer was examined. In the experimental method, the packing density was changed by changing the molding pressure of the reagent tablet, and the firing test was performed. The used tablets (8 mmφ × 10 mmH) are tablet A and tablet B having the highest crushing strength in FIG. 2, and tablet H having the lowest strength. The packing density was calculated from the tablet volume and its mass. FIG. 6 shows the results of baking the molded tablet in a 1300 ° C. pattern and measuring the crushing strength of the tablet after baking. In tablets A and B, the maximum strength appeared at a packing density of 1.7 g / cm 3 , and there was no significant change even when the packing density was increased to 2.2 g / cm 3 . On the other hand, tablet H having a high CaO / SiO 2 did not exhibit the same strength as tablets A and B even when the packing density was increased. From this result, it was found that in the tablet having CaO / SiO 2 of 0.5 or less, the porosity is lowered and the strength is improved when the filling density is increased.
[0024]
As described above, as a result of examining the CaO / SiO 2 and the packing density of the second layer, it is possible to improve the strength by setting the CaO / SiO 2 to 0.5 or less and the packing density to 1.7 g / cm 3 or more. It was confirmed that this is the optimum condition for reducing the pores. Furthermore, a confirmation test was conducted to determine whether this condition is effective in suppressing the permeation of the initial melt. The test method was to prepare a 15 mmφ × 5 mmH tablet in which the packing density was changed with CaO / SiO 2 using Fe 2 O 3 , CaO, and SiO 2 reagents, and molded into 5 mmφ × 5 mmH on the tablet. Place CaO-Fe 2 O 3 tablet of liquid composition, fire at 1300 ° C pattern, grind the vertical and vertical cross section of tablet center after firing, and measure the penetration state of CaO-Fe 2 O 3 melt into tablet And the penetration distance. In the experiment, CaO / SiO 2 was set to be constant at 0.5, and the packing density was changed to 1.0, 1.5, 1.7, 2.2 g / cm 3 , and the packing density was 1.7 g / cm 3. 3 Assuming that the CaO / SiO 2 was changed to 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5, two levels were set.
[0025]
First, FIG. 7 shows the result when the CaO / SiO 2 is constant and the packing density is changed. The penetration of the CaO—Fe 2 O 3 melt was greatly suppressed when the packing density was 1.7 g / cm 3 or more. Therefore, it was found that even if CaO / SiO 2 is 0.5, the effect of suppressing the penetration of the initial melt is not exhibited unless the packing density is 1.7 g / cm 3 or more. On the other hand, FIG. 8 shows the results when CaO / SiO 2 is changed while the packing density is fixed at 1.7 g / cm 3 . Even if the packing density is constant at 1.7 g / cm 3 , it is clear that the melt permeation suppression effect is reduced if CaO / SiO 2 is 0.75 or more. Therefore, it was found that even if the packing density was 1.7 g / cm 3 , the effect of suppressing the penetration of the initial melt was not exhibited unless CaO / SiO 2 was 0.5 or less.
[0026]
【Example】
Pseudo particles having the structure shown in FIG. 1 were prepared and subjected to a sintering pot test. The blending conditions are shown in Table 1. The granulation flow is shown in FIG.
[0027]
[Table 1]
Figure 0004580114
[0028]
First, as shown in FIG. 9 (a), the base pseudo-particles are granulated by mixing iron ore, return ore, auxiliary materials and coke for 2 minutes with a drum mixer, and then granulating for 7 minutes while adding water. did. Next, as shown in Fig. 9 (b), the test pseudo particles are granulated by first mixing iron ore and return ore for 2 minutes with a drum mixer, and then forcing for 3 minutes with a spherical granulator (Malmerizer). Granulation is performed to form a second layer composed of ore fines on the surface of the core particles.
And the granulated material forcedly granulated with the Malmerizer, the auxiliary material, and coke are granulated for 2 minutes with a drum mixer, and the 3rd layer which is a melt generation part is formed on a 2nd layer. Using these pseudo particles, the layer height was 500 mm, coke was added in an amount of 4.5% by mass (outside number) to the blended raw material, and a sintering pot test was performed under the condition of a suction negative pressure of 9.8 kPa. Here, a malmerizer was used to form the second layer, but there is no need to stick to the malmerizer as long as it is an apparatus that can compact the adhering powder part of the pseudo particles.
[0029]
Next, the packing density and the composition of the attached powder part which becomes the second layer of the pseudo particles were measured. The packing density is measured by first granulating ore and return mineral with a Malmerizer, then ultrasonically washing 100 g of 1 mm or more pseudo particles for 3 minutes, and measuring the mass W after drying of the peeled adhered powder. The reason why the ultrasonic cleaning was performed for 3 minutes was that the adhering powder remained on the surface of the core particle in less than 3 minutes, but the adhering powder on the surface of the core particle was almost peeled off after cleaning for 3 minutes or more. It was also confirmed that the amount of peeling did not change even after washing for 3 minutes or more. Next, after embedding the pseudo particles separated by ultrasonic cleaning, the face is mirror-polished, the area of each pseudo particle is measured by image analysis for 50 particles of 1 mm or more, and each radius r0 is obtained. Next, the area of the core particle of the pseudo particle of 1 mm or more after granulating the ore and the return mineral with the Malmerizer is measured, and each radius r1 is obtained. Then, the volume V of the adhering powder part of each pseudo particle was calculated | required by (1) Formula, and the packing density was calculated | required by (2) Formula.
[0030]
V = 4 / 3π (r0−r1) 3 (cm 3 ) (1)
ρ = W / V (g / cm 3 ) (2)
[0031]
As a result of the measurement, the packing density of the second layer was 1.72 g / cm 3 . Moreover, that of the base pseudo particle was 1.30 g / cm 3 .
[0032]
Next, the composition of the second layer was measured as follows. Iron ore and return ore were mixed for 2 minutes with a drum mixer, and then granulated for 2 minutes with a mulmerizer. Next, the raw material forcibly granulated with the Malmerizer, the auxiliary material, and the coke were granulated with a drum mixer for 2 minutes to produce pseudo particles. Among them, pseudo-particles of 1 mm or more were filled with a resin and then mirror-polished, and the composition of the second layer was analyzed by EPMA. The measurement range was 200 μm × 200 μm. This is because the thickness of the second pseudo-particle second layer is about 200 to 250 μm, so that the measurement area is maximized and the representativeness of the analysis value is improved. Further, the measurement target particles were all limonite in the resin-embedded sample. As a result of the measurement, CaO / SiO 2 of the test pseudo particle second layer was 0.28. Further, CaO / SiO 2 of the base pseudo particles adhering powder layer was 2.8.
[0033]
As described above, the second layer of the test pseudo particles for the sintering pot test has a packing density of 1.7 g / cm 3 or more and CaO / SiO 2 of 0.5 or less.
[0034]
Table 2 shows the results of the sintering pot test. According to the present invention, the product yield was improved by 9.8% from 69.5% to 79.3% of the base. Further, the sintering time is also shortened 33.9 minutes 25.3 minutes 8.6 minutes based production rate from 17.9t / D / m 2 to 27.1t / D / m 2 as a result 9. 2t / D / m 2 improved. Furthermore, +10 mm% in the product sintered ore, which is an indicator of strength, was improved by 8.4% from 45.1% to 53.5% of the base. On the other hand, the reducibility (RI) is almost equivalent to 71.7% at the base and 71.5% at the test, and the reduction dust resistance (RDI) is 40.3% at the base and 41.0% at the test. There was almost no difference. Thus, it was confirmed that the product yield, the production rate and the sintered strength were improved by the present invention.
[0035]
[Table 2]
Figure 0004580114
[0036]
An actual machine test was conducted with the same composition as the pot test. Ore and return ore pre-granulation were performed with a 6m diameter pan pelletizer. Here, CaO / SiO 2 of the test pseudo particle second layer was 0.33, and the packing density was 1.81 g / cm 3 .
[0037]
Table 3 shows the results of the actual sintering machine test. According to the present invention, the product yield was improved by 2.1% from 78.6% to 80.7% of the base. Moreover, the production rate 25.3t / D / m 2 from 28.6t / D / m 2 and 3.3t / D / m 2 was improved. Furthermore, the SI intensity increased 2.3% from 89.0% to 91.3%. On the other hand, the reducibility (RI) is approximately the same as the base 69.6% and 70.2% during the test, and the reduction dust resistance (RDI) is 38.8% during the base and 39.2% during the test. There was almost no difference.
[0038]
[Table 3]
Figure 0004580114
[0039]
【The invention's effect】
According to the present invention, it is possible to improve product yield, production rate, and sintering strength without deteriorating RI and RDI.
[Brief description of the drawings]
FIG. 1 is a view showing the structure of pseudo particles for sintering according to the present invention.
FIG. 2 is a diagram showing the relationship between CaO / SiO 2 and crushing strength of a reagent tablet.
FIG. 3 is a graph showing a relationship between CaO / SiO 2 of a reagent tablet and a porosity of 100 μm or more.
FIG. 4 is a diagram showing the relationship between CaO / SiO 2 of a reagent tablet and the number of pores of 100 μm or more.
FIG. 5 is a diagram showing an isoviscosity curve of a CaO—SiO 2 —FeO ternary melt.
FIG. 6 is a diagram showing the relationship between the filling density of the reagent tablet and the crushing strength.
FIG. 7 is a diagram showing the relationship between the filling density of a reagent tablet and the melt penetration distance.
FIG. 8 is a diagram showing a relationship between CaO / SiO 2 of a reagent tablet and melt penetration distance.
FIG. 9 is a diagram showing a granulation flow of a sintering raw material.
[Explanation of symbols]
1 core particle 2 second layer 3 third layer 4 pseudo particle

Claims (2)

鉄鉱石または返鉱を核粒子とし、その表面に第二層として石灰石とコークス以外の原料からなる融液浸透抑制層を付着させ、さらにその外側に第三層として石灰石、コークス及び珪石からなる融液発生部層を付着させて造粒し、前記第二層のCaO/SiO を0.5以下とし、かつ前記第二層の嵩密度を1.7g/cm 以上に圧密したことを特徴とする焼結用擬似粒子。Iron ore or return ore is used as a core particle, and a melt infiltration suppression layer made of raw materials other than limestone and coke is attached to the surface as a second layer , and a fusion layer made of limestone, coke, and silica as a third layer on the outside. The liquid generating part layer is adhered and granulated , the CaO / SiO 2 of the second layer is 0.5 or less, and the bulk density of the second layer is consolidated to 1.7 g / cm 3 or more. Pseudo particles for sintering characterized. 前記第二層の厚みを100〜500μmとしたことを特徴とする請求項1記載の焼結用擬似粒子。The pseudo particle for sintering according to claim 1, wherein the second layer has a thickness of 100 to 500 μm.
JP2001035121A 2001-02-13 2001-02-13 Pseudo particles for sintering Expired - Lifetime JP4580114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001035121A JP4580114B2 (en) 2001-02-13 2001-02-13 Pseudo particles for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001035121A JP4580114B2 (en) 2001-02-13 2001-02-13 Pseudo particles for sintering

Publications (2)

Publication Number Publication Date
JP2002241851A JP2002241851A (en) 2002-08-28
JP4580114B2 true JP4580114B2 (en) 2010-11-10

Family

ID=18898613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001035121A Expired - Lifetime JP4580114B2 (en) 2001-02-13 2001-02-13 Pseudo particles for sintering

Country Status (1)

Country Link
JP (1) JP4580114B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887611B2 (en) * 2003-10-09 2012-02-29 Jfeスチール株式会社 Method for producing sintered ore and granulated particles
CN101671776B (en) * 2003-10-09 2012-11-28 杰富意钢铁株式会社 Sintered ore
JP4635559B2 (en) * 2004-10-29 2011-02-23 Jfeスチール株式会社 Method for manufacturing raw materials for sintering
JP4852871B2 (en) * 2005-04-08 2012-01-11 Jfeスチール株式会社 Method for producing sintered ore and granulation equipment for producing sintered ore
JP5682286B2 (en) * 2010-12-17 2015-03-11 Jfeスチール株式会社 Method for producing granulated and sintered raw materials
JP6477167B2 (en) * 2015-03-31 2019-03-06 新日鐵住金株式会社 Method for producing sintered ore

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369926A (en) * 1986-09-08 1988-03-30 Kobe Steel Ltd Pretreatment of sintering raw material
JPH02225627A (en) * 1989-02-27 1990-09-07 Nisshin Steel Co Ltd Production of sintered ore
WO2001092588A1 (en) * 2000-05-29 2001-12-06 Kawasaki Steel Corporation Raw material for sintering in form of pseudo grain and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369926A (en) * 1986-09-08 1988-03-30 Kobe Steel Ltd Pretreatment of sintering raw material
JPH02225627A (en) * 1989-02-27 1990-09-07 Nisshin Steel Co Ltd Production of sintered ore
WO2001092588A1 (en) * 2000-05-29 2001-12-06 Kawasaki Steel Corporation Raw material for sintering in form of pseudo grain and method for producing the same

Also Published As

Publication number Publication date
JP2002241851A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
JP5846049B2 (en) Method for producing sintered ore
CN108699623A (en) The manufacturing method of sinter
JP4580114B2 (en) Pseudo particles for sintering
JP4887611B2 (en) Method for producing sintered ore and granulated particles
CN107406905B (en) Sintering in form of pseudo grain and its manufacturing method
JP4528362B2 (en) Method for producing sintered ore
JP3820132B2 (en) Pretreatment method of sintering raw material
JP4205242B2 (en) Granulation method of sintering raw material
JP2002062290A (en) Iron ore powder evaluating method
Pal et al. Effect of pyroxenite and olivine minerals as source of MgO in hematite pellet on improvement of metallurgical properties
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
CN113564352A (en) Method for producing high-quality sintering ore by using multiple manganese ore powder ore blending
JP3888981B2 (en) Method for producing sintered ore
JP3951825B2 (en) Granulation method of sintering raw material
JP4982993B2 (en) Method for producing sintered ore
JP4356929B2 (en) Method for producing sintered ore
JP2006104508A (en) Method for manufacturing sintered ore
JP5703616B2 (en) Method for producing sintered ore
AU656060B2 (en) Iron-making sintered ore produced from pisolitic iron ore and production thereof
JP4077668B2 (en) Sinter with excellent softening and melting properties
JP2007126733A (en) Double tumbling disk granulator
JP2006045600A (en) Method for producing sintered ore
JP3952871B2 (en) Manufacturing method of high-strength sintered ore
JP2004225147A (en) Method for manufacturing sintered ore for blast furnace
JP2007100150A (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4580114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term