JP2002062290A - Iron ore powder evaluating method - Google Patents

Iron ore powder evaluating method

Info

Publication number
JP2002062290A
JP2002062290A JP2000249712A JP2000249712A JP2002062290A JP 2002062290 A JP2002062290 A JP 2002062290A JP 2000249712 A JP2000249712 A JP 2000249712A JP 2000249712 A JP2000249712 A JP 2000249712A JP 2002062290 A JP2002062290 A JP 2002062290A
Authority
JP
Japan
Prior art keywords
iron ore
melt
ore powder
low
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000249712A
Other languages
Japanese (ja)
Other versions
JP4422307B2 (en
Inventor
Yozo Hosoya
陽三 細谷
Jun Okazaki
潤 岡崎
Kenichi Higuchi
謙一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000249712A priority Critical patent/JP4422307B2/en
Publication of JP2002062290A publication Critical patent/JP2002062290A/en
Application granted granted Critical
Publication of JP4422307B2 publication Critical patent/JP4422307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for relatively evaluating melt permeability into iron ore powder having great influence on quality such as cold strength of blast furnace sintered ore or a production yield and serving as an index of the amount, the degree of development, or the bonding manner of a bonding phase in the sintered ore. SOLUTION: After a molded low-melting point substance is placed on a molded iron ore powder, this is heated to 1000 deg.C or more in the atmosphere or a low-oxygen atmosphere for melting the low-melting point substance, and when one kind or two kinds or more of a distance, a cross sectional area, and a volume of penetration of the melt of the molten low-melting point substance into the iron ore powder is/are measured, the permeability of the melt into the iron ore powder is evaluated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉原料用の焼結
鉱の評価方法に関し、特に成品歩留や焼結鉱品質などに
大きな影響を与える鉄鉱石粉の融液浸透能の評価方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating sinter ore used as a raw material for blast furnaces, and more particularly to a method for evaluating the infiltration ability of iron ore powder in a melt, which has a great effect on product yield and sinter quality. It is.

【0002】[0002]

【従来の技術】一般に、高炉用原料である焼結鉱は、鉄
鉱石粉や篩下粉、副原料(石灰石、蛇紋岩など)、粉コ
ークス、無煙炭、返鉱などを配合し、これらの原料を事
前に一次ミキサー、二次ミキサーで混合、造粒して焼結
原料を粒径1mm以上の核粒子の周りに粒径1mm未満
の微粉が付着(以下付着粉部とする)した構造の擬似粒
子とした後、焼結原料を焼結機に装入し、焼結ベッド表
層の粉コークスなどの燃料に点火した後に下向きに通風
しながら燃料を燃焼させて焼結原料を焼成し製造してい
る。焼結原料の焼成過程では、焼結原料は燃料の燃焼熱
で最高1300℃前後まで昇温されるが、一般に、温度
が1100〜1200℃を越えると焼結原料の擬似粒子
の付着粉部から初期融液が生成し始め、さらに温度が上
昇するにつれて初期融液が焼結原料の中に浸透して行
き、それらを溶かし込んでより多くの融液を生成して焼
結鉱の結合相を形成する。この結合相の量やその拡がり
程度、接合の仕方は、焼結鉱の冷間強度などの品質や成
品歩留に大きな影響を与える。この焼結原料の中で、焼
結鉱の成品歩留や焼結鉱品質に最も大きな影響を与える
のが鉄鉱石粉である。焼結原料で形成される擬似粒子の
付着粉部から生成した初期融液が付着粉部の鉄鉱石など
へ浸透して焼結鉱の結合相を形成する場合に、初期融液
の浸透は「融液の拡がり」を表しており、浸透性の良好
な鉱石ほど均一に拡がった結合相を造り易く、焼結鉱製
造時の成品歩留や焼結鉱強度を向上させる。
2. Description of the Related Art In general, sinter, which is a raw material for blast furnaces, is made by mixing iron ore powder, sieving powder, auxiliary raw materials (limestone, serpentine, etc.), coke breeze, anthracite, and ore return. Pseudo particles having a structure in which fine powder having a particle size of less than 1 mm adheres around core particles having a particle size of 1 mm or more (hereinafter referred to as “adhered powder portion”) by mixing and granulating in advance a primary mixer and a secondary mixer. After that, the sintering raw material is charged into the sintering machine, and the fuel such as coke breeze on the surface of the sintering bed is ignited, and then the fuel is burned while being ventilated downward, and the sintering raw material is baked and manufactured. . In the firing process of the sintering raw material, the temperature of the sintering raw material is raised to a maximum of about 1300 ° C. by the heat of combustion of the fuel. The initial melt begins to form, and as the temperature rises, the initial melt penetrates into the sintering raw materials and dissolves them to produce more melt to form the binder phase of the sinter. Form. The amount of the binder phase, the extent of its expansion, and the manner of joining greatly affect the quality of the sinter, such as the cold strength, and the product yield. Of these sintering raw materials, iron ore powder has the greatest effect on the product yield and sinter quality of the sinter. When the initial melt generated from the adhered powder portion of the pseudo particles formed of the sintering raw material penetrates into the iron ore or the like of the adhered powder portion to form a bonded phase of the sinter, the permeation of the initial melt is " The ore with better permeability is more likely to form a uniformly expanded binder phase, and improves the product yield and sinter strength during sinter production.

【0003】これまでに、主要な焼結原料である鉄鉱石
粉の評価方法としていくつか提案されてきた。例えば、
粒径3〜5mmの鉱石粒子に試薬である粒径10μm以
下のCaO粉末を付着させた擬似粒子または5mm角に
切り出した鉱石をCaOタブレットに置いた試料を電気
炉で焼成することにより、鉄鉱石粉と石灰石の同化反応
を評価する方法を本発明者らは既に提案している(鉄と
鋼,78(1992)7,p.1013)。しかしなが
ら、この方法は脈石成分や結晶水含有量の異なる各銘柄
の鉄鉱石粉と副原料の一つである石灰石との同化反応挙
動を相対的に評価するもので、成品歩留や焼結鉱強度な
どの品質に大きな影響を与える焼結鉱の結合相の量や拡
がり程度、接合の仕方の指標となる鉄鉱石粉への融液の
浸透性を評価する方法ではない。
[0003] Some methods for evaluating iron ore powder, which is a main sintering raw material, have been proposed. For example,
Pseudoparticles in which CaO powder having a particle size of 10 μm or less as a reagent is adhered to ore particles having a particle size of 3 to 5 mm or a sample in which a 5 mm square ore is placed on a CaO tablet are fired in an electric furnace to obtain iron ore powder. The present inventors have already proposed a method for evaluating the assimilation reaction between iron and limestone (Iron and Steel, 78 (1992) 7, p. 1013). However, this method relatively evaluates the assimilation reaction behavior between iron ore powders of different brands having different gangue components and water contents of crystallization and limestone, which is one of the auxiliary materials. It is not a method for evaluating the amount and extent of the binder phase of the sinter which greatly affects the quality such as strength, and the permeability of the melt to the iron ore powder which is an index of the joining method.

【0004】また、発明者らは、結晶水含有量が多いピ
ソライト鉱石を対象として、焼結反応においてその表面
に保護層を形成する際の保護層厚の適正化を目的に、擬
似粒子の保護層(0.5mm以下の鉄鉱石、石灰石及び
蛇紋岩の混合粉あるいは蛇紋岩粉)に相当するタブレッ
ト(直径15mm×高さ5mm、水銀圧入法開気孔率:
30%)の上に、カルシウムフェライト(CF)系融液
の組成に調合した試薬タブレット(直径8mm×高さ5
mm)を載せて電気炉内で大気雰囲気中で加熱し、冷却
後に試料の中央部を切断、研磨して融液の保護層への浸
透深さを測定する方法も提案している(鉄と鋼,78
(1992)7,p.1021)。しかしながら、この
評価方法は、擬似粒子内の同化反応の抑制効果が大きい
成分組成の保護層の浸透深さを測定し、保護層の融液浸
入を抑制する割合を評価する方法であり、焼結鉱の結合
相の量や拡がり程度、接合の仕方の指標となる鉄鉱石粉
への融液の浸透性を評価する方法ではない。
In addition, the inventors of the present invention have studied the protection of pseudo particles for pisolite ore having a high crystallization water content in order to optimize the thickness of the protective layer when a protective layer is formed on the surface in a sintering reaction. Tablets (diameter 15 mm x height 5 mm, mercury porosimetry open porosity) corresponding to a layer (mixed powder of iron ore, limestone and serpentine or serpentine powder of 0.5 mm or less)
30%), a reagent tablet (diameter 8 mm × height 5) prepared to have a composition of calcium ferrite (CF) -based melt.
mm) and heat it in an air atmosphere in an electric furnace, cut and polish the center of the sample after cooling, and measure the penetration depth of the melt into the protective layer (iron and iron). Steel, 78
(1992) 7, p. 1021). However, this evaluation method is a method of measuring the penetration depth of the protective layer of a component composition having a large effect of suppressing the assimilation reaction in the pseudo particles and evaluating the rate of suppressing the penetration of the melt into the protective layer. It is not a method to evaluate the permeability of the melt to the iron ore powder, which is an index of the amount and extent of the ore binder phase and the manner of joining.

【0005】以上のように、従来の製鉄用鉄鉱石粉の評
価方法は、焼結用の鉄鉱石の同化反応に影響を与える脈
石成分や結晶水、気孔率等などから各種銘柄の鉄鉱石の
同化反応性を評価するものであり、焼結鉱の成品歩留や
冷間強度などの焼結鉱の品質に大きな影響を与える結合
相の量や拡がり程度、接合の仕方の指標となる鉄鉱石粉
への融液浸透性を評価する方法はなかった。したがっ
て、高炉の燃料比を低減し、出銑比を大幅に向上させる
効果が期待される高い強度の焼結鉱を高歩留で製造する
ために、焼結鉱の成品歩留や冷間強度などの品質に大き
な影響を与える結合相の量や拡がり程度、接合の仕方の
指標となる鉄鉱石粉への融液浸透性(鉄鉱石粉の融液浸
透能)を相対的に評価できる方法の確立が望まれてい
た。
[0005] As described above, the conventional method of evaluating iron ore powder for iron making uses iron ore powders of various brands based on gangue components, water of crystallization, porosity, etc., which affect the assimilation reaction of iron ore for sintering. Iron ore powder that evaluates the assimilation reactivity, and is an index of the amount and expansion of the binder phase, which has a large effect on the quality of the sintered ore such as the product yield and cold strength of the sintered ore, and the index of the joining method. There was no method for evaluating the melt permeability into the melt. Therefore, in order to reduce the fuel ratio of the blast furnace and to produce a high-strength sintered ore with a high yield that is expected to significantly improve the tapping ratio, the product yield and cold strength of the sintered ore are reduced. The establishment of a method that can relatively evaluate the amount and extent of the binder phase, which greatly affects the quality of iron ore, and the permeability of the melt to the iron ore powder (the ability of the melt to penetrate the iron ore) as an index of the joining method Was desired.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術の問題点
に鑑みて、本発明は、高炉の燃料比低減および出銑比の
大幅な向上を可能とする高品質の焼結鉱を高歩留で製造
するために、焼結鉱の冷間強度などの品質や成品歩留に
大きな影響を与える焼結鉱中の結合相の量や拡がり程
度、接合の仕方の指標となる鉄鉱石粉への融液浸透性を
相対的に評価できる方法を提供するものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present invention provides a high-quality sintered ore capable of reducing the fuel ratio of a blast furnace and greatly improving the tapping ratio with a high yield. Therefore, the amount and extent of the binder phase in the sinter that greatly affects the quality such as the cold strength of the sinter and the product yield, and the fusion to iron ore powder, which is an index of the joining method, are It is intended to provide a method capable of relatively evaluating the liquid permeability.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の課題を
解決するものであり、以下の(1)〜(5)の通りであ
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and is as described in the following (1) to (5).

【0008】(1)成型された鉄鉱石粉の上に成型され
た低融点物質を載せた後、大気中または低酸素雰囲気下
で1000℃以上に昇温して低融点物質を溶融させ、そ
の溶融した融液が鉄鉱石粉中に浸透した距離、断面積お
よび体積の内の1種または2種以上を測定することによ
り、鉄鉱石粉への融液の浸透性を評価することを特徴と
する鉄鉱石粉の評価方法。
(1) After a molded low melting point substance is placed on a molded iron ore powder, the temperature is raised to 1000 ° C. or more in the air or a low oxygen atmosphere to melt the low melting point substance. Iron ore powder characterized by evaluating one or more of the distance, cross-sectional area and volume of the melt that has penetrated into the iron ore powder to evaluate the permeability of the melt to the iron ore powder. Evaluation method.

【0009】(2)前記の低融点物質がカルシウムフェ
ライト系物質およびシリケートスラグ系物質の内の1種
または2種であることを特徴とする前記(1)の鉄鉱石
粉の評価方法。
(2) The method for evaluating iron ore powder according to (1), wherein the low-melting substance is one or two of a calcium ferrite-based substance and a silicate slag-based substance.

【0010】(3)前記のカルシウムフェライト系物質
がCaO−Fe23、CaO−2Fe 23の内の1種ま
たは2種からなることを特徴とする前記(2)の鉄鉱石
粉の評価方法。
(3) The above calcium ferrite-based material
Is CaO-FeTwoOThree, CaO-2Fe TwoOThreeOne of the
Or iron ore according to (2) above,
How to evaluate the powder.

【0011】(4)前記のシリケートスラグ系物質がC
aO−SiO2―FeO、Fe23、2FeO−SiO2
の内の1種または2種からなることを特徴とする前記
(2)の鉄鉱石粉の評価方法。
(4) The silicate slag-based material is C
aO-SiO 2 -FeO, Fe 2 O 3, 2FeO-SiO 2
The method for evaluating iron ore powder according to the above (2), wherein the method comprises one or two of the above.

【0012】(5)前記の低融点物質にさらにAl23
およびMgOの内の1種または2種を含有することを特
徴とする前記(1)〜(4)の内の何れかの鉄鉱石粉の
評価方法。
(5) Al 2 O 3 is further added to the low melting point substance.
And any one of the above-mentioned (1) to (4), characterized in that it contains one or two of MgO.

【0013】[0013]

【発明の実施の形態】本発明は、成型された鉄鉱石粉の
上に低融点物質を載せた後、大気中または低酸素雰囲気
下で1000℃以上に昇温して低融点物質を溶融させ、
その溶融した融液が鉄鉱石粉中に浸透した距離または断
面積または体積またはそれらを組み合わせて測定するこ
とにより、鉄鉱石粉への融液浸透性を相対的に評価する
鉄鉱石粉の評価方法である。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, a low-melting substance is placed on a molded iron ore powder, and then the temperature is raised to 1000 ° C. or more in air or a low-oxygen atmosphere to melt the low-melting substance.
This is an iron ore powder evaluation method for relatively evaluating melt permeation into iron ore powder by measuring the distance, cross-sectional area, or volume of the melt that has penetrated into iron ore powder, or a combination thereof.

【0014】加熱雰囲気は、実際の空気中または粉コー
クスの燃焼雰囲気を考慮した低酸素雰囲気とし、加熱パ
ターンは、実際の焼成反応を模擬した室温から1300
℃前後の最高温度までは3分間程度で昇温し、最高温度
から1100℃までは3分間程度で冷却し、その後徐冷
するのが良い。
The heating atmosphere is a low oxygen atmosphere in consideration of the actual atmosphere in air or the combustion atmosphere of coke breeze, and the heating pattern is from 1300 to room temperature simulating the actual firing reaction.
It is preferable to raise the temperature to about 3 ° C. in about 3 minutes, cool from the maximum temperature to 1100 ° C. in about 3 minutes, and then gradually cool.

【0015】また、本発明で低融点物質には、空気中ま
たは低酸素雰囲気で1000℃以上の加熱温度で溶融す
る金属酸化物、金属または金属合金が含まれる。
In the present invention, the low-melting substance includes a metal oxide, a metal or a metal alloy which is melted at a heating temperature of 1000 ° C. or more in air or a low-oxygen atmosphere.

【0016】また、低融点物質として鉄酸化物を使用す
る場合は、これにCaOやSiO2、K2O、Na2O、
他の融点低下剤などを添加して融点を低下しても良い。
When iron oxide is used as the low-melting substance, CaO, SiO 2 , K 2 O, Na 2 O,
The melting point may be lowered by adding another melting point lowering agent or the like.

【0017】低融点物質としては、実際の焼結過程を模
擬した図2、図3の状態図に示すカルシウムフェライト
系物質とシリケートスラグ系物質のうちの1種または2
種類からなるものを用いるのが好ましい。
As the low melting point material, one or two of calcium ferrite-based material and silicate slag-based material shown in the phase diagrams of FIGS. 2 and 3 simulating the actual sintering process are used.
It is preferable to use one consisting of different types.

【0018】図2は、空気中におけるCaO−酸化鉄−
SiO2系の相関係を示す状態図であり、図3は、極め
て酸素分圧の低い金属鉄と接触下におけるCaO−酸化
鉄−SiO2系の相関係を示す状態図である。低酸素雰
囲気下になると、図2に示すシリケートスラグ系の低融
点融液の組織範囲は拡がり、図3に示すシリケートスラ
グ系の低融点融液の組織範囲に近づいていく。つまり、
低酸素雰囲気下になると、シリケートスラグ系の低融点
融液がより生成し易くなるといえる。したがって、本発
明において、シリケートスラグ系物質として、CaO−
SiO2―FeO、Fe23や2FeO−SiO2のモル
比の明確な低融点物質を使用すれば、鉄鉱石への融液の
浸透性の相対的な評価が容易である。
FIG. 2 shows CaO-iron oxide in air.
Is a state diagram showing the phase relationship between the SiO 2 system, Fig. 3 is a state diagram illustrating the very oxygen partial correlation of CaO- iron oxide -SiO 2 system in contact under a low metallic iron of pressure. Under a low oxygen atmosphere, the structure range of the silicate slag-based low melting point melt shown in FIG. 2 is expanded and approaches the structure range of the silicate slag-based low melting point melt shown in FIG. That is,
Under a low oxygen atmosphere, it can be said that a silicate slag-based low melting point melt is more easily generated. Therefore, in the present invention, CaO-
If a low-melting substance having a clear molar ratio of SiO 2 —FeO, Fe 2 O 3, or 2FeO—SiO 2 is used, the relative evaluation of the permeability of the melt to the iron ore is easy.

【0019】また、実際の焼結鉱には前者の方が多く生
成しているので、低融点物質として、カルシウムフェラ
ト系物質またはカルシウムフェラト系物質を主体とした
シリケートスラグ系物質との複合物を使用するのがより
好ましい。
In the actual sintered ore, the former is formed in a larger amount, so that the low melting point material is a calcium ferrite-based material or a composite with a silicate slag-based material mainly composed of a calcium ferrite-based material. It is more preferable to use an object.

【0020】鉄鉱石粉または低融点物質の成型方法は、
特に規定する必要がなく、一般的な冷間加圧成型法を用
いることができる。また、低融点物質の気孔率は特に制
約の必要がないが、鉄鉱石粉の成型体の気孔率について
は、実際の焼結原料の擬似粒子の付着粉部の気孔率に近
い30%前後にするのが好ましい。
The method of molding iron ore powder or low melting point material is as follows:
It is not necessary to particularly define, and a general cold pressure molding method can be used. The porosity of the low-melting substance is not particularly limited, but the porosity of the iron ore powder compact is about 30%, which is close to the porosity of the adhering powder portion of the pseudo particles of the actual sintering raw material. Is preferred.

【0021】鉄鉱石粉への融液浸透性を評価する方法と
しては、実験終了後の試料面に垂直な方向(融液浸透方
向)または水平な方向に切断し、その垂直断面の特定位
置における鉄鉱石粉への融液浸透距離または融液浸透部
の面積を測定したり、さらには垂直方向の複数箇所での
水平断面の融液浸透部の面積の測定値から融液浸透部の
体積を求めることができる。
As a method of evaluating the permeability of the melt to the iron ore powder, a test piece is cut in a direction perpendicular to the sample surface (melt penetration direction) or in a horizontal direction after the experiment, and the iron ore is cut at a specific position in the vertical section. To measure the melt penetration distance or the area of the melt penetration part to the stone powder, and to calculate the volume of the melt penetration part from the measured value of the area of the melt penetration part of the horizontal cross section at multiple points in the vertical direction Can be.

【0022】[0022]

【実施例】以下、図面にもとづいて本発明を詳細に説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.

【0023】図1は、本発明の鉄鉱石粉の融液浸透性の
評価方法を示す図である。
FIG. 1 is a view showing a method for evaluating the melt permeability of iron ore powder according to the present invention.

【0024】図1に示すように、粒径が0.25mm〜
0.5mmの割合が50%、粒径が0.25mm以下の
割合が50%に粒度調整した表1に示す複数の銘柄の鉄
鉱石粉のタブレット1(直径15mm×高さ5mm、水
銀圧入法開気孔率:30%)、初期融液を想定したカル
シウムフェライト系物質であるCaO−Fe23のタブ
レット2(直径5mm×高さ5mm)をそれぞれ冷間加
圧成型により作成し、その鉄鉱石粉のタブレット1上に
CaO−Fe23のタブレット2を載せて、Ni製のル
ツボ(直径20mm×高さ15mm)に充填し、電気炉
内で大気雰囲気中で加熱、焼成した。
As shown in FIG. 1, the particle size is 0.25 mm or more.
Tablets 1 of a plurality of brands of iron ore powder (diameter 15 mm x height 5 mm, mercury intrusion method) shown in Table 1 in which the ratio of 0.5 mm was adjusted to 50% and the particle size of 0.25 mm or less to 50%. (Porosity: 30%), tablets 2 (diameter 5 mm × height 5 mm) of CaO—Fe 2 O 3 , which is a calcium ferrite-based substance assuming an initial melt, are prepared by cold pressure molding, and the iron ore powder is prepared. The tablet 2 of CaO—Fe 2 O 3 was placed on the tablet 1 of the above, filled in a crucible made of Ni (diameter 20 mm × height 15 mm), and heated and fired in an electric furnace in an air atmosphere.

【0025】[0025]

【表1】 [Table 1]

【0026】試料の加熱パターンは、常温から1100
℃までを2分間で、1100℃から1290℃(最高温
度)までを1分間で昇温し、その最高温度から1100
℃までは3分間で冷却し、その後電気炉から試料を取り
出し空冷した。
The heating pattern of the sample is from room temperature to 1100
° C in 2 minutes and from 1100 ° C to 1290 ° C (maximum temperature) in 1 minute.
The sample was cooled to 3 ° C. in 3 minutes, and then the sample was taken out of the electric furnace and air-cooled.

【0027】試験終了後、試料を冷却し、図1に示すよ
うに試料の中央部を試料面に垂直な断面方向で切断し、
切断面を研磨して、鉄鉱石粉のタブレット1への融液の
浸透距離Xを測定した。今回の浸透距離の測定値は、タ
ブレット切断断面を幅方向に5mm間隔で複数箇所の浸
透距離を測定し、それらの浸透距離の平均値を採用し
た。その結果として図3に表1に示す銘柄の鉄鉱石粉中
の脈石成分であるSiO 2及びAl23の総含有量と銘
柄の鉄鉱石粉への融液浸透距離との関係を示す。
At the end of the test, the sample was cooled and
Cut the center part of the sample in the cross-sectional direction perpendicular to the sample surface as
The cut surface is polished and the melt of iron ore powder is
The penetration distance X was measured. The measured value of the penetration distance this time is
Immerse multiple sections of the bullet cut section at 5 mm intervals in the width direction
Measure the penetration distance and adopt the average of those penetration distances
Was. As a result, in the iron ore powder of the brands shown in Table 1 in FIG.
Gangue component of SiO TwoAnd AlTwoOThreeContent and name
Fig. 4 shows the relationship with the permeation distance of the handle into the iron ore powder.

【0028】図4に示すように、各銘柄の鉄鉱石粉の融
液浸透性の違いは、従来知られている各銘柄の鉄鉱石粉
のSiO2及びAl23の脈石成分の違いで一部は整理
できるものの、例えば、鉄鉱石粉Aのようにそれらの関
係から大きく外れるものもあることが判る。
As shown in FIG. 4, the difference in the melt permeability between the iron ore powders of the respective brands is due to the difference between the conventionally known gangue components of SiO 2 and Al 2 O 3 of the iron ore powders of the respective brands. It can be seen that, although the parts can be arranged, there are, for example, iron ore powder A, which greatly deviates from those relationships.

【0029】図4においてSiO2及びAl23の総含
有量が同じであるものの、鉄鉱石粉の融液浸透性が大き
く異なる鉄鉱石粉A(緻密質なブラジル産ヘマタイト鉱
石)と鉄鉱石粉E(多孔質な豪州産ピソライト鉱石)の
試験後の試料断面のマクロ組織を図5に示す。
In FIG. 4, although the total contents of SiO 2 and Al 2 O 3 are the same, the iron ore powders A (density Brazilian hematite ore) and the iron ore powder E (density of Brazilian hematite ore) differ greatly in the melt permeability of the iron ore powder. FIG. 5 shows the macrostructure of the cross section of the sample after the test of porous Australian pisolite ore).

【0030】図5に示す緻密質なブラジル産ヘマタイト
鉱石である鉄鉱石粉Aと、多孔質な豪州産ピソライト鉱
石である鉄鉱石粉Eのマクロ組織を比較して判るよう
に、鉄鉱石粉Eの融液部には気孔の形成が見られ、それ
が融液の浸透性に大きな影響を及ぼしていることが分か
る。つまり、多孔質な豪州産ピソライト鉱石である鉄鉱
石粉Eは、表1から判るように鉄鉱石粉Aに比べて鉄鉱
石中の結晶水の含有量が高く、加熱によるこの結晶水の
熱分解により鉄鉱石の構造が多孔質化され、それが融液
の浸透性に大きな影響を及ぼすものと考えられる。
As can be seen by comparing the macrostructures of iron ore powder A, which is a dense Brazilian hematite ore, and iron ore powder E, which is a porous pisolite ore, shown in FIG. The formation of pores is observed in the portion, which indicates that it has a great effect on the permeability of the melt. That is, as can be seen from Table 1, the iron ore powder E, which is a porous Australian pisolite ore, has a higher content of water of crystallization in the iron ore than the iron ore powder A. It is considered that the structure of the stone is made porous, which greatly affects the permeability of the melt.

【0031】また、図4中の( )内には、各銘柄の
鉄鉱石中の結晶水を示すが、例えば、緻密質な豪州産ヘ
マタイト鉱石である鉄鉱石粉C及びDと、豪州産ピソラ
イト鉱石である鉄鉱石粉E及びFは、結晶水の含有量が
大きく異なるが、それらの鉄鉱石粉の融液浸透性は近い
ことから、従来の各銘柄の鉄鉱石中の結晶水と鉄鉱石粉
の融液浸透性の関係をみて判るように、従来のような各
銘柄の鉄鉱石の結晶水の含有量のみでは各銘柄の鉄鉱石
粉の融液浸透性の違いを評価することはできないもので
ある。
Crystallized water in each brand of iron ore is shown in parentheses in FIG. 4. For example, iron ore powders C and D, which are dense hematite ores from Australia, and pisolite ores from Australia The iron ore powders E and F are very different in the content of water of crystallization, but since the melt permeability of these iron ore powders is close to each other, the water of crystallization and the melt of iron ore powder in conventional iron ore brands are similar. As can be seen from the relationship between the permeability, it is not possible to evaluate the difference in the melt permeability of the iron ore powder of each brand only by the content of water of crystallization of the iron ore of each brand as in the related art.

【0032】以上から、本発明の鉄鉱石の評価方法によ
り、従来の脈石含有量または結晶水の含有量の違いのみ
では十分に評価できなかった鉄鉱石粉の融液浸透性に及
ぼす鉄鉱石銘柄間の差異を明確に評価することができ
る。
As described above, the iron ore grades of the present invention affect the melt permeability of iron ore powder which could not be sufficiently evaluated only by the conventional difference in gangue content or crystallization water content. The difference between them can be clearly evaluated.

【0033】[0033]

【発明の効果】本発明は、従来の鉄鉱石の評価方法で
は、充分に評価できなかった鉄鉱石銘柄間の差異による
鉄鉱石粉の融液浸透性の違いを明確に評価することがで
き、本発明の鉄鉱石の評価方法の実操業への適用により
高品質の高炉用焼結鉱を高歩留で製造することができ
る。さらには、この高品質の高炉用焼結鉱の使用により
高炉の燃料比低減および出銑比の大幅な向上が期待され
る。
According to the present invention, it is possible to clearly evaluate the difference in melt permeability of iron ore powder due to the difference between iron ore brands which could not be sufficiently evaluated by the conventional iron ore evaluation method. By applying the iron ore evaluation method of the present invention to actual operation, high-quality sintered ore for blast furnaces can be produced at a high yield. Furthermore, the use of this high-quality sinter for blast furnaces is expected to reduce the fuel ratio of the blast furnace and significantly improve the tapping ratio.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の鉄鉱石粉の融液浸透性の評価方法の一
例を示す図である。
FIG. 1 is a diagram showing one example of a method for evaluating the melt permeability of iron ore powder of the present invention.

【図2】空気中におけるCaO−酸化鉄−SiO2系の
相関係を示す状態図である。
FIG. 2 is a phase diagram showing a phase relationship of CaO-iron oxide-SiO 2 system in air.

【図3】極めて酸素分圧の低い金属鉄と接触下における
CaO−酸化鉄−SiO2系の相関係を示す状態図であ
る。
FIG. 3 is a phase diagram showing a CaO-iron oxide-SiO 2 phase relationship under contact with metallic iron having an extremely low oxygen partial pressure.

【図4】鉄鉱石粉中の脈石成分であるSiO2及びAl2
3の総含有量と本発明法による鉄鉱石粉の融液浸透距
離の関係を示す図である。
FIG. 4 SiO 2 and Al 2 which are gangue components in iron ore powder
O is a diagram showing the relationship between melt penetration distance iron ore fines by the total content of 3 and the present invention method.

【図5】本発明法により測定した2種の鉄鉱石粉の融液
浸透状態を示す試料の垂直断面図(ミクロ組織)であ
る。
FIG. 5 is a vertical sectional view (microstructure) of a sample showing the state of melt penetration of two types of iron ore powder measured by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 鉄鉱石粉のタブレット 2 CaO−Fe23のタブレット X 融液の浸透距離Penetration distance of 1 iron ore fines tablet X melt tablet 2 CaO-Fe 2 O 3 of

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樋口 謙一 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 Fターム(参考) 4K001 AA10 BA02 CA33 CA49 GA10 GB11  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kenichi Higuchi 2-6-3 Otemachi, Chiyoda-ku, Tokyo Nippon Steel Corporation F-term (reference) 4K001 AA10 BA02 CA33 CA49 GA10 GB11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 成型された鉄鉱石粉の上に成型された低
融点物質を載せた後、大気中または低酸素雰囲気下で1
000℃以上に昇温して低融点物質を溶融させ、その溶
融した融液が鉄鉱石粉中に浸透した距離、断面積および
体積の内の1種または2種以上を測定することにより、
鉄鉱石粉への融液の浸透性を評価することを特徴とする
鉄鉱石粉の評価方法。
After a molded low melting point material is placed on a molded iron ore powder, the iron ore powder is placed in air or in a low oxygen atmosphere.
By raising the temperature to 000 ° C. or more to melt the low-melting substance, and measuring one or more of the distance, cross-sectional area, and volume of the melt that has permeated the iron ore powder,
An iron ore powder evaluation method characterized by evaluating the permeability of a melt into iron ore powder.
【請求項2】 前記の低融点物質がカルシウムフェライ
ト系物質およびシリケートスラグ系物質の内の1種また
は2種であることを特徴とする請求項1に記載の鉄鉱石
粉の評価方法。
2. The method for evaluating iron ore powder according to claim 1, wherein the low-melting point substance is one or two of a calcium ferrite-based substance and a silicate slag-based substance.
【請求項3】 前記のカルシウムフェライト系物質がC
aO−Fe23、CaO−2Fe23の内の1種または
2種からなることを特徴とする請求項2に記載の鉄鉱石
粉の評価方法。
3. The calcium ferrite-based material is C
aO-Fe 2 O 3, CaO -2Fe 2 Evaluation method of iron ore fines according to claim 2, characterized in that it consists of one or two of O 3.
【請求項4】 前記のシリケートスラグ系物質がCaO
−SiO2―FeO、Fe23、2FeO−SiO2の内
の1種または2種からなることを特徴とする請求項2に
記載の鉄鉱石粉の評価方法。
4. The silicate slag-based material is CaO
3. The method for evaluating iron ore powder according to claim 2, comprising one or two of —SiO 2 —FeO, Fe 2 O 3 , and 2FeO—SiO 2. 4 .
【請求項5】 前記の低融点物質にさらにAl23およ
びMgOの内の1種または2種を含有することを特徴と
する請求項1〜4の内の何れか1項に記載の鉄鉱石粉の
評価方法。
5. The iron ore according to claim 1, wherein said low melting point material further contains one or two of Al 2 O 3 and MgO. Evaluation method of stone powder.
JP2000249712A 2000-08-21 2000-08-21 Evaluation method of iron ore powder Expired - Lifetime JP4422307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000249712A JP4422307B2 (en) 2000-08-21 2000-08-21 Evaluation method of iron ore powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000249712A JP4422307B2 (en) 2000-08-21 2000-08-21 Evaluation method of iron ore powder

Publications (2)

Publication Number Publication Date
JP2002062290A true JP2002062290A (en) 2002-02-28
JP4422307B2 JP4422307B2 (en) 2010-02-24

Family

ID=18739417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000249712A Expired - Lifetime JP4422307B2 (en) 2000-08-21 2000-08-21 Evaluation method of iron ore powder

Country Status (1)

Country Link
JP (1) JP4422307B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082417A (en) * 2001-09-10 2003-03-19 Nippon Steel Corp Method for evaluating raw material for sintering, and blending design method
JP2006097083A (en) * 2004-09-29 2006-04-13 Nippon Steel Corp Method for evaluating raw material for sintering, and blending design method
WO2010032466A1 (en) * 2008-09-17 2010-03-25 新日本製鐵株式会社 Sintered ore manufacturing method
JP2010096592A (en) * 2008-10-15 2010-04-30 Nippon Steel Corp Evaluation method of blended iron ore for sintering
JP2012021213A (en) * 2010-07-16 2012-02-02 Nippon Steel Corp Method for manufacturing sintered ore
JP2013092539A (en) * 2013-02-04 2013-05-16 Nippon Steel & Sumitomo Metal Evaluation method for blended iron ore for sintering
CN109283096A (en) * 2018-11-05 2019-01-29 首钢集团有限公司 A kind of detection method of Iron Ore Powder index of cementation
CN109752261A (en) * 2017-11-02 2019-05-14 上海梅山钢铁股份有限公司 A method of detection iron ore powder in sintering process binder strength
CN112694322A (en) * 2021-01-28 2021-04-23 中冶赛迪技术研究中心有限公司 Sintered body, preparation method thereof and characterization method of high-temperature spreading behavior
CN112881454A (en) * 2021-01-28 2021-06-01 中冶赛迪技术研究中心有限公司 Method for preparing sintered body based on pure reagent simulation and measuring high-temperature spreading range
CN113435768A (en) * 2021-07-06 2021-09-24 江苏省沙钢钢铁研究院有限公司 Iron ore evaluation method and device, storage medium and electronic equipment
CN113960102A (en) * 2021-09-24 2022-01-21 宣化钢铁集团有限责任公司 Method for measuring assimilation performance of iron ore powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101912804B (en) * 2010-09-03 2012-07-25 华智节能(香港)有限公司 Novel lining plate structure for tube mill in cement industry and manufacturing method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4510343B2 (en) * 2001-09-10 2010-07-21 新日本製鐵株式会社 Raw material evaluation method and blending design method
JP2003082417A (en) * 2001-09-10 2003-03-19 Nippon Steel Corp Method for evaluating raw material for sintering, and blending design method
JP2006097083A (en) * 2004-09-29 2006-04-13 Nippon Steel Corp Method for evaluating raw material for sintering, and blending design method
JP4518895B2 (en) * 2004-09-29 2010-08-04 新日本製鐵株式会社 Raw material evaluation method and blending design method
KR101204525B1 (en) 2008-09-17 2012-11-23 신닛테츠스미킨 카부시키카이샤 Sintered ore manufacturing method
JP4528362B2 (en) * 2008-09-17 2010-08-18 新日本製鐵株式会社 Method for producing sintered ore
CN102159733A (en) * 2008-09-17 2011-08-17 新日本制铁株式会社 Sintered ore manufacturing method
JPWO2010032466A1 (en) * 2008-09-17 2012-02-09 新日本製鐵株式会社 Method for producing sintered ore
WO2010032466A1 (en) * 2008-09-17 2010-03-25 新日本製鐵株式会社 Sintered ore manufacturing method
CN102159733B (en) * 2008-09-17 2013-05-15 新日铁住金株式会社 Sintered ore manufacturing method
JP2010096592A (en) * 2008-10-15 2010-04-30 Nippon Steel Corp Evaluation method of blended iron ore for sintering
JP2012021213A (en) * 2010-07-16 2012-02-02 Nippon Steel Corp Method for manufacturing sintered ore
JP2013092539A (en) * 2013-02-04 2013-05-16 Nippon Steel & Sumitomo Metal Evaluation method for blended iron ore for sintering
CN109752261B (en) * 2017-11-02 2021-05-07 上海梅山钢铁股份有限公司 Method for detecting strength of iron ore powder binding phase in sintering process
CN109752261A (en) * 2017-11-02 2019-05-14 上海梅山钢铁股份有限公司 A method of detection iron ore powder in sintering process binder strength
CN109283096A (en) * 2018-11-05 2019-01-29 首钢集团有限公司 A kind of detection method of Iron Ore Powder index of cementation
CN112694322A (en) * 2021-01-28 2021-04-23 中冶赛迪技术研究中心有限公司 Sintered body, preparation method thereof and characterization method of high-temperature spreading behavior
CN112881454A (en) * 2021-01-28 2021-06-01 中冶赛迪技术研究中心有限公司 Method for preparing sintered body based on pure reagent simulation and measuring high-temperature spreading range
CN112694322B (en) * 2021-01-28 2023-11-10 中冶赛迪技术研究中心有限公司 Sintered body, preparation method thereof and characterization method of high-temperature spreading behavior
CN113435768A (en) * 2021-07-06 2021-09-24 江苏省沙钢钢铁研究院有限公司 Iron ore evaluation method and device, storage medium and electronic equipment
CN113960102A (en) * 2021-09-24 2022-01-21 宣化钢铁集团有限责任公司 Method for measuring assimilation performance of iron ore powder

Also Published As

Publication number Publication date
JP4422307B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
KR101475125B1 (en) Unfired carbon-containing agglomerate for blast furnaces and production method therefor
JP4422307B2 (en) Evaluation method of iron ore powder
AU2014288374A1 (en) Carbon material-containing granulated particles in production of sintered ore, method for producing the same and method for producing sintered ore
AU2005250105B2 (en) Agglomerated stone for using in shaft furnaces, corex furnaces or blast furnaces, method for producing agglomerated stones, and use of fine and superfine iron ore dust
CN102159733B (en) Sintered ore manufacturing method
JP4518895B2 (en) Raw material evaluation method and blending design method
JP4392302B2 (en) Method for producing sintered ore
JP4580114B2 (en) Pseudo particles for sintering
WO2012066899A1 (en) Production method for reduced iron
Umadevi et al. Influence of carbon addition via Corex sludge on pellet quality at JSW steel
AU656060B2 (en) Iron-making sintered ore produced from pisolitic iron ore and production thereof
RU2381279C2 (en) Method of receiving of steel-smelting flux
TANI et al. Interfacial reaction between cast steel and olivine sand or silica sand
WO1996009415A1 (en) Sintered ore manufacturing method using high crystal water iron ore as raw material
JP2007277683A (en) Nonfired agglomerated ore for iron manufacture
JP3394563B2 (en) Method for producing sintered ore with excellent softening and melting properties
JP5703616B2 (en) Method for producing sintered ore
JP3951825B2 (en) Granulation method of sintering raw material
AU655514B2 (en) Process for manufacturing a refractory body
JP5801752B2 (en) Sintered ore
JP4510343B2 (en) Raw material evaluation method and blending design method
JPH0617152A (en) Manufacture of sintered ore for blast furnace using high goethite ore as raw material
JP2007277684A (en) Nonfired agglomerated ore for iron manufacture
JPH10245638A (en) Production of sintered ore
JP3952871B2 (en) Manufacturing method of high-strength sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060919

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4422307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term