JP4518895B2 - Raw material evaluation method and blending design method - Google Patents

Raw material evaluation method and blending design method Download PDF

Info

Publication number
JP4518895B2
JP4518895B2 JP2004284593A JP2004284593A JP4518895B2 JP 4518895 B2 JP4518895 B2 JP 4518895B2 JP 2004284593 A JP2004284593 A JP 2004284593A JP 2004284593 A JP2004284593 A JP 2004284593A JP 4518895 B2 JP4518895 B2 JP 4518895B2
Authority
JP
Japan
Prior art keywords
sintering
iron ore
raw material
characteristic index
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004284593A
Other languages
Japanese (ja)
Other versions
JP2006097083A (en
Inventor
謙一 樋口
正則 中野
潤 岡崎
務 岡田
ドクウォン イ
イングク ソ
ビョンジュン チョン
ソンワン キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Posco Co Ltd
Original Assignee
Nippon Steel Corp
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Posco Co Ltd filed Critical Nippon Steel Corp
Priority to JP2004284593A priority Critical patent/JP4518895B2/en
Publication of JP2006097083A publication Critical patent/JP2006097083A/en
Application granted granted Critical
Publication of JP4518895B2 publication Critical patent/JP4518895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、高炉原料用の焼結鉱の製造に用いる各種銘柄の鉄鉱石(焼結用原料)の特性を評価する評価方法と、該評価結果に基づいて、成品歩留、生産性、および、品質が優れた焼結鉱を製造するための各種銘柄の鉄鉱石(焼結原料)の配合を設計する配合設計方法に関するものである。   The present invention relates to an evaluation method for evaluating the characteristics of various brands of iron ore (sintering raw material) used in the manufacture of sintered ore for blast furnace raw material, and based on the evaluation results, the product yield, productivity, and The present invention relates to a blending design method for designing blending of various brands of iron ore (sintering raw material) for producing sintered ore with excellent quality.

一般に、高炉原料用の焼結鉱は、鉄鉱石粉や篩下粉、副原料(石灰石、蛇紋岩等)、粉コークス、無煙炭、返鉱等を配合し、一次ミキサー、二次ミキサーで混合し、粒径1mm以上の核粒子の周りに粒径1mm未満の微粉が付着(微粉が付着した部分を「付着粉部」という。)した擬似粒子を造粒し、その後、この擬似粒子を焼結機に装入して焼結ベッドを形成し、次いで、焼結ベッド表層の粉コークス等の燃料に点火し、下向きに通風しながら燃焼して焼結原料を焼成することにより、製造されている。   In general, sintered ore for blast furnace raw materials is mixed with iron ore powder, sieving powder, secondary raw materials (limestone, serpentine, etc.), coke breeze, anthracite, ore, etc., and mixed with a primary mixer and a secondary mixer. Pseudo particles in which fine powder having a particle size of less than 1 mm adheres around a core particle having a particle size of 1 mm or more (the portion where the fine powder adheres are referred to as “attached powder portion”) are granulated, and then the pseudo particles are sintered into a sintering machine. To form a sintered bed, and then igniting a fuel such as powdered coke on the surface of the sintered bed, burning it while ventilating downward and firing the sintered raw material.

この焼成過程で、焼結原料は、燃料の燃焼熱により加熱され、その温度は、最高1300℃前後にまで上昇するが、通常1200℃前後で、擬似粒子の付着粉部から生石灰(CaO)と粉鉄鉱石からなる低融点物質などの形成により初期融液が生成し始め、この後、さらに、温度が上昇すると、その初期融液が、周辺の微粉鉱石成分を溶かし込んで融液量を増加させる。   In this firing process, the sintering raw material is heated by the combustion heat of the fuel, and the temperature rises to a maximum of around 1300 ° C., but usually around 1200 ° C., from the adhering powder part of the pseudo particles to the quick lime (CaO) The initial melt begins to form due to the formation of low melting point materials composed of fine iron ore, and then, when the temperature rises further, the initial melt dissolves surrounding fine ore components and increases the amount of melt. Let

その後、融液が核粒子とも反応しながら塊成化が進み、最終的には、残留した未溶融粗粒部同士が結合相で結合された焼結鉱が生成する。   Thereafter, agglomeration proceeds while the melt also reacts with the core particles, and finally, a sintered ore is formed in which the remaining unmelted coarse particles are bonded together by a binder phase.

一般に、焼結鉱の品質、歩留、および、生産性は、焼結原料に配合する鉄鉱石(粉)の性質に大きく左右され、その性質のうちで、特に、融液の生成挙動と擬似粒子の通気性は影響が大きい。例えば、焼結原料に配合する鉄鉱石(粉)が生石灰(石灰石が熱分解して生成したCaO)との反応の結果生じる初期融液が流動性に富む場合は塊成化が進みやすく、焼結鉱の強度や歩留が高くなる。   In general, the quality, yield, and productivity of sintered ore greatly depend on the properties of iron ore (powder) to be blended with the sintering raw material. The air permeability of the particles has a great influence. For example, if the initial melt resulting from the reaction of iron ore (powder) blended with the sintered raw material with quick lime (CaO generated by thermal decomposition of limestone) is rich in fluidity, agglomeration tends to proceed, Increases the strength and yield of the ore.

また、焼結原料中の鉄鉱石の微粉部の割合が少ない場合や、擬似粒子の核粒子(粒径1mm以上の粗粒鉄鉱石)への微粉部(粒径1mm未満の微粉鉄鉱石)の付着量が高いと焼結過程での通気性が高くなり、焼結鉱の生産性が高くなる。それ故、各種銘柄の鉄鉱石(粉)の溶融特性とその擬似粒子の通気特性を評価することが、品質、生産性に優れた焼結鉱を製造する上において特に重要である。   Moreover, when the ratio of the fine part of the iron ore in the sintering raw material is small, or the fine part (fine iron ore with a particle diameter of less than 1 mm) to the core particle of the pseudo particle (coarse iron ore with a particle diameter of 1 mm or more) When the adhesion amount is high, the air permeability in the sintering process is increased, and the productivity of the sintered ore is increased. Therefore, it is particularly important to evaluate the melting characteristics of various types of iron ore (powder) and the aeration characteristics of the pseudo-particles in producing sintered ore excellent in quality and productivity.

これまで、焼結原料に配合する鉄鉱石(粉)の溶融特性を評価する方法が、いくつか提案されている。例えば、擬似粒子中の核鉱石(粒径1mm以上の粗粒鉄鉱石)の溶融挙動を相対的に評価する方法として、粒径3〜5mmの鉄鉱石粒子に粒径10μm以下のCaO粉末(試薬)を付着させた擬似粒子、または、5mm角に切り出した鉄鉱石粒子をCaOタブレットに置いた試料を電気炉で焼成し、鉄鉱石粒子と石灰石の同化反応の態様を評価する方法が、本発明者らにより提案されている(例えば、非特許文献1参照)。   Until now, several methods for evaluating the melting characteristics of iron ore (powder) to be blended in the sintering raw material have been proposed. For example, as a method for relatively evaluating the melting behavior of nuclear ore (coarse iron ore having a particle size of 1 mm or more) in pseudo particles, CaO powder having a particle size of 10 μm or less (reagent) ), Or a sample in which iron ore particles cut into 5 mm squares are placed on a CaO tablet is fired in an electric furnace, and the method for evaluating the assimilation reaction between the iron ore particles and limestone is the present invention. (See, for example, Non-Patent Document 1).

また、本発明者らは、より実際に近い焼結過程での融液生成挙動を模擬するため、擬似粒子中の付着粉(粒径1mm未満の微粉鉄鉱石、CaO粉などの副原料)での融液生成挙動を相対的に評価する方法として、成型した微粉鉄鉱石の上に成型した低融点物質を載せ、大気中または低酸素雰囲気下で1000℃以上に昇温して低融点物質を溶融させ、その溶融した融液を鉄鉱石粉中に浸透せしめ、その融液が浸透した距離、断面積および体積の1種または2種以上を測定することにより、鉄鉱石粉への融液浸透性を評価する方法を提案した(例えば、特許文献1参照)。   Moreover, in order to simulate the melt generation behavior in the sintering process closer to actual conditions, the present inventors use adhering powder in the pseudo particles (sub-materials such as fine iron ore having a particle diameter of less than 1 mm, CaO powder). As a method for relatively evaluating the melt generation behavior of the steel, a low melting point material is placed on the molded fine iron ore, and the temperature is raised to 1000 ° C. or higher in the air or in a low oxygen atmosphere, Melt and infiltrate the molten melt into the iron ore powder, and measure one or more of the distance, cross-sectional area and volume permeated by the melt, thereby increasing the melt permeability into the iron ore powder. A method for evaluation was proposed (see, for example, Patent Document 1).

また、同じ目的での鉄鉱石の評価方法として、2mm以下の粒度の鉄鉱石と石灰石から成るタブレットを高温で焼結した後のタブレットの底面積を融液の流動性指数とする鉱石銘柄評価方法も提案されている(例えば、非特許文献2参照)。   Moreover, as an evaluation method of iron ore for the same purpose, an ore brand evaluation method in which the bottom area of the tablet after sintering a tablet made of iron ore having a particle size of 2 mm or less and limestone at high temperature is used as the fluidity index of the melt. Has also been proposed (see, for example, Non-Patent Document 2).

さらに、各銘柄の鉄鉱石粉に20%CaO粉を配合し、円筒形にプレス成形した試料を焼成した後の体積収縮率を測定し、この体積収縮率を各銘柄の鉄鉱石の焼結反応における溶融性の指数とし、この体積収縮率が所定の範囲、具体的には15〜35%となるように各銘柄鉱石の配合を管理する方法が開示されている(例えば、特許文献2参照)。   Furthermore, 20% CaO powder was blended with each brand iron ore powder, and the volume shrinkage ratio after firing a sample press-molded into a cylindrical shape was measured, and this volume shrinkage ratio was determined in the sintering reaction of each brand iron ore. A method for managing the blending of each brand ore so that the volume shrinkage ratio is within a predetermined range, specifically 15 to 35%, is disclosed (for example, see Patent Document 2).

以上の鉄鉱石の評価方法は、鉄鉱石の核粒子(粒径1mm以上の粗粒鉄鉱石)、あるいは、鉄鉱石の微粉部(粒径1mm未満の微粉鉄鉱石)について、それぞれ単独の溶融特性を評価する方法である。   The above iron ore evaluation method is based on the individual melting characteristics of iron ore core particles (coarse iron ore having a particle size of 1 mm or more) or iron ore fine particles (fine iron ore having a particle size of less than 1 mm). It is a method to evaluate.

しかし、実際の焼結操業において、焼結原料の擬似粒子は、主として粒径1mm以上の粗粒鉄鉱石を核粒子とし、その周囲に粒径1mm未満の微粉鉄鉱石、石灰石粉などの副原料粉、炭材粉からなる微分部が付着した構造であり、焼結過程における鉄鉱石の融液挙動は、核粒子と微粉部とでその融液挙動が異なるとともに、両者の相互作用により全体の融液挙動を大きく影響する。   However, in the actual sintering operation, the pseudo-particles of the sintering raw material mainly consist of coarse iron ore having a particle size of 1 mm or more as a core particle, and auxiliary materials such as fine iron ore and limestone powder having a particle size of less than 1 mm around it. It has a structure in which a differential part consisting of powder and carbonaceous powder is attached, and the melt behavior of iron ore during the sintering process is different between the core particle and the fine powder part, The melt behavior is greatly affected.

例えば、豪州産のハマスレイ、マウントニューマンなどの銘柄の鉄鉱石では、粒径1mm以上の粗粒鉄鉱石と、粒径1mm未満の微粉部分とで擬似粒子における融液挙動が大きく異なるため、従来の粒度を一定とした評価試験のみでは、全体の融液挙動を正しく評価されないといった問題があった。   For example, in the case of iron ore of brands such as Hamasley and Mount Newman produced in Australia, the melt behavior in pseudo particles is greatly different between coarse iron ore having a particle size of 1 mm or more and fine powder portions having a particle size of less than 1 mm. Only an evaluation test with a constant particle size has a problem that the entire melt behavior cannot be evaluated correctly.

また、従来から各銘柄の鉄鉱石について予め焼結試験を行い、焼結鉱の特性の測定結果を基に配合原料を用いた場合の焼結鉱の特性を評価する方法も提案されている。   Conventionally, a method has been proposed in which a sintering test is performed in advance for each brand of iron ore, and the characteristics of the sintered ore when the blended raw material is used based on the measurement result of the characteristics of the sintered ore.

例えば、各銘柄の鉄鉱石の配合量を、基本配合量より増減させる際に、各銘柄の鉄鉱石を、焼結鉱の還元粉化指数(RDI)を悪化させるグループと改善させるグループに分類し、配合指数(B.I.=ΣBjWBj[悪化]/ΣAjWAj[改善])に基づいて、焼結鉱の還元粉化(RDI)を推定する方法が知られている(例えば、特許文献3参照)。 For example, when the amount of iron ore of each brand is increased or decreased from the basic amount, the iron ore of each brand is classified into a group that deteriorates the reduced powder index (RDI) of the sintered ore and a group that improves it. Based on the blending index (B.I. = ΣBjW Bj [Deterioration] / ΣAjW Aj [Improvement]), there is known a method for estimating reduced powdering (RDI) of sintered ore (for example, Patent Document 3). reference).

また、焼結用原料を構成する鉄鉱石毎に予め焼結して得られた焼結鉱の低温還元粉化指数(RDI)を測定し、鉄鉱石毎に予め測定したRDIと焼結原料配合計画に基づく配合比をもとに焼結鉱のRDIを予測し、該予測RDIをもとに焼結鉱のRDIを設定範囲に収めるべく、各鉄鉱石の配合比を修正制御する方法が開示されている(例えば、特許文献4参照)。   Also, the low-temperature reduced powdering index (RDI) of sintered ore obtained by sintering in advance for each iron ore constituting the raw material for sintering is measured, and the RDI and sintered raw material composition measured in advance for each iron ore are measured. Disclosed is a method for predicting the RDI of sintered ore based on the blending ratio based on the plan, and correcting and controlling the blending ratio of each iron ore so that the RDI of the sintered ore is within the set range based on the predicted RDI (For example, see Patent Document 4).

しかし、上記方法のいずれも、各種銘柄の鉄鉱石の配合において、予め各種銘柄の鉄鉱石毎に焼結試験を行った後、その結果基に指数化した還元粉化指数(RDI)のみを用いて評価するものである。このため、還元粉化指数(RDI)以外の冷間強度などの品質、成品歩留、生産性などを精度良く評価し、必ずしも満足できる方法ではない。   However, in any of the above methods, in the blending of various brands of iron ore, after performing a sintering test for each brand of iron ore in advance, only the reduced powder index (RDI) indexed based on the results is used. To evaluate. For this reason, it is not always a satisfactory method for accurately evaluating quality such as cold strength other than the reduced powder index (RDI), product yield, and productivity.

そこで、本発明者らは、上記問題点を改善する評価方法として、各種鉄鉱石のそれぞれを粗粒と細粒に分け、(1)各種粗粒鉄鉱石の特性を核特性指数として指数化し、および/または、(2)各種細粒鉄鉱石の特性を粉特性指数として指数化し、(3)核特性指数および/または粉特性指数に基づいて、焼結用原料の焼結特性を評価するとともに、この評価結果に基づいて、鉄鉱石の選択、配合量・率の調整を行い焼結用原料の配合設計を行う方法を提案した(例えば、特許文献4参照)。   Therefore, as an evaluation method for improving the above problems, the present inventors divided each type of iron ore into coarse and fine particles, and (1) indexed the characteristics of various types of coarse ore as nuclear characteristic indices, And / or (2) indexing the characteristics of various fine iron ores as a powder characteristic index, and (3) evaluating the sintering characteristics of the raw material for sintering based on the nuclear characteristic index and / or the powder characteristic index. Based on the evaluation results, a method for selecting the iron ore and adjusting the blending amount and rate and designing the blending of the raw materials for sintering was proposed (see, for example, Patent Document 4).

この方法は、各種銘柄の鉄鉱石の核粒子および微分粒子のそれぞれの特性を基に、焼結過程における融液挙動の観点から指数化し、焼結過程を経て得られる焼結鉱の特性および歩留を予測するものである。   This method is based on the characteristics of the core particles and differential particles of various brands of iron ore, indexed from the viewpoint of the melt behavior in the sintering process, and the characteristics and steps of the sintered ore obtained through the sintering process. Is to predict the retention.

これにより、鉄鉱石(粉)を擬似粒子とした時に、焼結過程でそれぞれ融液挙動が異なる、核粒子の特性および微粉部の特性、さらに両者の相互作用による特性を適確に評価し、この評価結果に基づき、従来に比べてより実操業に近い条件での焼結鉱の品質、歩留を推定し、各種銘柄の鉄鉱石(粉)の配合・設計をすることが可能となった。   As a result, when iron ore (powder) is made into pseudo particles, the melt behavior is different in each sintering process, the characteristics of the core particles and the characteristics of the fine powder part, and further the characteristics due to the interaction between the two, Based on this evaluation result, it became possible to estimate the quality and yield of sintered ore under conditions closer to actual operation than before, and to mix and design various brands of iron ore (powder). .

しかし、この方法では、焼結過程において焼結原料の通気性が著しく劣る場合に生じる、不均一焼成(むら焼け)が焼結鉱の強度、歩留および生産性に与える影響を考慮していないため、鉄鉱石の種類により通気性が変動する場合に適正な評価ができず、生産性に優れた配合設計に活用することができなかった。   However, this method does not take into account the effects of non-uniform firing (uneven burning) on the strength, yield, and productivity of sintered ore, which occurs when the air permeability of the sintering raw material is extremely poor during the sintering process. For this reason, when the air permeability varies depending on the type of iron ore, proper evaluation cannot be performed, and it has not been possible to use it for a compounding design with excellent productivity.

特開2002−62290号公報JP 2002-62290 A 特開昭59−153845号公報JP 59-153845 A 特開昭61−119626号公報Japanese Patent Laid-Open No. 61-119626 特開平1−176041号公報Japanese Unexamined Patent Publication No. 1-176041 特開2003−82417号公報JP 2003-82417 A 鉄と鋼、78(1992)、p.1013Iron and Steel, 78 (1992), p. 1013 鉄と鋼、77(1990)、p.56Iron and Steel, 77 (1990), p. 56

本発明は、従来技術の現状に鑑み、1種または2種以上の鉄鉱石(粉)を含む焼結用原料を造粒し、焼結する際における焼結用原料の焼結生産性を適確に評価できる評価方法を提供することを目的とする。   In view of the current state of the art, the present invention is suitable for sintering productivity of a sintering raw material when granulating and sintering a sintering raw material containing one or more types of iron ore (powder). It aims at providing the evaluation method which can be evaluated accurately.

また、本発明は、上記焼結生産性の評価結果に基づいて、焼結用原料に配合する1種または2種以上の鉄鉱石(粉)の配合量や配合率を適切に調整し、焼結生産性の優れた焼結用原料を設計する配合設計方法を提供することを目的とする。   In addition, the present invention appropriately adjusts the blending amount and blending ratio of one or more iron ores (powder) to be blended with the sintering raw material based on the above-described sintering productivity evaluation results, An object of the present invention is to provide a blending design method for designing a raw material for sintering having excellent sintering productivity.

本発明者らは、焼結操業の重要な因子のひとつである、焼結生産性を適正に評価するための方法について、さらに検討を重ねた。その結果、上記の鉄鉱石の核特性指数と粉特性指数に加えて、擬似粒子の通気性指数を用いることで、精度良く焼結生産性が評価できることを見出した。   The present inventors have further studied a method for appropriately evaluating the sintering productivity, which is one of the important factors in the sintering operation. As a result, it was found that the sintering productivity can be evaluated with high accuracy by using the permeability index of pseudo particles in addition to the above-mentioned nuclear or powder characteristic index and iron powder index.

擬似粒子の通気性指数は、焼結過程における焼結層の進行速度を決定する因子であり、検討の結果、粗粒鉄鉱石を核粒子とし所定の質量比の細粒鉄鉱石を所定の水分にて付着させて造粒した擬似粒子の通気性の測定値、あるいは、擬似粒子を構成する鉄鉱石の平均粒度を指数化することにより、焼結生産性が精度良く評価できることを見出した。   The air permeability index of the pseudo-particle is a factor that determines the progress speed of the sintered layer in the sintering process, and as a result of the examination, fine iron ore with a predetermined mass ratio is used as a core particle with coarse iron ore as a predetermined moisture content. It has been found that the productivity of sintering can be evaluated with high accuracy by indexing the measured value of the air permeability of the pseudo particles adhered and granulated or the average particle size of the iron ore constituting the pseudo particles.

つまり、本発明者は、焼結原料の焼結生産性評価方法の鋭意検討の結果、次の知見を得るに至った。   That is, the present inventor has obtained the following knowledge as a result of intensive studies on a method for evaluating the sintering productivity of a sintering raw material.

(a)2種以上の鉄鉱石(粉)を配合して焼結した焼結鉱の生産性は、擬似粒子の核粒子と融液との反応状態を模擬的に代表する特性値に基づく指数A(核特性指数)、付着粉層内での融液生成および反応状態を模擬的に代表する特性値に基づく指数B(粉特性指数)、および、配合原料中の結晶水割合、および、焼結層内通気性状態を模擬的に代表する擬似粒子の通気特性に基づく指数C(通気特性指数)を用いて定義した下記式(1)または(2)の焼結生産性指数SPIと良い相関性をもつ。   (A) The productivity of sintered ore obtained by mixing and sintering two or more types of iron ore (powder) is an index based on a characteristic value that typifies the reaction state between the core particle of the pseudo particle and the melt. A (nuclear characteristic index), index B (powder characteristic index) based on characteristic values representative of simulated melt formation and reaction state in the adhered powder layer, ratio of crystal water in the blended raw material, and firing A good correlation with the sintering productivity index SPI of the following formula (1) or (2) defined by using an index C (aeration characteristic index) based on the aeration characteristics of pseudo particles representative of the air permeability state in the layered layer. Have sex.

SPI=k×A×B×(1−D/100)×C …(1)
SPI=A×B×(1−D/100)±nC …(2)
A:核特性指数、
B:粉特性指数
D:配合原料の結晶水割合(%)
C:通気特性指数
x:核特性の寄与率で、0≦x≦1(ただし、y=0のときx≠0)
y:粉特性の寄与率で、0≦y≦1(ただし、x=0のときy≠0)
z、w:通気特性の寄与率で、0<z≦1, 0<w≦1
n:通気性の寄与係数で、0<n≦15
k:係数
SPI = k × A x × B y × (1-D / 100) × C z ... (1)
SPI = A x × B y × (1-D / 100) ± nC w (2)
A: Nuclear characteristic index,
B: Powder characteristic index D: Crystal water ratio of blended raw material (%)
C: aeration characteristic index x: contribution ratio of nuclear characteristics, 0 ≦ x ≦ 1 (provided that x ≠ 0 when y = 0)
y: contribution ratio of powder characteristics, 0 ≦ y ≦ 1 (y ≠ 0 when x = 0)
z, w: contribution ratio of air permeability, 0 <z ≦ 1, 0 <w ≦ 1
n: contribution coefficient of air permeability, 0 <n ≦ 15
k: coefficient

なお、当然のことながら、指数A、指数B、および、指数Cを、それぞれ単独で管理することも可能である。   As a matter of course, the index A, the index B, and the index C can be managed independently.

本発明は、上記知見に基づいてなされたものであり、その要旨は、以下のとおりである。   This invention is made | formed based on the said knowledge, The summary is as follows.

(1) 各種鉄鉱石の1種または2種以上を所定の配合率で含む焼結用原料の特性を評価する評価方法において、各種鉄鉱石のそれぞれを粗粒と細粒に分け、
(1)各種粗粒鉄鉱石に石灰石粉を付着させて造粒した擬似粒子の焼成体における気孔率を核特性指数として指数化し、および/または、
(2)成型した各種細粒鉄鉱石の上に成型した低融点物質を置いて焼成した時、低融点物質の融液が上記細粒鉄鉱石の内部に浸透する距離、断面積および体積の1または2以上を測定して確認する融液浸透性を粉特性指数として指数化し、さらに、
(3)配合原料中の結晶水割合を鉱石配合割合から算出し、
(4)粗粒鉄鉱石を核粒子とし所定の質量比の細粒鉄鉱石を所定の水分にて付着させて造粒した擬似粒子の通気性を通気特性指数として指数化し、
(5)核特性指数および/または粉特性指数、さらに、配合原料中の結晶水割合と通気特性指数に基づいて、上記焼結用原料の焼結生産性を評価する
ことを特徴とする焼結用原料の評価方法。
(1) In an evaluation method for evaluating characteristics of a raw material for sintering containing one or more of various iron ores at a predetermined blending ratio, each of the various iron ores is divided into coarse particles and fine particles,
(1) Indexing the porosity in the fired body of pseudo particles granulated by attaching limestone powder to various coarse iron ores as a nuclear characteristic index, and / or
(2) When the molded low-melting-point material is placed on various types of fine-grained iron ore and fired, the distance, cross-sectional area, and volume of the low-melting-point material melt penetrate into the fine-grained iron ore. Alternatively, melt permeability that is confirmed by measuring two or more is indexed as a powder characteristic index,
(3) Calculate the ratio of water of crystallization in the blended raw material from the blend ratio of ore,
(4) Sotsubutetsu ore was indexed the passing temper by attaching fine iron ore having a predetermined mass ratio to the core particles at a predetermined moisture granulated pseudo particles as breathable quality index,
(5) Sintering characterized in that the sintering productivity of the raw material for sintering is evaluated based on the nuclear characteristic index and / or the powder characteristic index, and further the ratio of water of crystallization in the blended raw material and the aeration characteristic index For evaluating raw materials.

(2) 前記粗粒鉄鉱石が粒径1mm以上の鉄鉱石であり、前記細粒鉄鉱石が粒径1mm未満の鉄鉱石であることを特徴とする上記(1)に記載の焼結用原料の評価方法。   (2) The raw material for sintering according to (1) above, wherein the coarse iron ore is an iron ore having a particle size of 1 mm or more, and the fine iron ore is an iron ore having a particle size of less than 1 mm. Evaluation method.

) 前記粗粒鉄鉱石の特性が、粗粒鉄鉱石に石灰石粉、微粉鉄鉱石およびコークス粉からなる混合粉を付着させて造粒した擬似粒子の焼成体における気孔率であることを特徴とする上記(1)または(2)に記載の焼結用原料の評価方法。 ( 3 ) The characteristic of the coarse iron ore is a porosity in a fired body of pseudo particles granulated by attaching a mixed powder composed of limestone powder, fine iron ore and coke powder to the coarse iron ore. The method for evaluating a raw material for sintering according to (1) or (2) above.

) 前記細粒鉄鉱石の特性が、円柱状に成型した微粉鉄鉱石と石灰石粉からなる混合粉を焼成した後、底面積を測定して確認する融液流動性であることを特徴とする上記(1)〜(3)のいずれかに記載の焼結用原料の評価方法。 ( 4 ) The characteristic of the fine-grained iron ore is a melt fluidity that is confirmed by measuring the bottom area after firing a mixed powder made of fine iron ore and limestone powder formed into a cylindrical shape. The evaluation method of the raw material for sintering as described in any of (1) to (3) above.

) 前記鉄鉱石の通気性が、前記擬似粒子中の鉄鉱石の平均粒度であることを特徴とする上記(1)〜(4)のいずれかに記載の焼結用原料の評価方法。 (5) passing temper the iron ore, the evaluation method of the sintering raw material according to any one of the above is characterized in that the average particle size of iron ore in the pseudo particles (1) to (4).

) 前記核特性指数および/または粉特性指数、さらに、結晶水割合と通気特性指数に基づいて、下記式(1)で定義する焼結生産性指数SPIを算出し、該焼結生産性指数SPIに基づいて、前記焼結用原料の焼結生産性を評価することを特徴とする上記(1)〜()のいずれかに記載の焼結用原料の評価方法。 ( 6 ) A sintering productivity index SPI defined by the following formula (1) is calculated based on the nuclear characteristic index and / or the powder characteristic index, and further, the ratio of crystal water and the aeration characteristic index, and the sintering productivity is calculated. The method for evaluating a sintering material according to any one of (1) to ( 5 ), wherein the sintering productivity of the material for sintering is evaluated based on an index SPI.

SPI=k×A×B×(1−D/100)×C …(1)
A:核特性指数
B:粉特性指数
D:配合原料の結晶水割合(%)
C:通気特性指数
x:核特性の寄与率で、0≦x≦1(ただし、y=0のときx≠0)
y:粉特性の寄与率で、0≦y≦1(ただし、x=0のときy≠0)
z:通気特性の寄与率で、0<z≦1
k:係数
SPI = k × A x × B y × (1-D / 100) × C z ... (1)
A: Nuclear characteristic index B: Powder characteristic index D: Ratio of crystallization water in blended raw material (%)
C: aeration characteristic index x: contribution ratio of nuclear characteristics, 0 ≦ x ≦ 1 (provided that x ≠ 0 when y = 0)
y: contribution ratio of powder characteristics, 0 ≦ y ≦ 1 (y ≠ 0 when x = 0)
z: contribution rate of air permeability, 0 <z ≦ 1
k: coefficient

) 前記核特性指数および/または粉特性指数、さらに、結晶水割合と通気特性指数に基づいて、下記式(2)で定義する焼結生産性指数SPIを算出し、該焼結特性指数SPIに基づいて、前記焼結用原料の焼結生産性を評価することを特徴とする上記(1)〜()のいずれかに記載の焼結用原料の評価方法。 ( 7 ) Based on the nuclear characteristic index and / or the powder characteristic index, further, based on the crystal water ratio and the aeration characteristic index, a sintering productivity index SPI defined by the following formula (2) is calculated, and the sintering characteristic index The method for evaluating a sintering material according to any one of (1) to ( 5 ), wherein the sintering productivity of the material for sintering is evaluated based on SPI.

SPI=A×B×(1−D/100)±nC …(2)
A:核特性指数
B:粉特性指数
D:配合原料の結晶水割合(%)
C:通気特性指数
x:核特性の寄与率で、0≦x≦1(ただし、y=0のときx≠0)
y:粉特性の寄与率で、0≦y≦1(ただし、x=0のときy≠0)
n:通気特性の寄与係数で、0<n≦15
w:通気特性の寄与率で、0<≦1
SPI = A x × B y × (1-D / 100) ± nC w (2)
A: Nuclear characteristic index B: Powder characteristic index D: Ratio of crystallization water in blended raw material (%)
C: aeration characteristic index x: contribution ratio of nuclear characteristics, 0 ≦ x ≦ 1 (provided that x ≠ 0 when y = 0)
y: contribution ratio of powder characteristics, 0 ≦ y ≦ 1 (y ≠ 0 when x = 0)
n: contribution coefficient of ventilation characteristics, 0 <n ≦ 15
w: contribution rate of air permeability, 0 < w ≦ 1

) 前記核特性指数Aが、下記式(1a)で定義されるものであることを特徴とする上記()または()に記載の焼結用原料の評価方法。 ( 8 ) The method for evaluating a raw material for sintering as described in ( 6 ) or ( 7 ) above, wherein the nuclear characteristic index A is defined by the following formula (1a).

A=Σ(a×p)/Σ(p) …(1a)
:鉄鉱石iの核特性指数
:粒径1mm以上の鉄鉱石iの配合率(%)
A = Σ (a i × p i ) / Σ (p i ) (1a)
a i : Nuclear characteristic index of iron ore i
p i : Mixing ratio of iron ore i having a particle diameter of 1 mm or more (%)

) 前記粉特性指数Bが、下記式(1b)で定義されるものであることを特徴とする上記(6)〜(8)のいずれかに記載の焼結用原料の評価方法。 ( 9 ) The method for evaluating a raw material for sintering according to any one of ( 6) to (8), wherein the powder characteristic index B is defined by the following formula (1b).

B=Σ(b×q)/Σ(q) …(1b)
:鉄鉱石iの粉特性指数
:粒径1mm未満の鉄鉱石iの配合率(%)
B = Σ (b i × q i ) / Σ (q i ) (1b)
b i : Powder characteristic index of iron ore i
q i : Mixing ratio (%) of iron ore i having a particle diameter of less than 1 mm

10) 前記通気特性指数Cが、下記式(1c)で定義されるものであることを特徴とする上記(6)〜(8)のいずれかに記載の焼結用原料の評価方法。 ( 10 ) The method for evaluating a raw material for sintering according to any one of ( 6) to (8), wherein the air permeability characteristic index C is defined by the following formula (1c).

C=Σ(c×r)/Σ(r) …(1c)
:鉄鉱石iの通気特性指数
:鉄鉱石iの配合率(%)
C = Σ (c i × r i ) / Σ (r i ) (1c)
c i : Aeration characteristic index of iron ore i
r i : Mixing ratio of iron ore i (%)

11) 各種鉄鉱石の1種または2種以上を所定の配合率で含む焼結用原料を設計する配合設計方法において、各種鉄鉱石のそれぞれを粗粒と細粒に分け、
(1)各種粗粒鉄鉱石に石灰石粉を付着させて造粒した擬似粒子の焼成体における気孔率を核特性指数として指数化し、および/または、
(2)成型した各種細粒鉄鉱石の上に成型した低融点物質を置いて焼成した時、低融点物質の融液が上記細粒鉄鉱石の内部に浸透する距離、断面積および体積の1または2以上を測定して確認する融液浸透性を粉特性指数として指数化し、さらに、
(3)配合原料中の結晶水割合を鉱石配合割合から算出し、
(4)粗粒鉄鉱石を核粒子とし所定の質量比の細粒鉄鉱石を所定の水分にて付着させて造粒した擬似粒子の通気性を通気特性指数として指数化し、
(5)核特性指数および/または粉特性指数、さらに、配合原料中の結晶水割合と通気特性指数に基づいて、下記式(1)で定義する焼結生産性指数SPIを算出し、
(6)上記焼結生産性指数SPIに基づいて、上記焼結用原料の焼結生産性を評価し、
(7)評価結果に基づいて、上記焼結用原料に配合する鉄鉱石の配合率を調整する
ことを特徴とする焼結用原料の配合設計方法。
( 11 ) In the blending design method for designing a raw material for sintering containing one or more of various iron ores at a predetermined blending ratio, each of the various iron ores is divided into coarse and fine grains,
(1) Indexing the porosity in the fired body of pseudo particles granulated by attaching limestone powder to various coarse iron ores as a nuclear characteristic index, and / or
(2) When the molded low-melting-point material is placed on various types of fine-grained iron ore and fired, the distance, cross-sectional area, and volume of the low-melting-point material melt penetrate into the fine-grained iron ore. Alternatively, melt permeability that is confirmed by measuring two or more is indexed as a powder characteristic index,
(3) Calculate the ratio of water of crystallization in the blended raw material from the blend ratio of ore,
(4) Sotsubutetsu ore was indexed the passing temper by attaching fine iron ore having a predetermined mass ratio to the core particles at a predetermined moisture granulated pseudo particles as breathable quality index,
(5) Calculate the sintering productivity index SPI defined by the following formula (1) based on the nuclear characteristic index and / or the powder characteristic index, and further, the ratio of water of crystallization in the blended raw material and the aeration characteristic index,
(6) Based on the sintering productivity index SPI, the sintering productivity of the sintering raw material is evaluated,
(7) A method for blending and designing a raw material for sintering, wherein the blending ratio of iron ore to be blended with the raw material for sintering is adjusted based on the evaluation result.

SPI=k×A×B×(1−D/100)×C …(1)
A:核特性指
B:粉特性指数
D:配合原料の結晶水割合(%)
C:通気特性指数
x:核特性の寄与率で、0≦x≦1(ただし、y=0のときx≠0)
y:粉特性の寄与率で、0≦y≦1(ただし、x=0のときy≠0)
z:通気特性の寄与率で、0<z≦1
k:係数
SPI = k × A x × B y × (1-D / 100) × C z ... (1)
A: the number of nuclear properties finger
B: Powder characteristic index D: Crystal water ratio of blended raw material (%)
C: aeration characteristic index x: contribution ratio of nuclear characteristics, 0 ≦ x ≦ 1 (provided that x ≠ 0 when y = 0)
y: contribution ratio of powder characteristics, 0 ≦ y ≦ 1 (y ≠ 0 when x = 0)
z: contribution rate of air permeability, 0 <z ≦ 1
k: coefficient

12) 各種鉄鉱石の1種または2種以上を所定の配合率で含む焼結用原料を設計する配合設計方法において、各種鉄鉱石のそれぞれを粗粒と細粒に分け、
(1)各種粗粒鉄鉱石に石灰石粉を付着させて造粒した擬似粒子の焼成体における気孔率を核特性指数として指数化し、および/または、
(2)成型した各種細粒鉄鉱石の上に成型した低融点物質を置いて焼成した時、低融点物質の融液が上記細粒鉄鉱石の内部に浸透する距離、断面積および体積の1または2以上を測定して確認する融液浸透性を粉特性指数として指数化し、さらに、
(3)配合原料中の結晶水割合を鉱石配合割合から算出し、
(4)粗粒鉄鉱石を核粒子とし所定の質量比の細粒鉄鉱石を所定の水分にて付着させて造粒した擬似粒子の通気性を通気特性指数として指数化し、
(5)核特性指数および/または粉特性指数、さらに、配合原料中の結晶水割合と通気特性指数に基づいて、下記式(2)で定義する焼結生産性指数SPIを算出し、
(6)上記焼結生産性指数SPIに基づいて、上記焼結用原料の焼結生産性を評価し、
(7)評価結果に基づいて、上記焼結用原料に配合する鉄鉱石の配合率を調整する
ことを特徴とする焼結用原料の配合設計方法。
( 12 ) In a blending design method for designing a raw material for sintering containing one or more of various iron ores at a predetermined blending ratio, each of the various iron ores is divided into coarse and fine grains,
(1) Indexing the porosity in the fired body of pseudo particles granulated by attaching limestone powder to various coarse iron ores as a nuclear characteristic index, and / or
(2) When the molded low-melting-point material is placed on various types of fine-grained iron ore and fired, the distance, cross-sectional area, and volume of the low-melting-point material melt penetrate into the fine-grained iron ore. Alternatively, melt permeability that is confirmed by measuring two or more is indexed as a powder characteristic index,
(3) Calculate the ratio of water of crystallization in the blended raw material from the blend ratio of ore,
(4) Sotsubutetsu ore was indexed the passing temper by attaching fine iron ore having a predetermined mass ratio to the core particles at a predetermined moisture granulated pseudo particles as breathable quality index,
(5) Based on the nuclear characteristic index and / or the powder characteristic index, and further, based on the ratio of water of crystallization in the blended raw material and the aeration characteristic index, a sintering productivity index SPI defined by the following formula (2) is calculated,
(6) Based on the sintering productivity index SPI, the sintering productivity of the sintering raw material is evaluated,
(7) A method for blending and designing a raw material for sintering, wherein the blending ratio of iron ore to be blended with the raw material for sintering is adjusted based on the evaluation result.

SPI=A×B×(1−D/100)±nC …(2)
A:核特性指数
B:粉特性指数
D:配合原料の結晶水割合(%)
C:通気特性指数
x:核特性の寄与率で、0≦x≦1(ただし、y=0のときx≠0)
y:粉特性の寄与率で、0≦y≦1(ただし、x=0のときy≠0)
n:通気特性の寄与係数で、0<n≦15
w:通気特性の寄与率で、0<≦1
SPI = A x × B y × (1-D / 100) ± nC w (2)
A: Nuclear characteristic index B: Powder characteristic index D: Ratio of crystallization water in blended raw material (%)
C: aeration characteristic index x: contribution ratio of nuclear characteristics, 0 ≦ x ≦ 1 (provided that x ≠ 0 when y = 0)
y: contribution ratio of powder characteristics, 0 ≦ y ≦ 1 (y ≠ 0 when x = 0)
n: contribution coefficient of ventilation characteristics, 0 <n ≦ 15
w: contribution rate of air permeability, 0 < w ≦ 1

13) 前記(5)の焼結生産性指数S P I の算出、前記(6)の焼結生産性の評価、および、前記(7)の配合率の調整を、焼結生産性指数が所定の値に達するまで繰り返し行うことを特徴とする上記(11)または(12)に記載の焼結用原料の配合設計方法。 ( 13 ) The calculation of the sintering productivity index SPI of the above (5), the evaluation of the sintering productivity of the above (6), and the adjustment of the blending ratio of the above (7), The method for blending and designing a raw material for sintering according to the above ( 11 ) or ( 12 ), wherein the method is repeated until a predetermined value is reached.

14) 前記粗粒鉄鉱石が粒径1mm以上の鉄鉱石であり、前記細粒鉄鉱石が粒径1mm未満の鉄鉱石であることを特徴とする上記(11)〜(13)のいずれかに記載の焼結用原料の配合設計方法。 ( 14 ) Any one of the above ( 11 ) to ( 13 ), wherein the coarse iron ore is an iron ore having a particle size of 1 mm or more, and the fine iron ore is an iron ore having a particle size of less than 1 mm. A method for blending and designing raw materials for sintering as described in 1.

15) 前記粗粒鉄鉱石の特性が、粗粒鉄鉱石に石灰石粉、微粉鉄鉱石およびコークス粉からなる混合粉を付着させて造粒した擬似粒子の焼成体における気孔率であることを特徴とする上記(11)〜(14)のいずれかに記載の焼結用原料の評価方法。 ( 15 ) The characteristic of the coarse iron ore is a porosity in a fired body of pseudo particles granulated by attaching a mixed powder composed of limestone powder, fine iron ore and coke powder to the coarse iron ore. The method for evaluating a raw material for sintering according to any one of ( 11 ) to ( 14 ) above.

16) 前記細粒鉄鉱石の特性が、円柱状に成型した微粉鉄鉱石と石灰石粉からなる混合粉を焼成した後、底面積を測定して確認する融液流動性であることを特徴とする上記(11)〜(15)のいずれかに記載の焼結用原料の配合設計方法。 ( 16 ) The characteristic of the fine-grained iron ore is a melt fluidity that is confirmed by measuring a bottom area after firing a mixed powder composed of fine iron ore and limestone powder formed into a cylindrical shape. The method for blending and designing raw materials for sintering according to any one of ( 11 ) to ( 15 ) above.

17) 前記鉄鉱石の通気性が、前記擬似粒子中の鉄鉱石の平均粒度であることを特徴とする上記(11)〜(16)のいずれかに記載の焼結用原料の配合設計方法。 (17) passing temper the iron ore, mix design method of sintering raw material according to any one of the above, wherein said the average particle size of iron ore in the pseudo particles (11) - (16) .

18) 前記核特性指数A が、下記式(1a)で定義されるものであることを特徴とする上記(11)〜(17)のいずれかに記載の焼結用原料の配合設計方法。 ( 18 ) The method for blending and designing a raw material for sintering according to any one of the above ( 11) to (17), wherein the nuclear property index A is defined by the following formula (1a).

A=Σ(a×p)/Σ(p) …(1a)
:鉄鉱石iの核特性指数
:粒径1mm以上の鉄鉱石iの配合率(%)
A = Σ (a i × p i ) / Σ (p i ) (1a)
a i : Nuclear characteristic index of iron ore i
p i : Mixing ratio of iron ore i having a particle diameter of 1 mm or more (%)

19) 前記粉特性指数Bが、下記式(1b)で定義されるものであることを特徴とする上記(11)〜(18)のいずれかに記載の焼結用原料の配合設計方法。 ( 19 ) The method for blending and designing a raw material for sintering according to any one of the above ( 11) to (18), wherein the powder characteristic index B is defined by the following formula (1b).

B=Σ(b×q)/Σ(q) …(1b)
:鉄鉱石iの粉特性指数
:粒径1mm未満の鉄鉱石iの配合率(%)
B = Σ (b i × q i ) / Σ (q i ) (1b)
b i : Powder characteristic index of iron ore i
q i : Mixing ratio (%) of iron ore i having a particle diameter of less than 1 mm

20) 前記通気性特指数Cが、下記式(1c)で定義されるものであることを特徴とする上記(11)〜(19)のいずれかに記載の焼結用原料の配合設計方法。 ( 20 ) The blending design method for a raw material for sintering according to any one of ( 11) to (19), wherein the air permeability characteristic index C is defined by the following formula (1c): .

C=Σ(c×r)/Σ(r) …(1c)
:鉄鉱石iの通気特性指数
:鉄鉱石iの配合率(%)
C = Σ (c i × r i ) / Σ (r i ) (1c)
c i : Aeration characteristic index of iron ore i
r i : Mixing ratio of iron ore i (%)

21) 前記焼結用原料中の粒径0.25mm以下の割合が25%以下であることを特徴とする上記(11)〜(20)のいずれかに記載の焼結用原料の配合設計方法。 ( 21 ) The composition of the sintering raw material according to any one of the above ( 11) to (20), wherein a ratio of a particle size of 0.25 mm or less in the sintering raw material is 25% or less. Method.

本発明によれば、1種または2種以上の鉄鉱石を含む焼結用原料の焼結特性を、原料配合段階で適正に評価できるので、より焼結特性の良好な焼結用原料を設計することができる。   According to the present invention, it is possible to appropriately evaluate the sintering characteristics of a sintering raw material containing one or more types of iron ore at the raw material blending stage, so that a sintering raw material with better sintering characteristics is designed. can do.

また、本発明によれば、安価な鉄鉱石や、これまで用いられていなかった鉄鉱石を焼結用原料として用いたり、または、配合変更を頻繁に行っても、品質および成品歩留の良好な焼結鉱を安定して製造することができるので、高炉操業を安定化し、生産性の向上や、燃料比の低下に寄与する。   In addition, according to the present invention, even if cheap iron ore or iron ore that has not been used so far is used as a raw material for sintering, or frequent blending changes are made, the quality and product yield are good. Since stable sinter can be produced stably, blast furnace operation is stabilized, which contributes to improvement in productivity and reduction in fuel ratio.

以下、本発明について詳細に説明する。図1に、焼結用原料を造粒した擬似粒子の構造を示す。   Hereinafter, the present invention will be described in detail. FIG. 1 shows the structure of pseudo particles obtained by granulating a raw material for sintering.

擬似粒子は、通常、粒径が1mm以上の粗粒鉄鉱石(核粒子)1の周囲に、細粒鉄鉱石(通常、粒径が1mm未満)2、石灰石粉3、および、コークス粉4が付着した(付着粉部)ものであるが、焼結過程において、コークスの燃焼熱により、先ず、低融点のカルシウムフェライト系の融液(以下「融液」という。)が生成し、この融液が付着粉部に侵入して付着粉の構成粒子を溶融または粒子同士を結合させ、また、核粒子の内部にも侵入し、核粒子の内部状態を変化させる。   The pseudo particles are usually composed of coarse iron ore (core particles) 1 having a particle size of 1 mm or more, fine iron ore (usually having a particle size of less than 1 mm) 2, limestone powder 3 and coke powder 4 In the sintering process, first, a low melting point calcium ferrite-based melt (hereinafter referred to as “melt”) is generated in the sintering process. Enters the adhering powder part, melts the constituent particles of the adhering powder, or bonds the particles together, and also enters the inside of the core particle to change the internal state of the core particle.

図2に、焼結反応で擬似粒子が結合した焼結鉱の構造を示す。図2に示すように、焼結鉱は、基本的には、核粒子を主体とする元鉱部5、および、融液が侵入し同化反応が進行した核粒子表層部と付着粉部同士が融合し空隙7や気孔10を内包する融合部を含む基質部6からなり、基質部の性状、さらには、元鉱部の性状が、焼結鉱の品質(強度等)および成品歩留に大きく影響する。   FIG. 2 shows the structure of a sintered ore in which pseudo particles are bonded by a sintering reaction. As shown in FIG. 2, the sintered ore is basically composed of the original ore portion 5 mainly composed of core particles, and the core particle surface layer portion and the adhering powder portion where the melt has entered and the assimilation reaction has proceeded. It is composed of a substrate portion 6 including a fusion portion that fuses and encloses voids 7 and pores 10, and the properties of the substrate portion, and further the properties of the original ore portion, greatly affect the quality (strength, etc.) and product yield of the sintered ore. Affect.

それ故、上記基質部の性状、さらには、元鉱部の性状を何らかの指標で評価することができれば、鉄鉱石を選択し配合する際の指針となり、焼結鉱の品質、成品歩留を所要の値に制御できる。   Therefore, if the properties of the above-mentioned substrate part, and further, the properties of the original ore part can be evaluated by some kind of index, it will be a guideline for selecting and blending iron ore, and the quality of the sintered ore and the product yield are required. The value can be controlled.

そこで、本発明者は、特許文献1で「鉄鉱石粉の評価方法」を提案した。この方法は、鉄鉱石粉への融液浸透性を評価するもので、この融液浸透性は、焼結鉱の品質(強度等)および歩留に大きく影響する付着粉部同士の融合の程度・態様を表す指標となるものである。   In view of this, the present inventor has proposed “Evaluation Method of Iron Ore Powder” in Patent Document 1. This method evaluates the melt permeability to iron ore powder. This melt permeability is the degree of fusion between adhering powder parts that greatly affects the quality (strength, etc.) and yield of sintered ore. This is an index representing an aspect.

また、非特許文献2に開示されている、微粉鉄鉱石と石灰石粉から成る混合粉を円柱状に成形したタブレットを高温で焼結した後、タブレットの底面積を測定して融液流動性を評価する方法を用いて評価しても、同様に、付着粉部分の融液生成挙動を正確に表すことができ、焼結鉱の品質(強度等)および歩留に大きく影響する付着粉部同士の融合の程度・態様を表す指標となる。   Moreover, after sintering the tablet which shape | molded the mixed powder which consists of a fine iron ore and limestone powder currently disclosed by the nonpatent literature 2 at high temperature, the bottom area of a tablet is measured and melt fluidity | liquidity is measured. Even if the evaluation method is used for evaluation, similarly, the melt generation behavior of the adhered powder part can be accurately expressed, and the adhered powder parts greatly affecting the quality (strength, etc.) and yield of the sintered ore. It is an index that represents the degree and mode of fusion.

そこで、本発明においては、上記いずれかの方法で測定した微粉鉱石の銘柄特性を粉特性指数として指数化し、この指数を、焼結用原料の焼結特性を評価し、調整するための“指標”とすることを特徴とする。   Therefore, in the present invention, the brand characteristics of fine ore measured by any of the above methods are indexed as a powder characteristic index, and this index is an “index for evaluating and adjusting the sintering characteristics of the raw material for sintering. ".

また、本発明においては、微粉鉱石の銘柄特性を指数化することに加え、融液が侵入し同化反応が進行した核粒子表層部の性状を表す特性値を、核特性指数として指数化することを特徴とする。   In addition, in the present invention, in addition to indexing the brand characteristics of fine ore, the characteristic values representing the properties of the surface layer portion of the core particle in which the melt has invaded and the assimilation reaction has progressed are indexed as the nuclear characteristic index. It is characterized by.

さらに、本発明においては、上記2つの指数化に加え、配合原料中の結晶水割合、さらに、擬似粒子の構造や粒度分布に起因して焼結過程における焼結層の通気性が著しく劣った場合に、不均一焼成によって焼結鉱の強度や歩留が低下する現象を考慮し、粗粒鉄鉱石を核粒子とし細粒鉄鉱石を付着させて造粒した擬似粒子の通気特性を通気特性指数として指数化することを特徴とする。   Furthermore, in the present invention, in addition to the above two indexing, the air permeability of the sintered layer in the sintering process is remarkably inferior due to the ratio of water of crystallization in the blended raw material, and the structure and particle size distribution of the pseudo particles. Considering the phenomenon that the strength and yield of sintered ore decrease due to non-uniform firing, the aeration characteristics of pseudo particles granulated with coarse iron ore as core particles and fine iron ore attached thereto It is characterized by being indexed as an index.

そして、本発明においては、核特性指数、および/または、粉特性指数、さらに、配合原料中の結晶水割合および通気特性指数に基づいて、1種または2種以上の鉄鉱石を含む焼結用原料の焼結特性を評価するとともに、該評価結果に基づいて、焼結用原料に配合する鉄鉱石の種類を選択し、さらに、配合量または配合率を調整して、焼結特性の優れた焼結用原料を設計することを特徴とする。   In the present invention, based on the nuclear characteristic index and / or the powder characteristic index, and further, based on the proportion of crystal water in the blended raw material and the aeration characteristic index, for sintering containing one or more kinds of iron ores In addition to evaluating the sintering characteristics of the raw materials, based on the evaluation results, select the type of iron ore to be blended with the raw materials for sintering, and further adjust the blending amount or blending ratio to obtain excellent sintering characteristics. It is characterized by designing a raw material for sintering.

1)まず、指数化について説明する。   1) First, the indexing will be described.

(a)核特性指数
従来から、粒径1mm以上の粗粒鉄鉱石を核粒子として、その周囲に石灰石粉のみ、あるいは石灰石粉、微粉鉄鉱石および粉コークスからなる混合粉を付着させて造粒した擬似粒子について焼成(同化)試験を行い、粗粒鉄鉱石が生成した溶融と同化反応する際の同化率や同化性(通気性や生産性に影響する)により鉄鉱石の焼結特性を評価していた。
(A) Nuclear characteristic index Conventionally, granulated by using coarse iron ore with a particle size of 1 mm or more as core particles and adhering only limestone powder or mixed powder consisting of limestone powder, fine iron ore and powdered coke around it. A fire (anabolic) test is conducted on the pseudo-particles, and the iron ore sintering characteristics are evaluated by the assimilation rate and assimilation (affecting air permeability and productivity) during the assimilation reaction with the melting of the coarse iron ore. Was.

しかし、上記の同化率や同化性で、核粒子となる粗粒鉄鉱石の焼結特性を評価できても、同化率と焼結鉱の強度・歩留の関係が明確でなく、また、核粒子の同化性と、焼結鉱の同化後の組織が異なったりして、従来の同化試験による結果では、焼結鉱の品質、歩留と密接に相関する核粒子の焼結特性を適切に評価できていないのが実情である。   However, even though the above assimilation rate and assimilation properties can evaluate the sintering characteristics of coarse iron ore, which is the core particle, the relationship between the assimilation rate and the strength and yield of the sintered ore is not clear, and The assimilation properties of the sinter and the structure after assimilation of the sinter differ, and the results of the conventional assimilation tests show that the quality of the sinter ore and the sintering characteristics of the core particles that correlate closely with the yield The fact is that it has not been evaluated.

そこで、本発明では、核粒子となる粗粒鉄鉱石の同化後の焼成体における“焼成体気孔率”を、各種粗粒鉄鉱石の焼結特性を表す“指標”として採用する。   Therefore, in the present invention, the “burned body porosity” in the fired body after assimilation of the coarse iron ore serving as the core particles is employed as an “index” representing the sintering characteristics of various coarse iron ores.

この“焼成体気孔率”(以下「気孔率」という。)は、核粒子(粗粒鉄鉱石)の周囲に生成した融液が、どれだけ核粒子の周囲において広がりかつ浸透し、核粒子の充填堆積層を緻密にするか、即ち、隣接する核粒子同士が強固に結合し塊成化できるかを表す“指標”である。   This “calcined body porosity” (hereinafter referred to as “porosity”) indicates how much the melt formed around the core particles (coarse iron ore) spreads and permeates around the core particles. This is an “index” indicating whether the packed deposition layer is dense, that is, whether adjacent core particles can be firmly bonded and agglomerated.

核粒子となる粗粒鉄鉱石の焼結特性を、“気孔率”(指標)で評価することについて、さらに説明する。   The evaluation of the sintering characteristics of coarse iron ore serving as core particles by “porosity” (index) will be further described.

図1に、擬似粒子の構造を示し、図2に、焼結反応により擬似粒子が結合した焼結鉱の構造を示したが、図3〜5に、焼結反応により、図2に示す焼結鉱の構造に至る過程を示す。   FIG. 1 shows the structure of pseudo particles, and FIG. 2 shows the structure of sintered ore in which pseudo particles are bonded by a sintering reaction. FIGS. 3 to 5 show the structure of sintered ore shown in FIG. The process leading to the structure of the ore is shown.

図3に、図1に示す擬似粒子の付着粉部の構造を、一部(図1中、○印の部分)拡大して示す。空隙8を有する粗粒鉄鉱石1の周囲に、細粒鉄鉱石2と石灰石粉3が空隙7を残して付着している(なお、コークス粉は表示されていない。)。   FIG. 3 shows an enlarged view of the structure of the adhering powder portion of the pseudo particles shown in FIG. 1 (the portion marked with a circle in FIG. 1). Fine-grained iron ore 2 and limestone powder 3 are attached around the coarse iron ore 1 having voids 8 leaving the voids 7 (note that coke powder is not displayed).

図3に示す付着粉部において、コークス粉が燃焼し、擬似粒子が1200℃前後に加熱されると、図4に示すように、石灰石粉3と細粒鉄鉱石2との同化反応により、低融点の融液9(CaO・Fe:カルシュウムフェライト)が生成し始める。 When the coke powder burns in the adhering powder part shown in FIG. 3 and the pseudo particles are heated to around 1200 ° C., as shown in FIG. 4, the assimilation reaction between the limestone powder 3 and the fine-grained iron ore 2 reduces The melting point melt 9 (CaO.Fe 2 O 3 : calcium ferrite) starts to be generated.

融液9は、生成と同時に、付着粉部内の空隙7内に浸透していくが、重要なことは、図5に示すように、融液9が、迅速に、付着粉部内の空隙7内に広く浸透するとともに、粗粒鉄鉱石(核粒子)5の表層部に存在する空隙8にも浸透し、気孔10や空隙8の少ない緻密な核粒子の充填堆積層(結合相)を形成することである。   The melt 9 permeates into the gap 7 in the adhered powder portion at the same time as the generation. However, as shown in FIG. 5, the important thing is that the melt 9 quickly enters the gap 7 in the adhered powder portion. And also penetrates into the voids 8 existing in the surface layer portion of the coarse iron ore (nuclear particles) 5 to form a dense deposited layer (bonded phase) of fine nuclear particles with few pores 10 and voids 8. That is.

それ故、本発明では、同化反応後結合相中に残る気孔と元鉱部に残る空隙を“気孔”として捉え、その存在割合の“気孔率”を、鉄鉱石の焼結特性を表す“指標”とする。   Therefore, in the present invention, the pores remaining in the bonded phase after the assimilation reaction and the voids remaining in the original ore portion are regarded as “pores”, and the “porosity” of the existence ratio is expressed as an “index” indicating the sintering characteristics of iron ore. ".

上記充填堆積層の緻密度は、焼結鉱の品質(強度)・歩留と密接に相関し、気孔率が小さいほど、上記充填堆積層の緻密度は大きいから、核粒子(粗粒鉄鉱石)の特性は、(1−気孔率)に基づいて指数化する。   The density of the packed sedimentary layer correlates closely with the quality (strength) and yield of the sintered ore, and the smaller the porosity, the greater the density of the packed sedimentary layer. ) Is indexed based on (1-porosity).

図6に、核特性指数(A)の技術的意味を模式的に示す。核特性指数(A)は、擬似粒子構造(a)の焼結用原料を焼結した時、元鉱部5と基質部6からなる焼結鉱の焼結組織が、緻密な組織(b)となるか、または、空疎な組織(c)となるかを、粗粒鉄鉱石1の特性に着目して判断する基準となるものである。   FIG. 6 schematically shows the technical meaning of the nuclear characteristic index (A). The nuclear characteristic index (A) indicates that when the raw material for sintering having the pseudo particle structure (a) is sintered, the sintered structure of the sintered ore composed of the original ore portion 5 and the substrate portion 6 is a dense structure (b). Or a sparse structure (c), which is a reference for judging from the characteristics of the coarse iron ore 1.

表1に、各種鉄鉱石につき測定した気孔率と、該気孔率に基づいて、各種粗粒鉄鉱石の特性を、核特性指数として指数化した例を示す。   Table 1 shows an example in which the porosity measured for various iron ores and the characteristics of various coarse iron ores are indexed as nuclear characteristic indices based on the porosity.

表1に示す測定方法1の気孔率は、3〜5mmの各種粗粒鉄鉱石の周囲に、粒径−0.125mmの石灰石(CaCO)粉を、CaO/鉄鉱石=0.1となるように10g程度付着せしめ、これを、φ21mm×高さ15mmのNi坩堝に充填し(充填時の空隙率は、各種粗粒鉄鉱石につき一定とする。)、電気炉内で、室温から最高1273℃まで5分で加熱して、焼成し、その後、1275〜1100℃を4分で冷却し、1100℃からは空冷した焼成体において、底面から5mmの焼結体断面における50μm以上の空隙(焼成で生成した気孔を含む。)を測定して求めたものである。 The porosity of the measurement method 1 shown in Table 1 is such that the limestone (CaCO 3 ) powder having a particle size of −0.125 mm is around CaO / iron ore = 0.1 around various coarse iron ores of 3 to 5 mm. In this way, about 10 g is deposited, and this is filled into a Ni crucible having a diameter of 21 mm and a height of 15 mm (the porosity at the time of filling is constant for various coarse iron ores). In a fired body heated to 5 ° C. for 5 minutes, fired, cooled to 1275 to 1100 ° C. in 4 minutes, and then air-cooled from 1100 ° C., a gap of 50 μm or more in the cross section of the sintered body 5 mm from the bottom (fired) (Including pores generated in step 1)).

測定方法2の気孔率は、3〜5mmの各種粗粒鉄鉱石の周囲に、付着粉として粒径−0.125mmの石灰石(CaCO)粉、微粉鉄鉱石粉およびコークス粉からなる混合粉を付着したものを用い、上記と同様の条件で焼成し、気孔率を測定した結果である。なお、混合粉の配合割合は、実機の擬似粒子中の付着粉層の組成に近くなるように調節した。 The porosity of measurement method 2 is that mixed powder consisting of limestone (CaCO 3 ) powder with a particle size of −0.125 mm, fine iron ore powder, and coke powder is attached as an adhering powder around various coarse iron ores of 3 to 5 mm. It is the result of having baked on the conditions similar to the above, and measuring the porosity. The blending ratio of the mixed powder was adjusted so as to be close to the composition of the adhered powder layer in the pseudo particles of the actual machine.

表1に示す測定方法1と測定方法2の気孔率には、測定条件の違いから多少の差が認められるが、核特性指数として評価する場合はその差による影響は僅かであることがわかる。すなわち、測定方法1と測定方法2のいずれの測定方法も用いても、鉱石銘柄の核鉱石としての特性を基づく評価が可能である。   The porosity of the measurement method 1 and the measurement method 2 shown in Table 1 is slightly different from the measurement conditions, but it can be seen that the difference due to the difference is slight when evaluated as a nuclear characteristic index. That is, even if any one of the measuring methods 1 and 2 is used, the evaluation based on the characteristics of the ore brand as a nuclear ore is possible.

また、気孔率の測定方法は、上記の測定法に限定されるものではない。本発明においては、測定値を核特性指数として指数化することが重要であるから、各種銘柄の鉄鉱石につき、一定の条件下で測定した測定値が得られればよい。   Moreover, the measuring method of a porosity is not limited to said measuring method. In the present invention, since it is important to index the measured value as a nuclear characteristic index, it is only necessary to obtain measured values measured under certain conditions for various brands of iron ore.

表1には、気孔率の測定値を基に(1−気孔率)を指数化した核特性指数を示したが、気孔率に替え、残留元鉱率を測定し、これを核特性指数として指数化してもよい。   Table 1 shows the nuclear characteristic index obtained by indexing (1-porosity) based on the measured porosity, but instead of the porosity, the residual mineral ratio was measured and used as the nuclear characteristic index. It may be indexed.

残留元鉱率は、(R/s)×100(R:残留元鉱面積[残留元鉱:マクロ的に融液が浸透していない部分]、s:焼成体面積)で表され、(1−気孔率)に対応する指標である。   The residual raw mineral ratio is represented by (R / s) × 100 (R: residual raw ore area [residual original ore: portion where the melt does not penetrate macroscopically], s: calcined body area), (1 -An index corresponding to (porosity).

また、気孔率に替え、焼成体落下強度を測定し、これを核特性指数として指数化してもよい。焼成体落下強度は、直接、充填堆積層の緻密度に依存する指標であるから、核粒子特性を表す指標として好ましい。   Further, instead of the porosity, the fired body drop strength may be measured and indexed as a nuclear characteristic index. Since the fired body drop strength is an index that directly depends on the density of the packed deposited layer, it is preferable as an index that represents the core particle characteristics.

本発明においては、核特性指数として指数化できる指標であれば、上記以外の指標を用いてもよいことは当然である。   In the present invention, it is a matter of course that an index other than the above may be used as long as it is an index that can be indexed as a nuclear characteristic index.

Figure 0004518895
Figure 0004518895

(b)粉特性指数
前述したように、本発明者は、特許文献1で、粒径1mm未満の細粒鉄鉱石の評価方法を提案した。この方法は、1mm未満の細粒鉄鉱石を成型した所定気孔率の成型体の上に、成型した低融点物質を載せ、大気中または低酸素雰囲気下で1000℃以上に昇温して低融点物質を溶融させ、その溶融した融液を上記成形体中に浸透せしめ、その融液が浸透した距離、断面積および体積の1種または2種以上を測定し、該測定値(融液浸透距離、断面積、体積)をもって、各種鉄鉱石の融液浸透性を評価する方法である。
(B) Powder characteristic index As described above, the present inventor proposed a method for evaluating fine iron ore having a particle diameter of less than 1 mm in Patent Document 1. In this method, a molded low melting point material is placed on a molded body having a predetermined porosity formed from fine iron ore of less than 1 mm, and the melting point is raised to 1000 ° C. or higher in the atmosphere or in a low oxygen atmosphere. A substance is melted, the melt is allowed to penetrate into the molded body, and one or more of the distance, cross-sectional area and volume permeated by the melt are measured, and the measured value (melt penetration distance) , Cross-sectional area, volume) and evaluating the melt permeability of various iron ores.

この融液浸透距離(または断面積、体積)は、焼成時に擬似粒子の付着粉部において、初期に生成する低融点のカルシウムフェライト系融液と、鉱石微粉部の同化により生成する融液が流動する流動の程度を示すものであるから、各種銘柄の鉄鉱石の微粉粒子間における融液浸透性の差違を明確にし、焼結鉱の品質(強度等)および歩留に大きく影響する付着粉部同士の融合の程度・態様を表す指標となる。   This melt permeation distance (or cross-sectional area, volume) is determined by the flow of the low-melting calcium ferrite-based melt generated at the initial stage and the melt generated by assimilation of the ore fine powder part in the adhering powder part of the pseudo particles during firing. This indicates the degree of fluid flow, so that the difference in melt permeability between fine particles of iron ore of various brands is clarified, and the adhered powder part that greatly affects the quality (strength, etc.) and yield of sintered ore It becomes an index indicating the degree and mode of fusion between each other.

融液浸透距離が大きいほど、生成した初期融液を付着粉部で広げることができ、より結合強度を増すことで、焼結鉱の品質(強度)、歩留を高めることができるから、融液浸透距離を、粉特性指数として指数化する。   The longer the melt penetration distance, the wider the initial melt produced can be at the adhering powder part, and the higher the bond strength, the higher the quality (strength) and yield of the sintered ore. The liquid penetration distance is indexed as a powder characteristic index.

また、非特許文献2には、円柱状に成型した微粉鉄鉱石と石灰石粉から成る混合粉のタブレットを高温で焼結した後、タブレットの底面積を測定して融液流動性を評価する方法が開示されている。   Non-Patent Document 2 describes a method for evaluating melt fluidity by measuring the bottom area of a tablet after sintering a tablet of mixed powder composed of fine iron ore and limestone powder formed into a cylindrical shape at high temperature. Is disclosed.

本発明者らは、この融液流動性の評価方法も、焼結の初期に微粉鉱石と石灰石粉との反応によって生成した低融点の初期融液が、その周辺の鉱石を溶かし込んで流動する挙動を、タブレットの変形具合で評価するものであり、特許文献1の評価方法における融液浸透距離と良い相関がある指標であることを確認している。   The inventors of the present invention also have a low melting point initial melt produced by the reaction between fine ore and limestone powder in the initial stage of sintering, and melt the surrounding ore. The behavior is evaluated by the degree of deformation of the tablet, and it is confirmed that the index has a good correlation with the melt penetration distance in the evaluation method of Patent Document 1.

すなわち、配合設計に用いる微粉鉱石の特性を表す粉特性指数として、上記融液浸透距離の他に、上記タブレット焼成後の底面積の測定値が使用できる。   That is, the measured value of the bottom area after the tablet baking can be used in addition to the melt permeation distance as a powder characteristic index representing the characteristics of fine ore used for blending design.

図6に、粉特性指数(B)の技術的意味を模式的に示す。粉特性指数(B)は、擬似粒子構造(a)の焼結用原料を焼結した時、元鉱部5と基質部6からなる焼結鉱の焼結組織が、緻密な組織(b)となるか、または、空疎な組織(c)となるかを、細粒鉄鉱石2の特性に着目して判断する基準となるものである。   FIG. 6 schematically shows the technical meaning of the powder characteristic index (B). The powder characteristic index (B) indicates that when the raw material for sintering having the pseudo particle structure (a) is sintered, the sintered structure of the sintered ore composed of the original ore portion 5 and the substrate portion 6 is a dense structure (b). Or a sparse structure (c), which is a reference for judging from the characteristics of the fine-grained iron ore 2.

表2に、各種鉄鉱石につき融液浸透距離、または、タブレット焼成後の底面積を測定し、該測定値に基づいて、各種細粒鉄鉱石の特性を、粉特性指数として指数化した例を示す。   Table 2 shows an example in which the melt penetration distance or the bottom area after tablet firing is measured for various iron ores, and the characteristics of various fine-grained iron ores are indexed as powder characteristic indices based on the measured values. Show.

なお、本発明において、表1に示した融液浸透距離に替えて、融液浸透断面積、または、融液浸透体積の測定値を用いて指数化することができ、細粒鉄鉱石の融液浸透性をより適切に評価できる。   In the present invention, instead of the melt infiltration distance shown in Table 1, it can be indexed by using the measured value of the melt infiltration cross-sectional area or the melt infiltration volume. The liquid permeability can be evaluated more appropriately.

Figure 0004518895
Figure 0004518895

(c)通気特性指数
焼結鉱の歩留および強度については、上記の核特性指標と粉特性指標を用いて各種鉄鉱石の融液生成挙動により評価することが可能である。しかし、各種鉄鉱石の焼結生産性を適正に評価するためには、焼結鉱の歩留とともに焼結過程での焼結層の通気特性に大きく影響する擬似粒子の通気特性を評価指標に加える必要がある。
(C) Aeration characteristic index The yield and strength of sintered ore can be evaluated by the melt generation behavior of various iron ores using the above-mentioned nuclear characteristic index and powder characteristic index. However, in order to properly evaluate the sintering productivity of various iron ores, the evaluation index is the aeration characteristics of pseudo particles that greatly affect the aeration characteristics of the sintered layer during the sintering process as well as the yield of the sintered ore. Need to add.

焼結過程における焼結層の通気性は、配合原料の擬似粒子の構造およびそれを構成する粒径分布によって大きく左右される。なお、各種鉄鉱石の擬似粒子の構造は、擬似粒子を構成する粗粒鉄鉱石(核粒子)の特性と付着部となる微粉鉄鉱石の特性に依存すると考えられるが、各種鉄鉱石の擬似粒子の構造を指数化するのは困難である。   The air permeability of the sintered layer in the sintering process is greatly influenced by the structure of the pseudo particles of the blended raw material and the particle size distribution constituting the pseudo particles. The structure of the pseudo particles of various iron ores is thought to depend on the characteristics of the coarse iron ore (nuclear particles) constituting the pseudo particles and the characteristics of the fine iron ore that forms the adhering part. It is difficult to index the structure of

このため、本発明では、粗粒鉄鉱石を核粒子とし所定の質量比の細粒鉄鉱石を所定の水分にて付着させて造粒した擬似粒子の通気性を測定し、通気性の測定値を指数化することにより、各種鉄鉱石の焼結生産性を精度よく評価する。   Therefore, in the present invention, the permeability of the pseudo particles granulated by attaching the coarse iron ore as the core particle and attaching the fine iron ore of a predetermined mass ratio with the predetermined moisture, and measuring the permeability By indexing, the sintering productivity of various iron ores is accurately evaluated.

擬似粒子の通気性は、例えば、下記(3)式で定義されるJPUを用いてもよいが、本発明においては、通気性指数として指数化できる指標であれば、それ以外の指標を用いてもよいことは当然である。   For example, JPU defined by the following formula (3) may be used as the breathability of the pseudo particles. However, in the present invention, any other index can be used as long as it is an index that can be indexed as a breathability index. Of course it is good.

JPU=通風量(Nm3/min)/通風面積(m2
×[層厚(mm)/吸引圧力(mmHO)]0.6 …(3)
また、本発明では、各種鉄鉱石の擬似粒子を構成する鉄鉱石の粒径分布に依存する平均粒径を通気性指数として用い、各種鉄鉱石の焼結生産性を評価することも可能である。
JPU = Ventilation volume (Nm 3 / min) / Ventilation area (m 2 )
× [Layer thickness (mm) / Suction pressure (mmH 2 O)] 0.6 (3)
In the present invention, it is also possible to evaluate the sintering productivity of various iron ores using the average particle size depending on the particle size distribution of the iron ore constituting the pseudo particles of various iron ores as the air permeability index. .

表3に擬似粒子の通気性測定値JPU、または、平均粒度を用いて指数化した通気性指数の一例を示す。   Table 3 shows an example of the breathability measurement value JPU of the pseudo particles or the breathability index indexed using the average particle size.

Figure 0004518895
Figure 0004518895

2)次に、核特性指数、および/または、粉特性指数、および、通気性指数を用いて、各種鉄鉱石の焼結生産性指数を算出し、該指数に基づいて焼結用原料の焼結生産性を評価することについて説明する。   2) Next, using the nuclear characteristic index and / or the powder characteristic index and the air permeability index, the sintering productivity index of various iron ores is calculated, and the sintering raw material is sintered based on the index. The evaluation of the productivity is explained.

焼結鉱の強度、歩留は、本発明者らが特許文献5で提案した評価方法における鉄鉱石の核特性指数および/または粉特性指数により評価することができる。   The strength and yield of the sintered ore can be evaluated by the nuclear characteristic index and / or the powder characteristic index of the iron ore in the evaluation method proposed by the present inventors in Patent Document 5.

なお、この場合、核特性指数および粉特性指数のどちらか一方で焼結特性を評価しても、大きな評価の間違いはないが、焼結用原料は粗粒鉄鉱石と細粒鉄鉱石を含むことから、その焼結特性は、粗粒鉄鉱石の焼結特性と細粒鉄鉱石の焼結特性が相乗したものとなることが予想される(図6、参照)。   In this case, there is no big mistake in evaluating the sintering characteristics of either the nuclear characteristic index or the powder characteristic index, but the raw material for sintering includes coarse iron ore and fine iron ore. Therefore, it is expected that the sintering characteristics are a combination of the sintering characteristics of the coarse-grained iron ore and the sintering characteristics of the fine-grained iron ore (see FIG. 6).

しかし、鉄鉱石の生産性を適正に評価するためには、特許文献5で提案した評価方法では十分ではなく、上記核特性指数と粉特性指数に加えて、さらに、通気性指数を基に評価する必要がある。   However, in order to properly evaluate the productivity of iron ore, the evaluation method proposed in Patent Document 5 is not sufficient, and in addition to the nuclear characteristic index and the powder characteristic index, the evaluation is further based on the air permeability index. There is a need to.

それ故、本発明では、焼結用原料の焼結生産性を、総括的に適正に評価するため、下記式(1)、または、(2)に従って評価する。   Therefore, in this invention, in order to evaluate appropriately the sintering productivity of the raw material for sintering comprehensively, it evaluates according to following formula (1) or (2).

SPI=k×A×B×(1−D/100)×C …(1)
SPI=A×B×(1−D/100)±nC …(2)
A:核特性指数、
B:粉特性指数
D:配合原料の結晶水割合(%)
C:通気特性指数
x:核特性の寄与率で、0≦x≦1(ただし、y=0のときx≠0)
y:粉特性の寄与率で、0≦y≦1(ただし、x=0のときy≠0)
z、w:通気性の寄与率で、0<z≦1、0<w≦1
n:通気性の寄与係数で、0<n≦15
k:係数
SPI = k × A x × B y × (1-D / 100) × C z ... (1)
SPI = A x × B y × (1-D / 100) ± nC w (2)
A: Nuclear characteristic index,
B: Powder characteristic index D: Crystal water ratio of blended raw material (%)
C: aeration characteristic index x: contribution ratio of nuclear characteristics, 0 ≦ x ≦ 1 (provided that x ≠ 0 when y = 0)
y: contribution ratio of powder characteristics, 0 ≦ y ≦ 1 (y ≠ 0 when x = 0)
z, w: contribution rate of air permeability, 0 <z ≦ 1, 0 <w ≦ 1
n: contribution coefficient of air permeability, 0 <n ≦ 15
k: coefficient

焼結用原料の通気特性は、鉱石の組合せ効果も考えられるので、本発明においては、通気特性指数が、核特性指数および粉特性指数に相乗的に寄与する場合と、相加的に寄与する場合とを想定し、上記の2式を定めた。   Since the aeration characteristic of the raw material for sintering can also be considered as an ore combination effect, in the present invention, the aeration characteristic index contributes synergistically to the nuclear characteristic index and the powder characteristic index. Assuming the case, the above two formulas were defined.

また、上記式(2)において、Dは、配合原料の鉄鉱石中の結晶水割合であり、配合原料中の結晶水が多い場合には、焼結過程で鉄鉱石中の結晶水が脱水するために、焼成歩留の低下とともに生産性が低下するため、焼結生産性評価の影響因子として考慮する。   In the above formula (2), D is the ratio of crystallization water in the iron ore of the blending raw material. When there is a lot of crystallization water in the blending raw material, the crystallization water in the iron ore is dehydrated during the sintering process. For this reason, since productivity decreases with a decrease in firing yield, it is considered as an influential factor in the evaluation of sintering productivity.

なお、本発明では、核特性指数A、および/または、粉特性指数B、さらに、通気性指数Cで焼結生産性指数SPIを表示する関係式は、上記式(1)および(2)に限られるものではない。焼結生産性指数SPIが、焼結鉱の生産性と極めてよい相関関係を示す限りにおいて、どのような関数形式の式でもよい。   In the present invention, the relational expression for indicating the sintering productivity index SPI by the nuclear characteristic index A and / or the powder characteristic index B and the air permeability index C is expressed by the above formulas (1) and (2). It is not limited. As long as the sinter productivity index SPI shows a very good correlation with the sinter productivity, any functional formula may be used.

例えば、p・A×q・B/r・C、(p・A±r・C)・(q・B±r・C)でもよいし、また、p・A+q・B+r・C(p、q、r:係数、0<x、y、z)、でもよい。 For example, p · A x × q · B y / r · C z , (p · A ± r 1 · C) x · (q · B ± r 2 · C) y may be used, and p · A x + Q · B y + r · C z (p, q, r: coefficient, 0 <x, y, z).

焼結用原料が2種以上の鉄鉱石(粉)を含む場合には、上記2式において、核特性指数A、粉特性指数B、および、通気性指数Cは、それぞれ、下記式(1a)、式(1b)および式(1c)のとおりである。   When the sintering raw material contains two or more types of iron ore (powder), the nuclear characteristic index A, the powder characteristic index B, and the air permeability index C in the above two formulas are respectively the following formulas (1a) Formula (1b) and Formula (1c).

A=Σ(a×p)/Σ(p) …(1a)
:鉄鉱石iの核特性指数
:粒径1mm以上の鉄鉱石iの配合率(%)
B=Σ(b×q)/Σ(q) …(1b)
:鉄鉱石iの粉特性指数
:粒径1mm未満の鉄鉱石iの配合率(%)
C=Σ(c×r)/Σ(r) …(1c)
:鉄鉱石iの通気特性指数
:鉄鉱石iの配合率(%)
A = Σ (a i × p i ) / Σ (p i ) (1a)
a i : Nuclear characteristic index of iron ore i
p i : Mixing ratio of iron ore i having a particle diameter of 1 mm or more (%)
B = Σ (b i × q i ) / Σ (q i ) (1b)
b i : Powder characteristic index of iron ore i
q i : Mixing ratio (%) of iron ore i having a particle diameter of less than 1 mm
C = Σ (c i × r i ) / Σ (r i ) (1c)
c i : Aeration characteristic index of iron ore i
r i : Mixing ratio of iron ore i (%)

本発明者の研究調査によれば、上記式(1)および(2)におけるxおよびyは、それぞれ、0.1以上0.5以下、および、0.5以上1以下が好ましく、さらに、それぞれ、0.3、および、1がより好ましい。   According to the inventor's research survey, x and y in the above formulas (1) and (2) are each preferably 0.1 or more and 0.5 or less and 0.5 or more and 1 or less, respectively, , 0.3 and 1 are more preferred.

また、zは、0.2以上1.5以下が好ましく、さらに、0.5または1がより好ましい。   Z is preferably 0.2 or more and 1.5 or less, and more preferably 0.5 or 1.

また、nは、0.5以上11以下が好ましく、さらに、1、1.5、2または10がより好ましい。
wは、0.2以上0.7以下が好ましく、さらに、0.5がより好ましい。
N is preferably 0.5 or more and 11 or less, and more preferably 1, 1.5, 2 or 10.
w is preferably 0.2 or more and 0.7 or less, and more preferably 0.5.

なお、係数kは、SPIの計算値の大きさを調整するものであり、利便性によって任意の値を与えてもかまわない。   The coefficient k adjusts the magnitude of the calculated value of the SPI, and an arbitrary value may be given depending on convenience.

ここで、2種以上の鉄鉱石を配合した焼結原料につき、表1および表2にそれぞれ示す各種鉄鉱石の核特性指数および粉特性指数と、表3に示す通気性特性指数を用い、表4に示す配合量(配合1〜8)のもとで、x=0.3、y=1、z=1、k=0.0125とした上記式(1)に従って焼結生産性指数SPIを計算した結果を、併せて表4に示す。   Here, with respect to the sintering raw material containing two or more kinds of iron ores, the core characteristic index and the powder characteristic index of various iron ores shown in Table 1 and Table 2, respectively, and the air permeability characteristic index shown in Table 3 are used. Sintering productivity index SPI according to the above formula (1) with x = 0.3, y = 1, z = 1, k = 0.0125 under the blending amounts shown in FIG. Table 4 shows the calculated results.

Figure 0004518895
Figure 0004518895

そして、表4に示す焼結生産性指数SPIを有する焼結用原料を焼結(50kg鍋試験)して得た焼結鉱の生産率と、焼結生産性指数SPIの関係を図7に示す。   FIG. 7 shows the relationship between the production rate of sintered ore obtained by sintering the sintering raw material having the sintering productivity index SPI shown in Table 4 (50 kg pan test) and the sintering productivity index SPI. Show.

これらの図から、焼結鉱の生産率と上記式(1)から求めた焼結生産性指数は、極めてよい相関関係にあることが分かる。   From these figures, it can be seen that the production rate of sintered ore and the sintered productivity index determined from the above equation (1) are in a very good correlation.

また、上記式(2)において、x=0.3、y=1、w=1、n=1 とした焼結生産性指数SPIと、焼結鉱の生産率との関係を図8に示す。   Further, in the above formula (2), the relationship between the sintered productivity index SPI with x = 0.3, y = 1, w = 1, n = 1 and the production rate of sintered ore is shown in FIG. .

これらの図から、焼結鉱の生産率と上記式(2)で求めた焼結生産性指数は、極めてよい相関関係にあることが分かる。   From these figures, it can be seen that the production rate of sintered ore and the sintered productivity index obtained by the above equation (2) are in a very good correlation.

3)次に、各種鉄鉱石の焼結生産性指数SPIに基づいて、焼結用原料の配合設計する方法について説明する。   3) Next, a method for blending and designing the raw materials for sintering based on the sintering productivity index SPI of various iron ores will be described.

前述したように、本発明の各式で定義する焼結生産性指数SPIは、焼結鉱の生産率と極めてよい相関関係を示すので、1種または2種以上の鉄鉱石を含む焼結用原料の焼結生産性指数SPIに基づいて、該焼結用原料を焼結して得られる焼結鉱の生産率を精度よく推定することができる。   As described above, the sintering productivity index SPI defined by each formula of the present invention shows a very good correlation with the production rate of the sintered ore, and therefore, for sintering containing one or more kinds of iron ores. Based on the raw material sintering productivity index SPI, the production rate of sintered ore obtained by sintering the raw material for sintering can be accurately estimated.

鉄鉱石は、成分組成が似ていても鉱床(産地)の相違で、鉱石の性状・形態が全く異なるから、このような鉄鉱石を2種以上配合した焼結用原料から強度および成品歩留、生産率の優れる焼結鉱を製造しようとする場合には、従来、試行錯誤により、鉄鉱石の配合量または配合率を決めざるを得なかった。   Since iron ore is similar in composition, it has completely different properties and forms of ore due to the difference in the ore deposit (production area). Therefore, strength and product yield from sintering raw materials containing two or more of these iron ores are mixed. When trying to produce a sintered ore with an excellent production rate, conventionally, the amount or ratio of iron ore has to be determined by trial and error.

しかし、本発明によれば、事前に焼結用原料の生産性指数を知ることにより、焼結鉱の生産率を精度よく推定できる。即ち、本発明に従い焼結用原料の焼結生産性を評価することにより、焼結用原料の特性の適否を判断することができ、この評価結果に基づいて、焼結用原料に配合する鉄鉱石の種類、配合量および配合率を選択、調整することができる。   However, according to the present invention, the production rate of sintered ore can be accurately estimated by knowing in advance the productivity index of the raw material for sintering. That is, by evaluating the sintering productivity of the raw material for sintering according to the present invention, it is possible to determine the suitability of the characteristics of the raw material for sintering, and based on this evaluation result, the iron ore blended in the raw material for sintering Stone type, blending amount and blending ratio can be selected and adjusted.

本発明においては、焼結特性指数を算出するのに、核特性指数、粉特性指数、および、通気特性指数を用いたが、さらに、焼結に影響を与える原料生産性、例えば、造粒性、鉄鉱石の付着力、最適含水量などを指数化して、焼結生産性指数の算出に加えてもよい。   In the present invention, the nuclear characteristic index, the powder characteristic index, and the aeration characteristic index were used to calculate the sintering characteristic index. Furthermore, the raw material productivity that affects the sintering, for example, granulation property In addition, the iron ore adhesion force, the optimum water content, etc. may be indexed and added to the calculation of the sintering productivity index.

(実施例1)
表5に示す配合例のように、焼結用原料を所定の割合に配合し、石灰石や蛇紋岩、珪石等のその他副原料の割合を調整して、焼結鉱のSiO、CaO/SiO、MgOの割合を大きく変化させないようにした。このように調整した配合原料を焼結鍋試験で焼結して冷間強度、成品歩留、生産率を測定した。
Example 1
As in the blending examples shown in Table 5, the raw materials for sintering are blended at a predetermined ratio, and the ratio of other auxiliary raw materials such as limestone, serpentine, and quartzite is adjusted, and the sintered ore SiO 2 , CaO / SiO 2. The ratio of MgO was not changed greatly. The blended raw material thus adjusted was sintered in a sintering pot test, and cold strength, product yield, and production rate were measured.

表1、表2、および、表3にそれぞれ示す核特性指数、粉特性指数、および、通気特性指数を用い、式(1)(x=0.3、y=1、Z=1、k=0.0125)で算出した焼結生産性指数SPI、実測した生産率を表5中に示す。なお、表5には、参考に実測した焼結鉱の冷間強度と成品歩留も示した。   Using the nuclear characteristic index, powder characteristic index, and aeration characteristic index shown in Table 1, Table 2, and Table 3, respectively, Equation (1) (x = 0.3, y = 1, Z = 1, k = Table 5 shows the sintered productivity index SPI calculated in 0.0125) and the actually measured production rate. Table 5 also shows the cold strength and product yield of the sintered ore actually measured for reference.

その結果、配合1に比べて、配合2の方が、焼結生産性指数SPIは高く、焼結鉱の高生産性が達成できる鉱石配合であると評価できた。実測した焼結鉱の生産性も配合2の方が優れていることから、本発明の評価方法により、焼結鉱の生産性を適正に評価できることがわかる。   As a result, in comparison with Formulation 1, Formulation 2 had a higher sintered productivity index SPI, and could be evaluated as an ore formulation that can achieve high productivity of sintered ore. From the fact that the measured productivity of sintered ore is superior to that of Formula 2, it can be understood that the productivity of sintered ore can be appropriately evaluated by the evaluation method of the present invention.

また、参考に実測した焼結鉱の冷間強度と成品歩留も、同様に、本発明の評価法により適正に評価できることがわかる。   Moreover, it turns out that the cold strength and product yield of the sintered ore actually measured for reference can also be appropriately evaluated by the evaluation method of the present invention.

Figure 0004518895
Figure 0004518895

(実施例2)
次に、焼結面積480mで焼結パレット幅4mの実機焼結機において、本発明法を適用する操業を実施した。本発明法では、ベース条件での式(1)(X=0.3、y=1、z=1、k=0.0125)で算出した焼結生産性指数SPIは155であった。焼結鉱の生産率が低下傾向の時には、焼結生産性指数SPIを向上させるように、焼結用原料の配合を調節した。
(Example 2)
Next, in an actual machine sintering machine having a sintering area of 480 m 2 and a sintering pallet width of 4 m, an operation for applying the method of the present invention was performed. In the method of the present invention, the sintering productivity index SPI calculated by the formula (1) (X = 0.3, y = 1, z = 1, k = 0.0125) under the base condition was 155. When the production rate of sintered ore was in a downward trend, the composition of the raw materials for sintering was adjusted so as to improve the sintering productivity index SPI.

1週間に2〜3回の頻度で焼結原料の配合変更を行いながら、本発明法適用前後の焼結鉱の冷間強度、成品歩留、および、焼結鉱の生産率の変動を調べた。   While changing the composition of the sintering raw material at a frequency of 2 to 3 times a week, we investigated the cold strength, product yield, and fluctuations in the production rate of the sintered ore before and after applying the method of the present invention. It was.

図9に、2ヶ月間の実機焼結機の操業における本発明法適用前後の焼結鉱の生産率、成品歩留、および、冷間強度の実測値と、焼結生産指数SPIの推移を示す。本発明法適用後は、焼結原料の配合変更を頻繁に行っても、焼結生産性指数SPIを155の一定に維持したので、焼結鉱品質および成品歩留を確保しつつ、焼結鉱の生産率を高位に安定させて推移させることができた。焼結鉱の生産率が安定するとともに、焼結鉱品質のバラツキが低減したので、高炉操業が極めて安定する結果を得た。   Fig. 9 shows the changes in the production rate, product yield and cold strength of the sintered ore before and after the application of the method of the present invention in the operation of the actual sintering machine for two months, and the transition of the sintered production index SPI. Show. After applying the method of the present invention, the sintering productivity index SPI was maintained at a constant value of 155 even when the mixing of the sintering raw material was frequently changed, so that the sintering ore quality and product yield were ensured while sintering was performed. The production rate of the ore was stabilized at a high level. As the production rate of the sinter was stabilized and the variation in the quality of the sinter was reduced, blast furnace operation was extremely stable.

焼結用原料を造粒した擬似粒子の構造を模式的に示す図である。It is a figure which shows typically the structure of the pseudo particle which granulated the raw material for sintering. 焼結反応により擬似粒子が結合した焼結鉱の構造を模式的に示す図である。It is a figure which shows typically the structure of the sintered ore which the pseudo particle couple | bonded by sintering reaction. 図1に示す擬似粒子の構造を一部拡大して示す図である。It is a figure which expands and shows a part of structure of the pseudo particle shown in FIG. 付着粉部において、焼結反応の初期に生成した融液の態様を示す図である。It is a figure which shows the aspect of the melt produced | generated in the adhering powder part at the initial stage of sintering reaction. 同化反応が進行し、融液が付着粉部内の空隙と粗粒鉱石(核粒子)表層部の空隙に浸透した態様を示す図である。It is a figure which shows the aspect which the assimilation reaction advanced and the melt was osmose | permeating the space | gap in the space | gap in an adhesion powder part, and a coarse-grained ore (nuclear particle) surface part. 核特性指数および粉特性指数の技術的意味を示す図である。(a)は、擬似粒子の構造を示す図である。(b)は、緻密な焼結組織を示す図であり、(c)は、空疎な焼結組織を示す図である。It is a figure which shows the technical meaning of a nuclear characteristic index and a powder characteristic index. (A) is a figure which shows the structure of a pseudo particle. (B) is a figure which shows a precise | minute sintered structure, (c) is a figure which shows an empty sintered structure. 式(1)の焼結生産性指数SPIと焼結鉱の生産率の関係を示す図である。It is a figure which shows the relationship between the sintering productivity index | exponent SPI of Formula (1), and the production rate of a sintered ore. 式(2)の焼結生産性指数SPIと焼結鉱の生産率の関係を示す図である。It is a figure which shows the relationship between the sintering productivity index | exponent SPI of Formula (2), and the production rate of a sintered ore. 2ヶ月間の実機焼結機の操業における本発明法適用前後の成品歩留、冷間強度の推移を示す図である。It is a figure which shows transition of the product yield and cold strength before and after application of the method of the present invention in the operation of an actual sintering machine for two months.

符号の説明Explanation of symbols

1 粗粒鉄鉱石(+1mm以上)
2 細粒鉄鉱石(−1mm未満)
3 石灰石粉
4 コークス粉
5 元鉱部
6 基質部
7、8 空隙
9 融液
10 気孔
A 核特性指数
B 粉特性指数
1 Coarse iron ore (+ 1mm or more)
2 Fine iron ore (less than -1mm)
3 Limestone powder 4 Coke powder 5 Original mineral part 6 Substrate part 7, 8 Void 9 Melt 10 Pore A Nuclear characteristic index B Powder characteristic index

Claims (21)

各種鉄鉱石の1種または2種以上を所定の配合率で含む焼結用原料の特性を評価する評価方法において、各種鉄鉱石のそれぞれを粗粒と細粒に分け、
(1)各種粗粒鉄鉱石に石灰石粉を付着させて造粒した擬似粒子の焼成体における気孔率を核特性指数として指数化し、および/または、
(2)成型した各種細粒鉄鉱石の上に成型した低融点物質を置いて焼成した時、低融点物質の融液が上記細粒鉄鉱石の内部に浸透する距離、断面積および体積の1または2以上を測定して確認する融液浸透性を粉特性指数として指数化し、さらに、
(3)配合原料中の結晶水割合を鉱石配合割合から算出し、
(4)粗粒鉄鉱石を核粒子とし所定の質量比の細粒鉄鉱石を所定の水分にて付着させて造粒した擬似粒子の通気性を通気特性指数として指数化し、
(5)核特性指数および/または粉特性指数、さらに、配合原料中の結晶水割合と通気特性指数に基づいて、上記焼結用原料の焼結生産性を評価する
ことを特徴とする焼結用原料の評価方法。
In the evaluation method for evaluating the characteristics of the raw material for sintering containing one or more of various iron ores at a predetermined blending ratio, each of the various iron ores is divided into coarse particles and fine particles,
(1) Indexing the porosity in the fired body of pseudo particles granulated by attaching limestone powder to various coarse iron ores as a nuclear characteristic index, and / or
(2) When the molded low-melting-point material is placed on various types of fine-grained iron ore and fired, the distance, cross-sectional area, and volume of the low-melting-point material melt penetrate into the fine-grained iron ore. Alternatively, melt permeability that is confirmed by measuring two or more is indexed as a powder characteristic index,
(3) Calculate the ratio of water of crystallization in the blended raw material from the blend ratio of ore,
(4) Sotsubutetsu ore was indexed the passing temper by attaching fine iron ore having a predetermined mass ratio to the core particles at a predetermined moisture granulated pseudo particles as breathable quality index,
(5) Sintering characterized in that the sintering productivity of the raw material for sintering is evaluated based on the nuclear characteristic index and / or the powder characteristic index, and further the ratio of water of crystallization in the blended raw material and the aeration characteristic index For evaluating raw materials.
前記粗粒鉄鉱石が粒径1mm以上の鉄鉱石であり、前記細粒鉄鉱石が粒径1mm未満の鉄鉱石であることを特徴とする請求項1に記載の焼結用原料の評価方法。   The method for evaluating a raw material for sintering according to claim 1, wherein the coarse iron ore is an iron ore having a particle size of 1 mm or more, and the fine iron ore is an iron ore having a particle size of less than 1 mm. 前記粗粒鉄鉱石の特性が、粗粒鉄鉱石に石灰石粉、微粉鉄鉱石およびコークス粉からなる混合粉を付着させて造粒した擬似粒子の焼成体における気孔率であることを特徴とする請求項1または2に記載の焼結用原料の評価方法。   The characteristic of the coarse iron ore is a porosity in a sintered body of pseudo particles granulated by attaching a mixed powder composed of limestone powder, fine iron ore and coke powder to the coarse iron ore. Item 3. The method for evaluating a raw material for sintering according to Item 1 or 2. 前記細粒鉄鉱石の特性が、円柱状に成型した微粉鉄鉱石と石灰石粉からなる混合粉を焼成した後、底面積を測定して確認する融液流動性であることを特徴とする請求項1〜3のいずれか1項に記載の焼結用原料の評価方法。 The characteristic of the fine-grained iron ore is a melt fluidity that is confirmed by measuring a bottom area after firing a mixed powder composed of fine iron ore and limestone powder formed into a cylindrical shape. The evaluation method of the raw material for sintering of any one of 1-3 . 前記鉄鉱石の通気性が、前記擬似粒子中の鉄鉱石の平均粒度であることを特徴とする請求項1〜4のいずれか1項に記載の焼結用原料の評価方法。 Passing temper of the iron ore, the evaluation method of the sintering raw material according to claim 1-4 any one of, wherein said the average particle size of iron ore in the pseudo particles. 前記核特性指数および/または粉特性指数、さらに、結晶水割合と通気特性指数に基づいて、下記式(1)で定義する焼結生産性指数SPIを算出し、該焼結生産性指数SPIに基づいて、前記焼結用原料の焼結生産性を評価することを特徴とする請求項1〜のいずれか1項に記載の焼結用原料の評価方法。
SPI=k×A×B×(1−D/100)×C …(1)
A:核特性指数
B:粉特性指数
D:配合原料の結晶水割合(%)
C:通気特性指数
x:核特性の寄与率で、0≦x≦1(ただし、y=0のときx≠0)
y:粉特性の寄与率で、0≦y≦1(ただし、x=0のときy≠0)
z:通気特性の寄与率で、0<z≦1
k:係数
Based on the nuclear characteristic index and / or the powder characteristic index, and further the crystallization water ratio and the aeration characteristic index, a sintering productivity index SPI defined by the following formula (1) is calculated, and the sintering productivity index SPI is calculated. based on the evaluation method of the sintering raw material according to any one of claims 1 to 5, characterized in that to evaluate the sintering productivity of the for sintering the raw material.
SPI = k × A x × B y × (1-D / 100) × C z ... (1)
A: Nuclear characteristic index B: Powder characteristic index D: Ratio of crystallization water in blended raw material (%)
C: aeration characteristic index x: contribution ratio of nuclear characteristics, 0 ≦ x ≦ 1 (provided that x ≠ 0 when y = 0)
y: contribution ratio of powder characteristics, 0 ≦ y ≦ 1 (y ≠ 0 when x = 0)
z: contribution rate of air permeability, 0 <z ≦ 1
k: coefficient
前記核特性指数および/または粉特性指数、さらに、結晶水割合と通気特性指数に基づいて、下記式(2)で定義する焼結生産性指数SPIを算出し、該焼結特性指数SPIに基づいて、前記焼結用原料の焼結生産性を評価することを特徴とする請求項1〜のいずれか1項に記載の焼結用原料の評価方法。
SPI=A×B×(1−D/100)±nC …(2)
A:核特性指数
B:粉特性指数
D:配合原料の結晶水割合(%)
C:通気特性指数
x:核特性の寄与率で、0≦x≦1(ただし、y=0のときx≠0)
y:粉特性の寄与率で、0≦y≦1(ただし、x=0のときy≠0)
n:通気特性の寄与係数で、0<n≦15
w:通気特性の寄与率で、0<≦1
A sintering productivity index SPI defined by the following formula (2) is calculated based on the nuclear characteristic index and / or the powder characteristic index, and further, the ratio of water of crystallization and the aeration characteristic index, and based on the sintering characteristic index SPI. The method for evaluating a sintering raw material according to any one of claims 1 to 5 , wherein the sintering productivity of the sintering raw material is evaluated.
SPI = A x × B y × (1-D / 100) ± nC w (2)
A: Nuclear characteristic index B: Powder characteristic index D: Ratio of crystallization water in blended raw material (%)
C: aeration characteristic index x: contribution ratio of nuclear characteristics, 0 ≦ x ≦ 1 (provided that x ≠ 0 when y = 0)
y: contribution ratio of powder characteristics, 0 ≦ y ≦ 1 (y ≠ 0 when x = 0)
n: contribution coefficient of ventilation characteristics, 0 <n ≦ 15
w: contribution rate of air permeability, 0 < w ≦ 1
前記核特性指数Aが、下記式(1a)で定義されるものであることを特徴とする請求項またはに記載の焼結用原料の評価方法。
A=Σ(a×p)/Σ(p) …(1a)
:鉄鉱石iの核特性指数
:粒径1mm以上の鉄鉱石iの配合率(%)
The method for evaluating a raw material for sintering according to claim 6 or 7 , wherein the nuclear characteristic index A is defined by the following formula (1a).
A = Σ (a i × p i ) / Σ (p i ) (1a)
a i : Nuclear characteristic index of iron ore i
p i : Mixing ratio of iron ore i having a particle diameter of 1 mm or more (%)
前記粉特性指数Bが、下記式(1b)で定義されるものであることを特徴とする請求項6〜8のいずれか1項に記載の焼結用原料の評価方法。
B=Σ(b×q)/Σ(q) …(1b)
:鉄鉱石iの粉特性指数
:粒径1mm未満の鉄鉱石iの配合率(%)
The method for evaluating a raw material for sintering according to any one of claims 6 to 8, wherein the powder characteristic index B is defined by the following formula (1b).
B = Σ (b i × q i ) / Σ (q i ) (1b)
b i : Powder characteristic index of iron ore i
q i : Mixing ratio (%) of iron ore i having a particle diameter of less than 1 mm
前記通気特性指数Cが、下記式(1c)で定義されるものであることを特徴とする請求項6〜9のいずれか1項に記載の焼結用原料の評価方法。
C=Σ(c×r)/Σ(r) …(1c)
:鉄鉱石iの通気特性指数
:鉄鉱石iの配合率(%)
The method for evaluating a raw material for sintering according to any one of claims 6 to 9, wherein the gas permeability characteristic index C is defined by the following formula (1c).
C = Σ (c i × r i ) / Σ (r i ) (1c)
c i : Aeration characteristic index of iron ore i
r i : Mixing ratio of iron ore i (%)
各種鉄鉱石の1種または2種以上を所定の配合率で含む焼結用原料を設計する配合設計方法において、各種鉄鉱石のそれぞれを粗粒と細粒に分け、
(1)各種粗粒鉄鉱石に石灰石粉を付着させて造粒した擬似粒子の焼成体における気孔率を核特性指数として指数化し、および/または、
(2)成型した各種細粒鉄鉱石の上に成型した低融点物質を置いて焼成した時、低融点物質の融液が上記細粒鉄鉱石の内部に浸透する距離、断面積および体積の1または2以上を測定して確認する融液浸透性を粉特性指数として指数化し、さらに、
(3)配合原料中の結晶水割合を鉱石配合割合から算出し、
(4)粗粒鉄鉱石を核粒子とし所定の質量比の細粒鉄鉱石を所定の水分にて付着させて造粒した擬似粒子の通気性を通気特性指数として指数化し、
(5)核特性指数および/または粉特性指数、さらに、配合原料中の結晶水割合と通気特性指数に基づいて、下記式(1)で定義する焼結生産性指数SPIを算出し、
(6)上記焼結生産性指数SPIに基づいて、上記焼結用原料の焼結生産性を評価し、
(7)評価結果に基づいて、上記焼結用原料に配合する鉄鉱石の配合率を調整する
ことを特徴とする焼結用原料の配合設計方法。
SPI=k×A×B×(1−D/100)×C …(1)
A:核特性指
B:粉特性指数
D:配合原料の結晶水割合(%)
C:通気特性指数
x:核特性の寄与率で、0≦x≦1(ただし、y=0のときx≠0)
y:粉特性の寄与率で、0≦y≦1(ただし、x=0のときy≠0)
z:通気特性の寄与率で、0<z≦1
k:係数
In a blending design method for designing a raw material for sintering containing one or more of various iron ores at a predetermined blending ratio, each of the various iron ores is divided into coarse grains and fine grains,
(1) Indexing the porosity in the fired body of pseudo particles granulated by attaching limestone powder to various coarse iron ores as a nuclear characteristic index, and / or
(2) When the molded low-melting-point material is placed on various types of fine-grained iron ore and fired, the distance, cross-sectional area, and volume of the low-melting-point material melt penetrate into the fine-grained iron ore. Alternatively, melt permeability that is confirmed by measuring two or more is indexed as a powder characteristic index,
(3) Calculate the ratio of water of crystallization in the blended raw material from the blend ratio of ore,
(4) Sotsubutetsu ore was indexed the passing temper by attaching fine iron ore having a predetermined mass ratio to the core particles at a predetermined moisture granulated pseudo particles as breathable quality index,
(5) Calculate the sintering productivity index SPI defined by the following formula (1) based on the nuclear characteristic index and / or the powder characteristic index, and further, the ratio of water of crystallization in the blended raw material and the aeration characteristic index,
(6) Based on the sintering productivity index SPI, the sintering productivity of the sintering raw material is evaluated,
(7) A method for blending and designing a raw material for sintering, wherein the blending ratio of iron ore to be blended with the raw material for sintering is adjusted based on the evaluation result.
SPI = k × A x × B y × (1-D / 100) × C z ... (1)
A: the number of nuclear properties finger
B: Powder characteristic index D: Crystal water ratio of blended raw material (%)
C: aeration characteristic index x: contribution ratio of nuclear characteristics, 0 ≦ x ≦ 1 (provided that x ≠ 0 when y = 0)
y: contribution ratio of powder characteristics, 0 ≦ y ≦ 1 (y ≠ 0 when x = 0)
z: contribution rate of air permeability, 0 <z ≦ 1
k: coefficient
各種鉄鉱石の1種または2種以上を所定の配合率で含む焼結用原料を設計する配合設計方法において、各種鉄鉱石のそれぞれを粗粒と細粒に分け、
(1)各種粗粒鉄鉱石に石灰石粉を付着させて造粒した擬似粒子の焼成体における気孔率を核特性指数として指数化し、および/または、
(2)成型した各種細粒鉄鉱石の上に成型した低融点物質を置いて焼成した時、低融点物質の融液が上記細粒鉄鉱石の内部に浸透する距離、断面積および体積の1または2以上を測定して確認する融液浸透性を粉特性指数として指数化し、さらに、
(3)配合原料中の結晶水割合を鉱石配合割合から算出し、
(4)粗粒鉄鉱石を核粒子とし所定の質量比の細粒鉄鉱石を所定の水分にて付着させて造粒した擬似粒子の通気性を通気特性指数として指数化し、
(5)核特性指数および/または粉特性指数、さらに、配合原料中の結晶水割合と通気特性指数に基づいて、下記式(2)で定義する焼結生産性指数SPIを算出し、
(6)上記焼結生産性指数SPIに基づいて、上記焼結用原料の焼結生産性を評価し、
(7)評価結果に基づいて、上記焼結用原料に配合する鉄鉱石の配合率を調整する
ことを特徴とする焼結用原料の配合設計方法。
SPI=A×B×(1−D/100)±nC …(2)
A:核特性指数
B:粉特性指数
D:配合原料の結晶水割合(%)
C:通気特性指数
x:核特性の寄与率で、0≦x≦1(ただし、y=0のときx≠0)
y:粉特性の寄与率で、0≦y≦1(ただし、x=0のときy≠0)
n:通気特性の寄与係数で、0<n≦15
w:通気特性の寄与率で、0<≦1
In a blending design method for designing a raw material for sintering containing one or more of various iron ores at a predetermined blending ratio, each of the various iron ores is divided into coarse grains and fine grains,
(1) Indexing the porosity in the fired body of pseudo particles granulated by attaching limestone powder to various coarse iron ores as a nuclear characteristic index, and / or
(2) When the molded low-melting-point material is placed on various types of fine-grained iron ore and fired, the distance, cross-sectional area, and volume of the low-melting-point material melt penetrate into the fine-grained iron ore. Alternatively, melt permeability that is confirmed by measuring two or more is indexed as a powder characteristic index,
(3) Calculate the ratio of water of crystallization in the blended raw material from the blend ratio of ore,
(4) Sotsubutetsu ore was indexed the passing temper by attaching fine iron ore having a predetermined mass ratio to the core particles at a predetermined moisture granulated pseudo particles as breathable quality index,
(5) Based on the nuclear characteristic index and / or the powder characteristic index, and further, based on the ratio of water of crystallization in the blended raw material and the aeration characteristic index, a sintering productivity index SPI defined by the following formula (2) is calculated,
(6) Based on the sintering productivity index SPI, the sintering productivity of the sintering raw material is evaluated,
(7) A method for blending and designing a raw material for sintering, wherein the blending ratio of iron ore to be blended with the raw material for sintering is adjusted based on the evaluation result.
SPI = A x × B y × (1-D / 100) ± nC w (2)
A: Nuclear characteristic index B: Powder characteristic index D: Ratio of crystallization water in blended raw material (%)
C: aeration characteristic index x: contribution ratio of nuclear characteristics, 0 ≦ x ≦ 1 (provided that x ≠ 0 when y = 0)
y: contribution ratio of powder characteristics, 0 ≦ y ≦ 1 (y ≠ 0 when x = 0)
n: contribution coefficient of ventilation characteristics, 0 <n ≦ 15
w: contribution rate of air permeability, 0 < w ≦ 1
前記(5)の焼結生産性指数SPIの算出、前記(6)の焼結生産性の評価、および、前記(7)の配合率の調整を、焼結生産性指数が所定の値に達するまで繰り返し行うこと
を特徴とする請求項11または12に記載の焼結用原料の配合設計方法。
The calculation of the sintering productivity index SPI of the above (5), the evaluation of the sintering productivity of the above (6), and the adjustment of the blending ratio of the above (7), the sintering productivity index reaches a predetermined value. The method for blending and designing a raw material for sintering according to claim 11 or 12 , wherein the method is repeatedly performed.
前記粗粒鉄鉱石が粒径1mm以上の鉄鉱石であり、前記細粒鉄鉱石が粒径1mm未満の鉄鉱石であることを特徴とする請求項1113のいずれか1項に記載の焼結用原料の配合設計方法。 Wherein a coarse iron ore particle diameter 1mm or more iron ore, baked according to any one of claims 11 to 13, wherein the fine particle iron ore, characterized in that an iron ore of particle size less than 1mm Formulation design method of ligation raw materials. 前記粗粒鉄鉱石の特性が、粗粒鉄鉱石に石灰石粉、微粉鉄鉱石およびコークス粉からなる混合粉を付着させて造粒した擬似粒子の焼成体における気孔率であることを特徴とする請求項1114のいずれか1項に記載の焼結用原料の評価方法。 The characteristic of the coarse iron ore is a porosity in a sintered body of pseudo particles granulated by attaching a mixed powder composed of limestone powder, fine iron ore and coke powder to the coarse iron ore. Item 15. The method for evaluating a raw material for sintering according to any one of Items 11 to 14 . 前記細粒鉄鉱石の特性が、円柱状に成型した微粉鉄鉱石と石灰石粉からなる混合粉を焼成した後、底面積を測定して確認する融液流動性であることを特徴とする請求項1115のいずれか1項に記載の焼結用原料の配合設計方法。 The characteristic of the fine-grained iron ore is a melt fluidity that is confirmed by measuring a bottom area after firing a mixed powder composed of fine iron ore and limestone powder formed into a cylindrical shape. The method for blending and designing raw materials for sintering according to any one of 11 to 15 . 前記鉄鉱石の通気性が、前記擬似粒子中の鉄鉱石の平均粒度であることを特徴とする請求項1116のいずれか1項に記載の焼結用原料の配合設計方法。 Passing temper of the iron ore, the mix design method of sintering raw material according to any one of claims 11 to 16, characterized in that the average particle size of iron ore in the pseudo particles. 前記核特性指数Aが、下記式(1a)で定義されるものであることを特徴とする請求項11〜17のいずれか1項に記載の焼結用原料の配合設計方法。
A=Σ(a×p)/Σ(p) …(1a)
:鉄鉱石iの核特性指数
:粒径1mm以上の鉄鉱石iの配合率(%)
The said nuclear characteristic index | exponent A is defined by following formula (1a), The mixing | blending design method of the raw material for sintering of any one of Claims 11-17 characterized by the above-mentioned.
A = Σ (a i × p i ) / Σ (p i ) (1a)
a i : Nuclear characteristic index of iron ore i
p i : Mixing ratio of iron ore i having a particle diameter of 1 mm or more (%)
前記粉特性指数Bが、下記式(1b)で定義されるものであることを特徴とする請求項11〜18のいずれか1項に記載の焼結用原料の配合設計方法。
B=Σ(b×q)/Σ(q) …(1b)
:鉄鉱石iの粉特性指数
:粒径1mm未満の鉄鉱石iの配合率(%)
The method for blending and designing a raw material for sintering according to any one of claims 11 to 18, wherein the powder characteristic index B is defined by the following formula (1b).
B = Σ (b i × q i ) / Σ (q i ) (1b)
b i : Powder characteristic index of iron ore i
q i : Mixing ratio (%) of iron ore i having a particle diameter of less than 1 mm
前記通気性特指数Cが、下記式(1c)で定義されるものであることを特徴とする請求項11〜19のいずれか1項に記載の焼結用原料の配合設計方法。
C=Σ(c×r)/Σ(r) …(1c)
:鉄鉱石iの通気特性指数
:鉄鉱石iの配合率(%)
The method for blending and designing a raw material for sintering according to any one of claims 11 to 19, wherein the air permeability characteristic index C is defined by the following formula (1c).
C = Σ (c i × r i ) / Σ (r i ) (1c)
c i : Aeration characteristic index of iron ore i
r i : Mixing ratio of iron ore i (%)
前記焼結用原料中の粒径0.25mm以下の割合が25%以下であることを特徴とする請求項11〜20のいずれか1項に記載の焼結用原料の配合設計方法。 21. The method for blending and designing a raw material for sintering according to any one of claims 11 to 20, wherein a ratio of a particle size of 0.25 mm or less in the raw material for sintering is 25% or less.
JP2004284593A 2004-09-29 2004-09-29 Raw material evaluation method and blending design method Active JP4518895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004284593A JP4518895B2 (en) 2004-09-29 2004-09-29 Raw material evaluation method and blending design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004284593A JP4518895B2 (en) 2004-09-29 2004-09-29 Raw material evaluation method and blending design method

Publications (2)

Publication Number Publication Date
JP2006097083A JP2006097083A (en) 2006-04-13
JP4518895B2 true JP4518895B2 (en) 2010-08-04

Family

ID=36237172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004284593A Active JP4518895B2 (en) 2004-09-29 2004-09-29 Raw material evaluation method and blending design method

Country Status (1)

Country Link
JP (1) JP4518895B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101719516B1 (en) 2015-11-05 2017-03-24 주식회사 포스코 Method for manufacturing sintered ore

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032466A1 (en) * 2008-09-17 2010-03-25 新日本製鐵株式会社 Sintered ore manufacturing method
JP5287127B2 (en) * 2008-10-15 2013-09-11 新日鐵住金株式会社 Evaluation method of compound iron ore for sintering
KR101205040B1 (en) 2011-08-30 2012-11-27 현대제철 주식회사 Viscosity Test for Sintered fuel
KR101466461B1 (en) * 2013-01-31 2014-12-01 현대제철 주식회사 Method for producing sintered ore
JP5565481B2 (en) * 2013-02-04 2014-08-06 新日鐵住金株式会社 Evaluation method of compound iron ore for sintering
KR101466468B1 (en) * 2013-02-28 2014-11-28 현대제철 주식회사 Method for producing sintered ore
CN112694322B (en) * 2021-01-28 2023-11-10 中冶赛迪技术研究中心有限公司 Sintered body, preparation method thereof and characterization method of high-temperature spreading behavior

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062290A (en) * 2000-08-21 2002-02-28 Nippon Steel Corp Iron ore powder evaluating method
JP2003082417A (en) * 2001-09-10 2003-03-19 Nippon Steel Corp Method for evaluating raw material for sintering, and blending design method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062290A (en) * 2000-08-21 2002-02-28 Nippon Steel Corp Iron ore powder evaluating method
JP2003082417A (en) * 2001-09-10 2003-03-19 Nippon Steel Corp Method for evaluating raw material for sintering, and blending design method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101719516B1 (en) 2015-11-05 2017-03-24 주식회사 포스코 Method for manufacturing sintered ore

Also Published As

Publication number Publication date
JP2006097083A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
JP4518895B2 (en) Raw material evaluation method and blending design method
JP5168802B2 (en) Method for producing sintered ore
JP4528362B2 (en) Method for producing sintered ore
JP2002062290A (en) Iron ore powder evaluating method
JP4510343B2 (en) Raw material evaluation method and blending design method
KR100792133B1 (en) Method for producing sintered ore
JP2007327096A (en) Method for manufacturing sintered ore using brucite
KR0173842B1 (en) Sintered ore manufacturing method using high crystal water iron ore as raw materials
KR100510346B1 (en) Method for Evaluating Sintering Characteristic of Raw Materials to Be Sintered and Blending the Raw Materials Using Evaluation Results
JP4725230B2 (en) Method for producing sintered ore
JP4392302B2 (en) Method for producing sintered ore
JP5004421B2 (en) Method for producing sintered ore
JP4982993B2 (en) Method for producing sintered ore
JP4982986B2 (en) Method for producing sintered ore
JP5801752B2 (en) Sintered ore
JP4501656B2 (en) Method for producing sintered ore
JP3006884B2 (en) Sinter for iron making using pisolite iron ore as raw material and method for producing the same
JP5011637B2 (en) Processing method of ore for sintering
JP2005307256A (en) Method for producing sintered ore
JPH0995742A (en) Production of sintered ore by using iron ore high in water of crystallization
JP4767425B2 (en) Method for producing sintered ore
JP2023089461A (en) Method for estimating high temperature region reduction rate of sintered ore and method for manufacturing sintered ore
JP2005307255A (en) Method for producing sintered ore
JP5074043B2 (en) Method for producing sintered ore
KR101505288B1 (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4518895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250