JP3394563B2 - Method for producing sintered ore with excellent softening and melting properties - Google Patents

Method for producing sintered ore with excellent softening and melting properties

Info

Publication number
JP3394563B2
JP3394563B2 JP16836993A JP16836993A JP3394563B2 JP 3394563 B2 JP3394563 B2 JP 3394563B2 JP 16836993 A JP16836993 A JP 16836993A JP 16836993 A JP16836993 A JP 16836993A JP 3394563 B2 JP3394563 B2 JP 3394563B2
Authority
JP
Japan
Prior art keywords
powder
limestone
sintered ore
sinter
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16836993A
Other languages
Japanese (ja)
Other versions
JPH073342A (en
Inventor
陽三 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16836993A priority Critical patent/JP3394563B2/en
Publication of JPH073342A publication Critical patent/JPH073342A/en
Application granted granted Critical
Publication of JP3394563B2 publication Critical patent/JP3394563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は軟化溶融性状の優れた焼
結鉱を製造する焼結鉱の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered ore for producing a sintered ore having an excellent softening and melting property.

【0002】[0002]

【従来の技術】従来から焼結鉱の製造では、焼結原料に
粉コークスや粉石灰石等の副原料を配合して混合し、そ
の配合原料を造粒機で造粒したのち焼結機に装入し、焼
結層の通気を良好に保ちながら操業している。焼結鉱の
品質を向上させるために、通気性に悪影響を及ぼす粉コ
ークス中0.5mm以下を少なくする粒度調整が図られ
たり、融液生成に重要な働きをする粉石灰石の特定粒度
を増減させる粒度調整などが実施されてきた。ただ、こ
れらの手段では還元粉化性や被還元性は改善できるが、
高炉下部の反応で最も重要な軟化溶融性状を改善する手
段にはなっていなかった。
2. Description of the Related Art Conventionally, in the manufacture of sintered ore, auxiliary raw materials such as powdered coke and powdered limestone are mixed and mixed with a sintering raw material, and the mixed raw material is granulated by a granulator, and then the sintering machine is used. It is charged and operated while maintaining good ventilation of the sintered layer. In order to improve the quality of the sinter, the particle size is adjusted to reduce 0.5 mm or less in the powder coke, which adversely affects the air permeability, and the specific particle size of the powdered limestone that plays an important role in melt formation is increased or decreased. Particle size adjustment has been carried out. However, although these means can improve the reduction powdering property and the reducibility,
It was not a means to improve the most important softening and melting property in the reaction in the lower part of the blast furnace.

【0003】例えば、特公昭63−13475号公報に
は、粒径7mm未満が100重量%の粉コークスにセメ
ントと水を加えて混合して混合物を積付けし、セメント
の水和反応により形成された水和物でコークス粒子間が
結合されるまで養生し、この積付け養生物を粒径0.5
mm未満が40重量%以下となるように解砕して鉄鉱石
焼結時に使用し、粉コークスの燃焼効率を向上させて成
品焼結鉱の被還元性(JIS還元率)を向上させる方法
が開示されている。ところが、高炉下部の反応を大幅に
向上させるには焼結鉱の被還元性向上だけでは不十分
で、焼結鉱の軟化溶融性状の改善が重要であるが、その
改善については何も記載されていない。
For example, in Japanese Examined Patent Publication No. 63-13475, a cement coke having a particle diameter of less than 7 mm and 100% by weight is mixed with cement and water, and the mixture is stacked to form a cement hydration reaction. The coke particles are aged with hydrated hydrate until the coke particles are bonded to each other.
A method of crushing to less than 40% by weight of less than mm and using it at the time of iron ore sintering to improve the combustion efficiency of powder coke and improve the reducibility (JIS reduction rate) of the product sintered ore. It is disclosed. However, improving the reducibility of the sinter alone is not enough to significantly improve the reaction in the lower part of the blast furnace, and it is important to improve the softening and melting properties of the sinter. Not not.

【0004】特公昭63−6616号公報には、粉鉄鉱
石を下方吸気式焼結機で焼結する際、粒度が10mm以
下0.5mm以上の粗粒石灰石を他の配合原料と共に配
合して石灰石の焼結過程に於ける反応を遅らせることに
より、2次ヘマタイトの生成又は成長を少なくして耐還
元粉化性を向上させる焼結鉱の製造法が開示されてい
る。しかし、高炉下部の反応で最も重要な軟化溶融性状
の改善については何も記載されていない。
In Japanese Examined Patent Publication No. 63-6616, when powdered iron ore is sintered by a lower intake type sintering machine, coarse limestone having a grain size of 10 mm or less and 0.5 mm or more is blended with other blending raw materials. Disclosed is a method for producing a sinter that delays the reaction in the sintering process of limestone to reduce the production or growth of secondary hematite and improve the reduction pulverization resistance. However, nothing is mentioned about the most important improvement of the softening and melting property in the reaction in the lower part of the blast furnace.

【0005】特開昭57−192228号公報には、粉
鉄鉱石を下方吸気式焼結機で焼結する際、粒度1〜3m
mが50%以上の石灰石や粒度3〜5mmが10%以下
の石灰石、粒度0.25mm以下の微粒子が19%以下
の石灰石等を他の原料と配合し焼結することにより、骸
晶状菱型ヘマタイトおよび板状カルシウムフェライトの
生成を抑制し、被還元性の良い針状カルシウムフェライ
トと耐還元粉化性の良好な斑状ヘマタイトの生成を増や
した、耐還元粉化性と被還元性を向上させる焼結鉱の製
造法が開示されている。しかし、高炉下部の反応で最も
重要な軟化溶融性状の改善については何も記載されてい
ない。
In Japanese Patent Application Laid-Open No. 57-192228, when powdered iron ore is sintered by a lower air intake type sintering machine, the grain size is 1 to 3 m.
By mixing limestone having m of 50% or more, limestone having a particle size of 3 to 5 mm of 10% or less, limestone having a particle size of 0.25 mm or less of 19% or less with other raw materials and sintering, skeleton rhomboid Suppresses the formation of type hematite and plate-like calcium ferrite, and increases the formation of acicular calcium ferrite with good reducibility and mottled hematite with good resistance to reduction pulverization, improving reduction pulverization resistance and reducibility A method of producing a sintered ore is disclosed. However, nothing is mentioned about the most important improvement of the softening and melting property in the reaction in the lower part of the blast furnace.

【0006】特開昭61−34119号公報には、微粉
鉱石に石灰石を他の配合原料と共に添加して焼結する方
法において、石灰石の粒度を3〜5mmの粒子が全石灰
石量の35wt%以上となるように調整して、焼結層の
通気を良好にしてヒートパターンの高温保持時間を短く
し、カルシウムフェライトと再酸化ヘマタイトの隣接を
抑制して耐還元粉化性を著しく改善する焼結鉱の製造法
が開示されている。同公報では落下強度や被還元性は従
来の焼結法と同等と説明されているが、高炉下部の反応
で最も重要な軟化溶融性状の改善については記載されて
いない。
Japanese Patent Laid-Open No. 61-34119 discloses a method in which limestone is added to finely powdered ore together with other compounding raw materials and sintered, and particles of limestone having a particle size of 3 to 5 mm account for 35 wt% or more of the total amount of limestone. Sintering that improves the ventilation resistance of the sintered layer, shortens the high-temperature holding time of the heat pattern, suppresses the adjacency between calcium ferrite and reoxidized hematite, and significantly improves the resistance to reduction pulverization. A method of making ore is disclosed. The publication describes that the drop strength and the reducibility are equivalent to those of the conventional sintering method, but does not describe the most important improvement in the softening and melting property in the reaction in the lower part of the blast furnace.

【0007】特開昭58−91132号公報には、粉状
鉱石を下方吸気式焼結機で焼結する際、石灰石を水分2
〜7%で造粒し、造粒後の粒度が0.5mm以下が20
%以下、3mm以上が40%以下の石灰石を他の原料と
配合して焼結し、還元粉化性に悪い2次ヘマタイトの生
成を抑えながら被還元性の良いカルシウムフェライトを
多量に生成してJIS還元率と還元粉化指数(RDI)
の向上を図る焼結鉱の製造法が開示されている。しか
し、軟化溶融性状の改善については記載されていない。
In Japanese Patent Laid-Open No. 58-91132, when powdered ore is sintered by a lower air intake type sintering machine, limestone has a water content of 2%.
Granulate at ~ 7% and the particle size after granulation is 0.5 mm or less is 20
% Or less and 3 mm or more and 40% or less of limestone is mixed with other raw materials and sintered to produce a large amount of calcium ferrite having good reducibility while suppressing the formation of secondary hematite having poor reduction powderability. JIS reduction rate and reduction dusting index (RDI)
There is disclosed a method for producing a sintered ore aiming at improvement of the temperature. However, no mention is made of improvement in softening and melting properties.

【0008】ISIJ International,
31(1991)5,p.468には、焼結過程で粒径
が0.7mm以上の石灰石や0.5mm以上の粉コーク
スが消滅した後に、焼結鉱中にマクロ気孔が生成し易い
ことが記載されている。しかし、軟化溶融性状の改善に
ついては何も触れられていない。
ISIJ International,
31 (1991) 5, p. 468 describes that macro pores are easily generated in the sintered ore after the limestone having a particle size of 0.7 mm or more and the powder coke having a particle size of 0.5 mm or more disappear in the sintering process. However, nothing is mentioned about improvement of softening and melting properties.

【0009】材料とプロセス,4(1991),p.1
126には、スケールなどの高FeO原料を5wt%以
上配合すれば低融点のシリケートスラグが生成し易いこ
とが記載されている。しかし、高FeO原料多配合以外
の手段については記載されておらず、微粉コークス減少
とシリケートスラグ生成増の関係ならびに軟化溶融性状
改善に関する記載はない。
Materials and Processes, 4 (1991), p. 1
It is described in 126 that if a high FeO raw material such as scale is mixed in an amount of 5 wt% or more, a low-melting point silicate slag is easily generated. However, there is no description about means other than high FeO raw material content, and there is no description about the relationship between reduction of fine coke and increase of silicate slag formation and improvement of softening and melting properties.

【0010】[0010]

【発明が解決しようとする課題】本発明は、これまで制
御する手段が確立されていなかった軟化溶融性状の優れ
た焼結鉱の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing sinter having excellent softening and melting properties, for which no means for controlling it has been established.

【0011】[0011]

【課題を解決するための手段】本発明の要旨は以下の通
りである。
The gist of the present invention is as follows.

【0012】(1) 焼結機に装入する前に、焼結原料中
に配合するコークスの粒度を0.5mm以下の微粉が0
超〜25wt%、5.0〜10.0mmの粗粒が0超〜
10wt%になるように調整し、焼結原料中に配合する
石灰石の粒度を1.0mm以下の微粉が0超〜30wt
%、5.0〜10.0mmの粗粒が0超〜20wt%に
なるように調整したのち、配合原料全体を混合・造粒し
てから焼結機で焼成してシリケートスラグとマグネタイ
トの結合組織に50μm以上のマクロ気孔が分散した組
織を有する焼結鉱を製造することを特徴とする軟化溶融
性状の優れた焼結鉱の製造方法。
(1) Before charging into the sintering machine, the coke to be mixed in the sintering raw material has a particle size of 0.5 mm or less,
Super ~ 25wt%, 5.0 ~ 10.0mm coarse particles over 0 ~
Adjust the particle size of limestone to be mixed in the sintering raw material so that it becomes 10 wt%, and the fine powder having a particle size of 1.0 mm or less exceeds 0 to 30 wt.
%, 5.0 to 10.0 mm of coarse particles are adjusted to more than 0 to 20 wt%, and then the whole compounded raw material is mixed and granulated and then fired by a sintering machine to bond silicate slag and magnetite. A method for producing a sinter having excellent softening and melting properties, which comprises producing a sinter having a texture in which macropores of 50 μm or more are dispersed.

【0013】(2) 焼結機に装入する前に、焼結原料中
に配合する返鉱または焼結鉱篩下粉の粒度を0.5mm
以下の微粉が0〜5wt%になるように調整すること
を特徴とする前記(1)の軟化溶融性状の優れた焼結鉱の
製造方法。
(2) In the sintering raw material before charging into the sintering machine
0.5mm particle size of return ores or sinter sieve under powder blended into
The method for producing a sintered ore according to the above (1), characterized in that the following fine powders are adjusted to be more than 0 to 5 wt%.

【0014】[0014]

【作用】本発明は、前記課題を解決するため、焼結原料
に配合する粉コークスや粉石灰石、返鉱、焼結鉱粉の粒
度分布を焼成前に調整することにより、マクロ気孔生成
と粘性の高いシリケートスラグ生成の組合せで焼結鉱中
のマクロ気孔を多く確保することにより軟化溶融性状の
優れた焼結鉱を得る。
In order to solve the above-mentioned problems, the present invention adjusts the particle size distribution of powdered coke, powdered limestone, return ore, and sintered ore powder to be mixed with the sintering raw material before firing, thereby forming macropores and viscosity. A sinter having excellent softening and melting properties can be obtained by securing a large number of macropores in the sinter by a combination of silicate slag formation with a high temperature.

【0015】本発明は、まず粉コークスの0.5mm以
下の微粉を大幅に減少させて、擬似粒子の付着粉内へ埋
没する粉コークス量を減らして燃焼性を大幅に改善し、
単位時間当たりの粉コークス燃焼量を増加させて焼結層
内の酸素分圧(Po2)を低下させる。そうすると、図
2に示すようにCaO−SiO2−FeO系の低融点
シリケートスラグ生成が促進されて融液量も増加し、逆
、図1に示すCaO−SiO 2 −Fe 2 3 系のカルシ
ウムフェライト融液の生成は抑制される。
In the present invention, first, the powder coke having a diameter of 0.5 mm or less is used.
By significantly reducing the fine powder below, the amount of powder coke buried in the powder adhering to the pseudo particles is reduced, and the flammability is greatly improved.
The amount of burned powder coke per unit time is increased to reduce the oxygen partial pressure (Po 2 ) in the sintered layer. Then, as shown in FIG. 2 , the CaO—SiO 2 —FeO-based low-melting silicate slag is promoted to increase the melt amount, and conversely, the CaO—SiO 2 —Fe 2 O 3 -based CaO—SiO 2 —Fe 2 O 3 -based alloy shown in FIG. The formation of this calcium ferrite melt is suppressed.

【0016】それに加えて、石灰石の1.0mm以下の
微粉を大幅に減少させて石灰石の反応性を抑制するの
で、石灰石は生成した粘性の高いシリケートスラグと反
応することになり、石灰石の反応・消滅後にマクロ気孔
(50μm以上)が形成される。当然コークスの燃焼
・消滅後にもマクロ気孔が形成される。シリケートスラ
グは粘性が高いので気孔に浸透し難く、気孔自身を閉塞
することも少ないので、マクロ気孔を焼結鉱全体に、好
ましくは均一に造ることができる。
In addition to that, the limestone of 1.0 mm or less
Since the fine powder is greatly reduced to suppress the reactivity of limestone, the limestone reacts with the generated highly viscous silicate slag, and macropores (50 μm or more) are formed after the reaction and disappearance of the limestone. Naturally , macropores are formed even after coke burns and disappears. Silicate slag hardly penetrate into the pores since the viscosity is high, it is also less likely to block the pores themselves, the macro pores to the entire sintered ore, good
More preferably , it can be made uniformly.

【0017】この粉コークスの0.5mm以下の微粉
減少させる方法と粉石灰石の1.0mm以下の微粉を減
少させる方法を組み合わせると、従来と違い焼結鉱はシ
リケートスラグ結合主体にマクロ気孔を焼結鉱全体に、
好ましくは均一に分布させたものになり、高炉内で昇
温、還元されると閉塞しない気孔内にガスが十分浸透す
るので、還元が著しく促進される。しかもシリケートス
ラグとマグネタイトが主体で、一部ヘマタイトの結合
織であるので、カルシウムフェライトとヘマタイトが主
体の結合組織に多く見られるような還元時の粉化は少な
い。すなわち、耐還元粉化性が良好で、マクロ気孔が
結鉱全体に、好ましくは均一に分散しているのでJI
S還元率も向上した焼結鉱になる。この焼結鉱は高炉シ
ャフト下部の軟化融着ゾーンまで降下してもマクロ気孔
がつぶれないので還元が益々促進されることになり、メ
タル・スラグの分離もより高温側に移行してスムーズに
なり、図3に示すように焼結鉱の高温荷重軟化溶融試
験の性状が大幅に改善されることになる。返鉱や焼結鉱
粉の微粉部分にはCaOが10%程度含まれているの
で、この部分を少なくして配合すればシリケートスラグ
の生成がさらに促進され、上記効果はより増加すること
になる。
By combining the method of reducing the fine powder of coke powder of 0.5 mm or less with the method of reducing the fine powder of powder limestone of 1.0 mm or less, the sintered ore has macropores mainly in the silicate slag bonding unlike the conventional one. For the whole sinter,
It is preferably uniformly distributed, and when the temperature is raised and reduced in the blast furnace, the gas sufficiently penetrates into the pores that are not clogged, so that the reduction is significantly promoted. In addition, since silicate slag and magnetite are the main constituents and part of them is a hematite-bonded structure, there is little pulverization at the time of reduction, which is often found in the connective structure where calcium ferrite and hematite are the main constituents. That is, the reduction powder resistance is good and the macro pores are burnt.
Since it is preferably uniformly dispersed throughout the sinter , JI
It becomes a sintered ore with an improved S reduction rate. Even if this sinter goes down to the softening and fusion zone under the blast furnace shaft, macro pores do not collapse, further promoting reduction, and the separation of metal and slag also shifts to a higher temperature side and becomes smoother. as shown in FIG. 3, the properties of the high temperature load softening and melting test of sintered ore is to be greatly improved. Since the fine powder portion of the return or sintered ore powder contains about 10% of CaO, if the content of this portion is reduced, the production of silicate slag is further promoted and the above effect is further increased. .

【0018】鉄と鋼,72(1986)4,S3には、
高炉内熱保存帯(シャフト中部)までの低温還元性はJ
IS還元率が62%以上であれば良好で、それ以上に改
善してもシャフト効率は横這いになり、また熱保存帯以
降(シャフト下部)の高温還元性はJIS還元率と気孔
率によって整理され、JIS還元率のみの改善では高温
還元性向上幅は少なく、焼結鉱の気孔率増加との組合せ
が大きな改善効果をもたらすと記載されている。この記
載からも、本発明法によるマクロ気孔生成増の軟化溶融
性状改善策が妥当であるといえる。
Iron and Steel, 72 (1986) 4, S3,
Low temperature reducibility up to the heat preservation zone in the blast furnace (central shaft) is J
If the IS reduction rate is 62% or more, it is good. Even if the IS reduction rate is further improved, the shaft efficiency will level off, and the high-temperature reducibility after the heat preservation zone (lower part of the shaft) will be organized by the JIS reduction rate and porosity. It is described that the improvement in high temperature reducibility is small when only the JIS reduction rate is improved, and that the combination with the increase in the porosity of the sintered ore brings about a great improvement effect. From this description, it can be said that the measure for improving the softening / melting property by increasing the generation of macropores by the method of the present invention is appropriate.

【0019】本発明法でコークスの粒度を0.5mm以
下の微粉が0超〜25wt%、5.0〜10.0mmの
粗粒が0超〜10wt%としたのは、事前に実施した鍋
試験結果で0.5mm以下の微粉コークスが25wt%
より少なくなると効果が出始め、5.0〜10.0mm
の粗粒が10wt%を越えると焼結ベッド下層部への偏
析増加による下層部熱過剰の悪影響と気孔の不均一分散
が逆に見られ始めるからである。微粉コークスの粒度設
定を0.5mm以下としたのは、焼結原料の擬似粒子の
顕微鏡観察で0.5mm以下の粉コークスが付着粉内に
多く埋没していたからであり、粗粒コークス上限の粒度
設定を5.0〜10.0mmとしたのは、同じく擬似粒
子の顕微鏡観察で5.0mm以上の粉コークスは単独で
存在し、かつ焼結ベッド層高方向の各層解体調査で下層
部分に多く偏析していたからである。また、この粒度調
整した粉コークスは、焼結新原料の合計(鉄鉱石と焼結
鉱粉、副原料)を100%とすると、外%(100%に
加えての意味)表示で1.0wt%添加から効果が出始
め、7.0wt%以上では熱過剰で効果が見られなくな
った。
According to the method of the present invention, the coke grain size is set to be more than 0 to 25 wt% for fine powder of 0.5 mm or less and 0 to 10 wt% for coarse particles of 5.0 to 10.0 mm. 25 wt% of fine coke of 0.5 mm or less in the test result
When it becomes less, the effect begins to appear, 5.0-10.0 mm
If the coarse particles of more than 10 wt%, the adverse effect of excess heat in the lower layer due to an increase in segregation in the lower layer of the sintering bed and the non-uniform distribution of pores will start to be seen in reverse. The reason for setting the particle size of the fine coke to 0.5 mm or less is that a large amount of powder coke having a size of 0.5 mm or less was buried in the adhering powder by observing the pseudo particles of the sintering raw material under a microscope. The setting of 5.0 to 10.0 mm is that the powder coke having a size of 5.0 mm or more exists by the microscopic observation of the pseudo particles, and a large amount is present in the lower layer portion in the layer disassembly study in the sintering bed layer height direction. Because it was segregated. In addition, the powder coke with the adjusted particle size is 1.0 wt% (meaning in addition to 100%) when the total of the new sintering raw materials (iron ore, sintered ore powder, and auxiliary raw materials) is 100%. % Addition, the effect began to appear, and at 7.0 wt% or more, the effect was not seen due to excessive heat.

【0020】同時に石灰石の粒度を1.0mm以下の微
粉が0超〜30wt%、5.0〜10.0mmの粗粒が
0超〜20wt%としたのも、粉コークスの場合と同じ
く、事前の鍋試験結果で1.0mm以下の微粉が30w
t%より少なくなるとマクロ気孔の焼結鉱全体にわたる
生成の効果が出始め、5.0〜10.0mmの粗粒は逆
に20wt%を越える辺りから気孔径が大きくなり過ぎ
て気孔数が減り、かつ、不均一に分散し始めるからであ
る。微粉石灰石の粒度設定を1.0mm以下としたの
は、焼結原料の擬似粒子の顕微鏡観察で1.0mm以下
の微粉石灰石は付着粉内に取り込められていたからであ
る。1〜5mmの粗粒の多くは擬似粒子の核部分になっ
ていたので、その部分からマクロ気孔が生成されると推
定できた。粗粒石灰石の上限を5.0〜10.0mmと
設定したのは、擬似粒子の顕微鏡観察で5.0mm以上
の石灰石は単独で存在し、かつ焼結ベッド層高方向の各
層解体調査でも下層部分に多く偏析して、均一なマクロ
気孔形成への悪影響が考えられるからである。またこの
粉石灰石は、焼結新原料の合計を100%とすると、内
%表示で5.0wt%以上添加から効果が出始め、15
wt%以上になると効果は横這いになった。
At the same time, the particle size of limestone is set to more than 0 to 30 wt% for fine powder of 1.0 mm or less and more than 0 to 20 wt% for coarse particles of 5.0 to 10.0 mm, as in the case of powder coke. 30 w of fine powder of 1.0 mm or less
When it is less than t%, the effect of generation of macropores over the entire sintered ore begins to appear, and on the other hand, coarse particles of 5.0 to 10.0 mm conversely increase the pore diameter from around 20 wt% and the number of pores decreases. And, it begins to disperse non-uniformly. The reason for setting the particle size of the fine limestone to 1.0 mm or less is that the fine limestone of 1.0 mm or less was taken into the adhered powder by microscopic observation of pseudo particles of the sintering raw material. Since most of the coarse particles of 1 to 5 mm were in the core of the pseudo particles, it could be estimated that macropores were generated from that part. The upper limit of coarse limestone was set to 5.0 to 10.0 mm because the limestone having a size of 5.0 mm or more as a result of microscopic observation of pseudo particles was present alone, and each layer in the sintering bed layer height direction was set. This is because even in the dismantling investigation, a large amount of segregation occurs in the lower layer, which may have an adverse effect on uniform macropore formation. This powdered limestone, when the total of the new sintering raw materials is 100%, begins to be effective when added in an amount of 5.0% by weight or more.
The effect leveled off at more than wt%.

【0021】返鉱と焼結鉱粉の0.5mm以下の微粉
5wt%より少なくなると、粉コークスと粉石灰石の粒
度調整によるマクロ気孔生成がより促進される。焼結原
料微粉部のCaOがより少なくなって、シリケートスラ
グ生成がさらに促進されたためと考えられる。微粉の返
鉱と焼結鉱粉を0.5mm以下と設定したのは、同じく
焼結原料の擬似粒子の顕微鏡観察で0.5mm以下の返
鉱と焼結鉱粉は付着粉内に埋没していたからである。
When the amount of fine powder of reclaimed ore and sintered ore powder of 0.5 mm or less is less than 5% by weight, macropore formation is further promoted by adjusting the particle size of coke powder and limestone powder. It is considered that CaO in the fine powder portion of the sintering raw material was reduced and the silicate slag formation was further promoted. The reason for setting the finely returned ore and the sintered ore powder to 0.5 mm or less is that the similarly observed ore of pseudo particles of the sintering raw material is 0.5 mm or less and the returned ore and the sintered ore powder are buried in the adhered powder. Because it was.

【0022】[0022]

【実施例】粉コークスの粒度は篩い分け法と造粒法の2
方法で調整し、粉石灰石も同様の篩い分け法と造粒法の
2方法で調整し、返鉱・焼結鉱粉についても同様の篩い
分け法と上記2方法とは異なる造粒法で調整した。粉コ
ークス造粒時の水分は12.5wt%、粉石灰石造粒時
の水分は6%、返鉱・焼結鉱粉造粒時の水分は4%とし
た。篩い分け時の水分は粉コークスは7%、粉石灰石は
3%、返鉱・焼結鉱粉は1%であった。
[Example] The particle size of coke powder is classified into a sieving method and a granulating method.
The same method is used for powdered limestone and the same sieving method and granulation method are used. For return or sintered ore powder, the same sieving method and a granulation method different from the above two methods are used. did. The water content during granulation of powder coke was 12.5 wt%, the water content during granulation of powder limestone was 6%, and the water content during granulation of return or sintered ore powder was 4%. The water content at the time of sieving was 7% for powder coke, 3% for powder limestone, and 1% for return or sintered ore powder.

【0023】表1に鍋試験に使用した配合原料の配合割
合、表2に粉コークス、粉石灰石、返鉱・焼結鉱粉の篩
い分け法と造粒方法、表3に鍋試験の各水準、表4に鍋
試験に使用した粉コークスと粉石灰石、返鉱・焼結鉱粉
の粒度分布を示した。なお、粉コークス、粉石灰石の造
粒にはマルメライザー、返鉱・焼結鉱粉の造粒にはディ
スクペレタイザーを使用した。表5に高温荷重軟化溶融
試験の条件を示す。
Table 1 shows the blending ratio of the raw materials used in the pot test, Table 2 shows the sieving method and granulation method of powdered coke, powdered limestone, return or sintered ore powder, and Table 3 shows each level of the pot test. Table 4 shows the particle size distribution of the powder coke, the powder limestone, and the return or sintered ore powder used in the pot test. It should be noted that a mulmelizer was used for granulating coke powder and limestone, and a disk pelletizer was used for granulating return or sintered ore powder. Table 5 shows the conditions of the high temperature load softening and melting test.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】図3には粉コークス・粉石灰石と返鉱・焼
結鉱粉の粒度調整鍋試験結果の生産率、成品歩留、TI
(冷間強度、JISM8712により測定)、RDI
(還元粉化性、製銑部会法)、JIS還元率(JISM
8713)、成品5〜25mm割合、軟化溶融性状(軟
化開始・滴下終了温度、1350℃での収縮率)を示
す。
FIG. 3 shows the production rate, the product yield, and the TI of the results of the grain size adjustment pan test of coke powder / lime limestone and return or sintered ore powder.
(Cold strength, measured by JISM8712), RDI
(Reducing powderability, pig iron section method), JIS reduction rate (JISM
8713), 5 to 25 mm ratio of product, and softening / melting property (softening start / dropping end temperature, shrinkage rate at 1350 ° C.).

【0030】図4には焼結過程のヒートパターン測定結
果例を、図5には焼結鉱組織の顕微鏡写真の例を示し
た。本発明法により焼結層内のヒートパターンが上層か
ら下層にかけて均一化する傾向が見られ、これが成品焼
結鉱の均一化をもたらしていると考えられる。また、本
発明法による焼結鉱組織は、シリケートスラグとマグネ
タイトが主体で、一部ヘマタイトの結合組織になってい
ることも明らかになった。
FIG. 4 shows an example of the result of heat pattern measurement during the sintering process, and FIG. 5 shows an example of a micrograph of the sintered ore structure. According to the method of the present invention, the heat pattern in the sintered layer tends to be uniform from the upper layer to the lower layer, which is considered to bring about the homogenization of the product sintered ore. It was also clarified that the sinter structure obtained by the method of the present invention is mainly composed of silicate slag and magnetite and partly has a connective structure of hematite.

【0031】以上のように、粉コークスと粉石灰石、さ
らには返鉱・焼結鉱粉の粒度を同時に調整することによ
り、次の点が明らかになった。
As described above, the following points were clarified by simultaneously adjusting the particle sizes of the coke powder, the limestone powder, and the return or sintered ore powder.

【0032】(1)焼結ベッドの通気性が大幅に改善
し、焼結時間が短縮し生産率が大幅に向上する。
(1) The air permeability of the sintering bed is greatly improved, the sintering time is shortened, and the production rate is greatly improved.

【0033】(2)焼結鉱組織がシリケートスラグとマ
グネタイトが主体で、一部ヘマタイトの結合になり、さ
らに融液量も増えるので成品歩留とTI、RDIが向上
する。本組織にマクロ気孔が増えるので、JIS還元率
も向上する。
(2) The sinter structure is mainly composed of silicate slag and magnetite , and some hematite is bonded, and the melt amount is increased, so that the product yield and TI and RDI are improved. Since the macropores increase in this structure, the JIS reduction rate also improves.

【0034】(3)焼結鉱組織にはマクロ気孔が、好ま
しくは均一に分散するので、軟化溶融性状が大幅に改善
(軟化開始温度上昇、軟化開始と溶融滴下終了の温度差
縮小(融着帯幅縮小)、軟化収縮率抑制)される。さら
にヒートパターンのシャープ化により成品粒度分布がシ
ャープ化(+25mm減、5〜25mm増)する。この
粒度分布改善は、高炉内の還元性向上にさらに寄与す
る。
(3) Macropores are preferred in the sinter structure.
Or, since it is dispersed uniformly, the softening and melting properties are significantly improved (the softening start temperature is increased, the temperature difference between the softening start and the end of melting and dropping is reduced (fusion band width is reduced), and the softening shrinkage ratio is suppressed). Furthermore, the sharpening of the heat pattern sharpens the product particle size distribution (+25 mm decrease, 5-25 mm increase). The improvement of the particle size distribution further contributes to the improvement of the reducibility in the blast furnace.

【0035】(4)粉コークスと粉石灰石の粒度調整に
加えて、返鉱・焼結鉱粉の粒度を同時に調整すると相乗
効果が発生し、上記(1)、(2)、(3)がさらに増
加する。
(4) In addition to adjusting the particle sizes of the powder coke and the powdered limestone, and adjusting the particle sizes of the return or sintered ore powder at the same time, a synergistic effect occurs, and the above (1), (2) and (3) Further increase.

【0036】[0036]

【発明の効果】本発明によれば、焼結鉱品質の冷間強度
や還元粉化性、JIS還元率の向上のみならず、高炉下
部反応にとって最も重要な軟化溶融性状を大幅に向上で
きるので、高炉安定操業に大きく寄与する。
EFFECTS OF THE INVENTION According to the present invention, not only the cold strength of the quality of sinter ore, the reduction pulverization property, and the JIS reduction rate can be improved, but also the softening and melting property most important for the blast furnace lower reaction can be greatly improved. Greatly contributes to stable operation of the blast furnace.

【図面の簡単な説明】[Brief description of drawings]

【図1】CaO−SiO2 −Fe2 3 系の状態図であ
る。
FIG. 1 is a phase diagram of CaO—SiO 2 —Fe 2 O 3 system.

【図2】CaO−SiO2 −FeO系の状態図である。FIG. 2 is a phase diagram of a CaO—SiO 2 —FeO system.

【図3】粉コークス・石灰石と返鉱・焼結鉱粉を粒度調
整した鍋試験結果を示す図である。
FIG. 3 is a view showing a pot test result in which the particle size of powder coke / limestone and return ore / sintered ore powder is adjusted.

【図4】焼結層内のヒートパターン測定結果例を示す図
である。
FIG. 4 is a view showing an example of a heat pattern measurement result in a sintered layer.

【図5】焼結鉱の顕微鏡組織を示す写真である。FIG. 5 is a photograph showing a microstructure of a sinter.

【符号の説明】[Explanation of symbols]

CF 柱状カルシウムフェライト H ヘマタイト M マグネタイト S シリケートスラグ CF columnar calcium ferrite H hematite M magnetite S silicate slag

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 焼結機に装入する前に、焼結原料中に配
合するコークスの粒度を0.5mm以下の微粉が0超〜
25wt%、5.0〜10.0mmの粗粒が0超〜10
wt%になるように調整し、焼結原料中に配合する石灰
石の粒度を1.0mm以下の微粉が0超〜30wt%、
5.0〜10.0mmの粗粒が0超〜20wt%になる
ように調整したのち、配合原料全体を混合・造粒してか
ら焼結機で焼成し、シリケートスラグとマグネタイトの
結合組織に50μm以上のマクロ気孔が分散した組織を
有する焼結鉱を製造することを特徴とする軟化溶融性状
の優れた焼結鉱の製造方法。
1. A fine powder having a particle size of 0.5 mm or less of coke blended in a sintering raw material before being charged into a sintering machine has a fineness of more than 0.
25 wt%, coarse particles of 5.0 to 10.0 mm are more than 0 to 10
The limestone particle size of the limestone blended in the sintering raw material is adjusted to be more than 0 to 30 wt%,
After adjusting the coarse particles of 5.0 to 10.0 mm to be more than 0 to 20 wt%, the whole compounded raw material is mixed and granulated, and then fired by a sintering machine to form a joint structure of silicate slag and magnetite. A method for producing a sinter having excellent softening and melting properties, which comprises producing a sinter having a structure in which macropores of 50 μm or more are dispersed.
【請求項2】 焼結機に装入する前に、焼結原料中に配
合する返鉱または焼結鉱篩下粉の粒度を0.5mm以下
の微粉が0超〜5wt%になるように調整することを特
徴とする請求項1記載の軟化溶融性状の優れた焼結鉱の
製造方法。
2. Before charging into a sintering machine, fine powder having a particle size of 0.5 mm or less of the reclaimed or sintered ore sieve powder mixed in the sintering raw material is adjusted to more than 0 to 5 wt%. The method for producing a sinter having excellent softening and melting properties according to claim 1, wherein the sinter is produced.
JP16836993A 1993-06-16 1993-06-16 Method for producing sintered ore with excellent softening and melting properties Expired - Lifetime JP3394563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16836993A JP3394563B2 (en) 1993-06-16 1993-06-16 Method for producing sintered ore with excellent softening and melting properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16836993A JP3394563B2 (en) 1993-06-16 1993-06-16 Method for producing sintered ore with excellent softening and melting properties

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002183450A Division JP4077668B2 (en) 2002-06-24 2002-06-24 Sinter with excellent softening and melting properties

Publications (2)

Publication Number Publication Date
JPH073342A JPH073342A (en) 1995-01-06
JP3394563B2 true JP3394563B2 (en) 2003-04-07

Family

ID=15866821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16836993A Expired - Lifetime JP3394563B2 (en) 1993-06-16 1993-06-16 Method for producing sintered ore with excellent softening and melting properties

Country Status (1)

Country Link
JP (1) JP3394563B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023928A1 (en) * 2009-06-04 2010-12-09 Rheinkalk Gmbh Process for producing an agglomerate
JP7044004B2 (en) * 2018-07-26 2022-03-30 日本製鉄株式会社 Method for evaluating the softening start temperature of sinter
CN111944993B (en) * 2020-09-11 2022-08-05 攀钢集团研究院有限公司 Method for improving sintering yield of titanium concentrate
CN114657295B (en) * 2022-04-07 2023-03-28 攀钢集团攀枝花钢铁研究院有限公司 Method for smelting vanadium-titanium magnetite by blast furnace

Also Published As

Publication number Publication date
JPH073342A (en) 1995-01-06

Similar Documents

Publication Publication Date Title
US9988695B2 (en) Method for producing an agglomerate made of fine material containing metal oxide for use as a blast furnace feed material
JP5846049B2 (en) Method for producing sintered ore
JP3394563B2 (en) Method for producing sintered ore with excellent softening and melting properties
JPH02228428A (en) Charging material for blast furnace and its production
JP6477167B2 (en) Method for producing sintered ore
JP4725230B2 (en) Method for producing sintered ore
JP4077668B2 (en) Sinter with excellent softening and melting properties
JPH0543953A (en) Pre-treating method in manufacture of agglomerate
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JP5578057B2 (en) Porous unevenly-distributed fired pellet and method for producing the same
JP4982986B2 (en) Method for producing sintered ore
JP5004421B2 (en) Method for producing sintered ore
JP6004191B2 (en) Sintering raw material manufacturing method
JPH08120350A (en) Production of sintered ore excellent in high temperature reduction and softening/melting properties
JPH0617152A (en) Manufacture of sintered ore for blast furnace using high goethite ore as raw material
JP2009167466A (en) Method for producing sintered ore
JPH0442457B2 (en)
JPH09272925A (en) Production of sintered ore excellent in property at high temperature and cold strength
JPS58213837A (en) Method for sintering chrome ore
JP2548647B2 (en) Manufacturing method of sintered ore for iron making from high goethite iron ore
CN117737410A (en) Preparation method of vanadium-titanium sinter for improving calcium ferrite phase content
JPH05311251A (en) Manufacture of sintered ore for blast furnace pig making with pisolite iron ore as raw material
JPS6320288B2 (en)
JP2005307256A (en) Method for producing sintered ore
JP2003306723A (en) Method for manufacturing sintered ore for blast furnace

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140131

Year of fee payment: 11

EXPY Cancellation because of completion of term