JPH0442457B2 - - Google Patents

Info

Publication number
JPH0442457B2
JPH0442457B2 JP22133686A JP22133686A JPH0442457B2 JP H0442457 B2 JPH0442457 B2 JP H0442457B2 JP 22133686 A JP22133686 A JP 22133686A JP 22133686 A JP22133686 A JP 22133686A JP H0442457 B2 JPH0442457 B2 JP H0442457B2
Authority
JP
Japan
Prior art keywords
average
ore
powder
raw materials
ores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22133686A
Other languages
Japanese (ja)
Other versions
JPS6376824A (en
Inventor
Hidetoshi Noda
Hiroshi Saito
Noboru Sakamoto
Hiroshi Fukuyo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP22133686A priority Critical patent/JPS6376824A/en
Publication of JPS6376824A publication Critical patent/JPS6376824A/en
Publication of JPH0442457B2 publication Critical patent/JPH0442457B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、自溶性焼結鉱用原料の事前処理方法
に関する。 (従来技術) 高炉原料として使用される自溶性焼結鉱は、一
般に以下に述べる方法により製造される。まず、
本船から荷上げした粉鉱石を銘柄ごとに粉鉱ヤー
ドに山積みする。その後山積みされた各種粉鉱石
を予め設定している割合でベツデイング法により
混合し、ブレンデイング粉とする。このブレンデ
イング粉と石灰石、粉コークスおよび返鉱等の各
原料をそれぞれ別々の配合槽に入れ、それぞれの
配合槽から各原料を所定量連続的に切り出す。こ
れを一次ミキサーに送つて水分添加及び造粒を行
なう。必要に応じて二次ミキサーで更に造粒す
る。このようにして造粒された原料(疑似粒子)
をホツパから焼結機のパレツト上に連続的に供給
し、かつ点火炉により原料表層の粉コークスに点
火し、焼結機下方に設置されている風箱で強制的
に吸引通風する。以上の操作により高炉原料とし
ての自溶性焼結鉱を製造する。 このような一般的な焼結鉱の製造方法におい
て、使用される原料は、いろいろな制約条件を受
けている。このような制約条件を外すことができ
れば、コスト低減につながる。このため各種方法
が検討されている。例えば、石灰石については一
般的な焼結鉱の製造方法では、微粉の量に制限を
受けている。これは、微粉の量が増加すると生産
性、品質いずれも低下するためである。そこで微
粉石灰石の有効利用を図るために、微粉石灰石の
予備造粒などの技術が検討されている。しかしな
がら、この技術は、石灰石の予備造粒によるコス
ト増に見合う顕著な効果が得られず、工業的には
実用化されていない。即ち従来は、適切な微粉石
灰石の利用方法が見当たらないために、石灰石の
微粉量は焼結鉱の製造における制約となつてい
る。 一方焼結鉱の品質を示す基準として、SI(常温
強度)、RDI(還元粉化性指数)、RI(被還元性指
数)などがある。これらの品質は製造した焼結鉱
を原料として使用する高炉において、燃料比、生
産性、操業性等に多大な影響を及ぼす。これら品
質を高めるために例えば、焼結鉱のCaO/SiO2
を増加させる方法が提案されている。しかし高炉
の操業条件により焼結鉱のCaO/SiO2は一義的
に決める必要があり、実際には適用できない。ま
たSiO2源の微細化による微粉部のAl2O3/SiO2
を制御する方法、あるいは石英等の脈石を持つ南
米産の粉鉱石と石灰石を予備造粒して供する方法
等が検討されたがいずれも製造コストの増加に大
して明確は効果が得られず、工業的には実用化さ
れていない。 (発明が解決しようとする技術的課題) 本発明は、CaO源となる石灰石等の微粉を有効
に活用して、しかも低Al2O3/Al2O3+Fe2O3
鉱石、特に低Al2O3/Al2O3+Fe2O3で低SiO2
粉鉱石とCaO源との反応を促進して、同時に高
Al2O3/Al2O3+Fe2O3粉鉱石においてCaO源と
の反応を抑制し、これにより常温強度及び耐還元
粉化性に優れた非晶質スラグの生成を促進し更に
被還元性の劣る短冊状カルシウムフエライトの生
成を抑制し、このことにより常温強度、耐還元粉
化性及び被還元性の優れた焼結鉱を歩留り良く製
造する焼結鉱の事前処理方法を提供することを目
的とする。 (技術的課題を解決する手段) 本発明は、焼結原料として配合する各種粉鉱石
の化学成分と配合比から全粉鉱石の平均Al2O3
Al2O3+平均Fe2O3値を計算し、この平均値を基
準として各種粉鉱石を分類し、前記平均値より低
いAl2O3/Al2O3+Fe2O3値を持つ粉鉱石につい
て、全焼結原料の混合、造粒に先立つて、媒溶剤
として配合するCaO源をスラリー状にして散布す
ることを特徴とする焼結原料の事前処理方法であ
り、また焼結原料として配合する各種粉鉱石の化
学成分と配合比から全粉鉱石の平均Al2O3/平均
Al2O3+平均Fe2O3値と平均SiO2量を計算し、こ
れら平均値を基準として各種粉鉱石を分類し、前
記平均値より低いAl2O3/Al2O3+Fe2O3値を持
ちかつ前記平均値より低いSiO2量を持つ粉鉱石
について、全焼結原料の混合、造粒に先立つて、
媒溶剤として配合するCaO源をスラリー状にして
散布することを実施態様とする焼結原料の事前処
理方法である。 (発明の具体的な説明) 焼結鉱は、各種の鉱物組織から構成されてい
る。すなわち焼結鉱の品質はこれらの各種組織の
品質(物性値)および構成比率によつて決定され
る。そこで先ず焼結鉱を構成する各種の組織を
相、形態別に分類し、それぞれの組織について強
度及び被還元性を測定した。その結果珪酸塩化合
物である非晶質スラグは強度が高いこと、及び上
記非晶質スラグ中に存在する短冊状のカルシウム
フエライト(以下短冊状CaFと略称する)は、他
の鉱物組織に比べ被還元性が著しく劣つているこ
と等が判明した。即ち短冊状CaFを他の鉱物組織
(例えば針状又は微細型のカルシウムフエライト)
として生成させかつ短冊状を含まない非晶質スラ
グの生成を促進すれば、強度の高い高被還元性の
焼結鉱を製造できる。 そこで次に非晶質スラグ中に存在する短冊状
CaFの生成条件について検討した。まず焼結鉱中
に存在する短冊状CaFについてXMAを用いて元
素分析を行なつた。この測定により短冊状CaF
は、周囲の非晶質スラグ相に比べ高いCa/Si比
を持つていることが明らかとなつた。次に各種粉
鉱石、石灰石、珪石を用い、種々の配合組成で焼
結組織の合成試験を行なつた。その結果短冊状
CaFを生成させるためには、現在の原料配合より
も高Al2O3/Al2O3+Fe2O3、高CaO/SiO2組成
が必要で、かつ高温で焼成された場合であること
が判明した。即ち実際の焼結鉱にはミクロ的な成
分偏析があり、それゆえ焼結鉱の平均組成よりも
高Al2O3/Al2O3+Fe2O3でかつ高CaO/SiO2
なる領域が存在し、実際の焼結鉱に短冊状CaFが
存在するのである。従つてこの高Al2O3/Al2O3
+Fe2O3、高CaO/SiO2となる領域を減ずること
により短冊状CaFの生成が抑制される。 そこで高Al2O3/Al2O3+Fe2O3、高CaO/
SiO2の領域を減ずる方法として、全焼結原料を
微粉砕しかつ均一混合しミクロ的にも焼結鉱の平
均組成とする方法が考えられる。しかしながらこ
の方法は、製造コストの大幅な増加をもたらすた
め工業的には適用できない。 そこで本発明では、高Al2O3/Al2O3+Fe2O3
粉鉱石と石灰石等のCaO源との反応を抑制させる
ことにより同一の原料配合条件で高Al2O3/Al2
O3+Fe2O3でかつ高CaO/SiO2となるのを避ける
ようにした。即ち本発明は、余剰となつている反
応性の高い微粉石灰石を等のCaO源をスラリー状
とし、これを全焼結原料の混合造粒に先だつて、
低Al2O3/Al2O3+Fe2O3粉鉱石に散布すること
により高Al2O3/Al2O3+Fe2O3粉鉱石との反応
を抑制する方法である。 (発明の効果) 本発明によれば、低Al2O3/Al2O3+Fe2O3
鉱石とCaO源との反応を促進するとともに高Al2
O3/Al2O3+Fe2O3粉鉱石とCaO源との反応を抑
制し、これにより常温強度及び耐還元粉化性に優
れた非晶質スラグを促進しさらに被還元性の劣る
短冊状のカルシウムフエライトの生成を抑制し、
この結果常温強度、耐還元粉化性、被還元性に優
れた焼結鉱を歩留り良く得ることができる。なお
本発明では、散布するCaO源の量を一定とした場
合、CaO源を散布する粉鉱石は、低Al2O3/Al2
O3+Fe2O3でかつ低SiO2である粉鉱石の方が高
Al2O3/Al2O3+Fe2O3粉鉱石において低CaO/
SiO2組成となるため効果が大きい。 (実施例) 次に本発明方法の実施例を添附したフロー図で
説明する。図中1は本船、2は粉鉱ヤードに山積
みした銘柄毎の粉鉱石、3はブレンデイング粉鉱
石、4は配合槽、5は1次ミキサー、6は2次ミ
キサー、7はホツパー、8は焼結機、9はパレツ
ト、10は点火炉、11は風箱を示す。また矢印
は粉鉱石の処理順序を示す。本発明ではfm+1
〜fnの銘柄の粉鉱石は低Al2O3/Al2O3+Fe2O3
鉱石又は低Al2O3/Al2O3+Fe2O3でかつ低SiO2
の粉鉱石を示す。またA〜DはCaO源をスラリー
状として散布する箇所を示し、Aは荷上げ搬送
中、Bは粉鉱ヤードでの山積み時、Cはブレンデ
イングヤードへの搬送中、Dはブレンデイングヤ
ードでの特定銘柄積み付け中を示す。本発明で
は、A〜Dのいずれの箇所でスラリー散布を行な
つても同様の効果を発揮する。 次に本発明の効果を認識した実施例につき説明
する。 焼結鍋試験 焼結鍋条件 原料配合 粉鉱石:表1に示す10銘柄(A〜Dは南米産粉鉱
石、E〜Jは豪州、インド産粉鉱石) 珪石:成品焼結鉱中SiO2が5.5%となるように配
合。 石灰石:成品焼結鉱中CaO/SiO2が1.6となるよ
うに配合を決め、−0.5mmの約80%をスラリー
状として特定の粉鉱石に散布、残りは通常に
配合。試験は、通常粒度と細粒の石灰石につ
いて実施。(粒度分布は表2に示す。) 返鉱:新原料に対して20% 粉コークス:新原料に対して4.5% 焼成条件 点火:1分 負圧:1200mmH2O(一定) CaOスラリー散布条件 1 CaO源スラリー散布なし(従来法) 2 全粉鉱石にCaO源スラリー散布(比較法) 3 本発明方法(1)…低Al2O3/Al2O3+Fe2O3
鉱石(A〜D,E〜H)にCaO源スラリー散布 4 本発明方法(2)…低Al2O3/Al2O3+Fe2O3
低SiO2粉鉱石(A〜C,E)にCaO源スラリ
ー散布。 5 本発明方法(3)…低Al2O3/Al2O3+Fe2O3
高SiO2粉鉱石(I,J)にCaO源スラリー散
布。 焼結鍋試験結果 表3に示すように、本発明方法で製造された焼
結鉱は、全て生産性、品質が従来方法によるもの
よりも高い値を示している。特に低Al2O3/Al2
O3+Fe2O3、低SiO2粉鉱石にCaO源をスラリー散
布した場合には(本発明方法(2))、その効果が著
しい。なお全粉鉱石にCaO源をスラリー散布する
比較法は、従来法に比べて効果がない。また粉コ
ークス配合量、珪石配合量及び石灰石配合量など
を変えて試験を行なつたが、上記実施例と同様の
効果を得た。
(Industrial Application Field) The present invention relates to a method for pre-treating raw materials for self-fusing sintered ore. (Prior Art) Self-fusing sintered ore used as a raw material for a blast furnace is generally produced by the method described below. first,
The fine ore unloaded from the ship is piled up in the fine ore yard by brand. Thereafter, the piled up various powdered ores are mixed in a preset ratio by a bedding method to form a blended powder. This blending powder and raw materials such as limestone, coke powder, and return ore are placed in separate blending tanks, and a predetermined amount of each raw material is continuously cut out from each blending tank. This is sent to a primary mixer for water addition and granulation. Further granulation is performed using a secondary mixer if necessary. Raw materials granulated in this way (pseudo particles)
is continuously supplied from the hopper onto the pallet of the sintering machine, and the coke powder on the surface layer of the raw material is ignited in the ignition furnace, and the wind box installed below the sintering machine is forcibly sucked and ventilated. Through the above operations, self-fusing sintered ore is produced as a raw material for a blast furnace. In such a general method for producing sintered ore, the raw materials used are subject to various constraints. If such constraints can be removed, it will lead to cost reduction. For this reason, various methods are being considered. For example, in the case of limestone, the amount of fine powder is limited in the general method for producing sintered ore. This is because as the amount of fine powder increases, both productivity and quality decrease. Therefore, in order to effectively utilize pulverized limestone, techniques such as preliminary granulation of pulverized limestone are being considered. However, this technique has not been put into practical use industrially because it has not been able to achieve significant effects commensurate with the cost increase due to preliminary granulation of limestone. That is, conventionally, since no suitable method for utilizing finely divided limestone has been found, the amount of finely divided limestone has been a constraint in the production of sintered ore. On the other hand, standards that indicate the quality of sintered ore include SI (room temperature strength), RDI (reduction pulverizability index), and RI (reducibility index). These qualities have a great influence on the fuel ratio, productivity, operability, etc. in blast furnaces that use the produced sintered ore as raw materials. To improve these qualities, for example, sintered ore CaO/SiO 2
A method has been proposed to increase the However, CaO/SiO 2 of the sintered ore must be determined uniquely depending on the operating conditions of the blast furnace, and this cannot be applied in practice. In addition, a method of controlling the Al 2 O 3 /SiO 2 value in the fine powder part by refining the SiO 2 source, or a method of pre-granulating and supplying fine ore and limestone from South America that have gangue such as quartz are being considered. However, none of them had a clear effect on the increase in manufacturing costs, and they have not been put into practical use industrially. (Technical Problems to be Solved by the Invention) The present invention effectively utilizes fine powder such as limestone, which is a CaO source, and also uses low Al 2 O 3 /Al 2 O 3 + Fe 2 O 3 powder ore, especially low Al 2 O 3 /Al 2 O 3 + Fe 2 O 3 promotes the reaction between the low SiO 2 powder ore and the CaO source, and at the same time increases the
Al 2 O 3 / Al 2 O 3 + Fe 2 O 3 Suppresses the reaction with the CaO source in fine ore, thereby promoting the production of amorphous slag with excellent room temperature strength and resistance to reduction and pulverization, and making it more resistant to reduction. To provide a method for pre-processing sintered ore, which suppresses the formation of strip-shaped calcium ferrite having poor properties, thereby producing sintered ore with excellent room temperature strength, reduction powdering resistance, and reducibility with a high yield. With the goal. (Means for Solving Technical Problems) The present invention calculates the average Al 2 O 3 /
Calculate the Al 2 O 3 + average Fe 2 O 3 value, classify various powder ores based on this average value, and classify powders with Al 2 O 3 /Al 2 O 3 + Fe 2 O 3 values lower than the average value. This is a pre-processing method for sintering raw materials, which is characterized by spraying a CaO source mixed as a solvent in the form of a slurry before mixing and granulating all the sintering raw materials. The average Al 2 O 3 /average of all fine ores from the chemical composition and blending ratio of various fine ores.
Calculate the Al 2 O 3 + average Fe 2 O 3 value and average SiO 2 amount, classify various fine ores based on these average values, and classify the Al 2 O 3 /Al 2 O 3 + Fe 2 O that is lower than the average value. For fine ore having three values and an amount of SiO2 lower than the above average value, prior to mixing and granulation of all sintering raw materials,
This is a method for pre-processing sintering raw materials, in which the CaO source blended as a solvent is dispersed in the form of a slurry. (Specific Description of the Invention) Sintered ore is composed of various mineral structures. That is, the quality of sintered ore is determined by the quality (physical property values) and composition ratio of these various structures. Therefore, first, the various structures constituting sintered ore were classified by phase and morphology, and the strength and reducibility of each structure were measured. As a result, the amorphous slag, which is a silicate compound, has high strength, and the rectangular calcium ferrite (hereinafter referred to as rectangular CaF) present in the amorphous slag is more exposed than other mineral structures. It was found that the reducibility was significantly inferior. That is, strip-shaped CaF is mixed with other mineral structures (e.g., acicular or microscopic calcium ferrite).
By promoting the formation of amorphous slag containing no strips, it is possible to produce a sintered ore with high strength and high reducibility. Therefore, we next consider the strip-like shape that exists in amorphous slag.
We investigated the conditions for CaF production. First, elemental analysis was performed using XMA on the strips of CaF present in sintered ore. This measurement results in strip-shaped CaF.
It was revealed that the slag phase has a higher Ca/Si ratio than the surrounding amorphous slag phase. Next, we conducted synthetic tests of sintered structures with various compositions using various powdered ores, limestone, and silica stone. The result is a strip
In order to generate CaF, a higher Al 2 O 3 /Al 2 O 3 +Fe 2 O 3 and higher CaO/SiO 2 composition than the current raw material composition is required, and it is necessary to sinter at a high temperature. found. In other words, actual sintered ore has microscopic component segregation, and therefore there is a region with a higher Al 2 O 3 /Al 2 O 3 + Fe 2 O 3 and higher CaO / SiO 2 than the average composition of sintered ore. exists, and strip-shaped CaF exists in actual sintered ore. Therefore this high Al 2 O 3 /Al 2 O 3
By reducing the region of +Fe 2 O 3 and high CaO/SiO 2 , the generation of strip-shaped CaF is suppressed. Therefore, high Al 2 O 3 /Al 2 O 3 +Fe 2 O 3 , high CaO /
A conceivable method for reducing the SiO 2 area is to finely pulverize all the sintered raw materials and mix them uniformly so as to have the average composition of the sintered ore on a microscopic level. However, this method is not industrially applicable because it significantly increases manufacturing costs. Therefore, in the present invention, high Al 2 O 3 /Al 2 O 3 +Fe 2 O 3
By suppressing the reaction between fine ore and CaO sources such as limestone, high Al 2 O 3 /Al 2 can be achieved under the same raw material blending conditions.
O 3 + Fe 2 O 3 and high CaO/SiO 2 were avoided. That is, in the present invention, a CaO source such as surplus highly reactive pulverized limestone is made into a slurry, and this is mixed and granulated with all the sintering raw materials.
This is a method of suppressing the reaction with high Al 2 O 3 /Al 2 O 3 +Fe 2 O 3 powder ore by spraying it on low Al 2 O 3 /Al 2 O 3 +Fe 2 O 3 powder ore. (Effect of the invention) According to the present invention, the reaction between the low Al 2 O 3 /Al 2 O 3 +Fe 2 O 3 powder ore and the CaO source is promoted, and the high Al 2
O 3 /Al 2 O 3 + Fe 2 O 3 Suppresses the reaction between the ore powder and the CaO source, thereby promoting the formation of amorphous slag with excellent room-temperature strength and resistance to reduction and pulverization, and furthermore, suppresses the reaction between the ore powder and the CaO source. suppresses the formation of calcium ferrite,
As a result, sintered ore having excellent room-temperature strength, resistance to reduction and pulverization, and reducibility can be obtained at a high yield. In the present invention, when the amount of the CaO source to be sprayed is constant, the fine ore to which the CaO source is sprayed has a low Al 2 O 3 /Al 2
Fine ore with O 3 + Fe 2 O 3 and low SiO 2 has higher
Al 2 O 3 / Al 2 O 3 + Fe 2 O 3 Low CaO /
The effect is great because it has a SiO 2 composition. (Example) Next, an example of the method of the present invention will be described with reference to the attached flowchart. In the figure, 1 is the ship, 2 is powder ore of each brand piled up in the powder ore yard, 3 is blending powder ore, 4 is a blending tank, 5 is the primary mixer, 6 is the secondary mixer, 7 is the hopper, and 8 is the A sintering machine, 9 a pallet, 10 an ignition furnace, and 11 a wind box. Also, arrows indicate the processing order of fine ore. In the present invention, fm+1
~ fn brand ore powder is low Al 2 O 3 / Al 2 O 3 + Fe 2 O 3 powder ore or low Al 2 O 3 / Al 2 O 3 + Fe 2 O 3 and low SiO 2
Shows fine ore. In addition, A to D indicate the locations where the CaO source is sprayed in the form of a slurry. A is during loading and transportation, B is during stacking at the powder ore yard, C is during transportation to the blending yard, and D is at the blending yard. Indicates that a specific brand is being loaded. In the present invention, the same effect can be achieved even if the slurry is sprayed at any of the locations A to D. Next, an example in which the effects of the present invention are recognized will be described. Sintering pot test Sintering pot conditions Raw material blend powder ore: 10 brands shown in Table 1 (A to D are powder ore from South America, E to J are powder ore from Australia and India) Silica: SiO 2 in the finished sintered ore Contains 5.5%. Limestone: The composition is determined so that the CaO/SiO 2 ratio in the finished sintered ore is 1.6, approximately 80% of -0.5mm is dispersed as a slurry over the specific fine ore, and the rest is blended normally. Tests were conducted on normal and fine-grained limestone. (Particle size distribution is shown in Table 2.) Return ore: 20% relative to the new raw material Coke powder: 4.5% relative to the new material Firing conditions Ignition: 1 minute Negative pressure: 1200 mmH 2 O (constant) CaO slurry spreading conditions 1 No CaO source slurry spraying (conventional method) 2 CaO source slurry spraying on all powdered ore (comparative method) 3 Present invention method (1)...Low Al 2 O 3 / Al 2 O 3 + Fe 2 O 3 powder ore (A to D , E to H) 4 Method of the present invention (2)...Low Al 2 O 3 /Al 2 O 3 +Fe 2 O 3 ,
Sprinkle CaO source slurry on low SiO 2 powder ore (A to C, E). 5 Method of the present invention (3)...low Al 2 O 3 /Al 2 O 3 +Fe 2 O 3 ,
Spraying CaO source slurry on high SiO2 powder ore (I, J). Sintering Ladle Test Results As shown in Table 3, all the sintered ores produced by the method of the present invention have higher productivity and quality values than those produced by the conventional method. Especially low Al 2 O 3 /Al 2
When a slurry of CaO source is sprayed on O 3 +Fe 2 O 3 and low SiO 2 powder ore (method (2) of the present invention), the effect is remarkable. Furthermore, the comparative method of spraying a slurry of CaO source on whole powder ore is not as effective as the conventional method. Tests were also conducted by changing the amount of coke powder, silica stone, limestone, etc., and the same effects as in the above examples were obtained.

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の1実施例を示すフロー図であ
る。 1……本船、2……粉鉱ヤードに山積みした銘
柄毎の粉鉱石、3……ブレンデイング粉鉱石、4
……配合槽、5……1次ミキサー、6……2次ミ
キサー、7……ホツパー、8……焼結機、9……
パレツト、10……点火炉、11……風箱。
The drawing is a flow diagram illustrating one embodiment of the invention. 1... Main ship, 2... Powder ore of each brand piled up in the powder ore yard, 3... Blending powder ore, 4
...Blending tank, 5...Primary mixer, 6...Secondary mixer, 7...Hopper, 8...Sintering machine, 9...
Palette, 10...Ignition furnace, 11...Wind box.

Claims (1)

【特許請求の範囲】 1 焼結原料として配合する各種粉鉱石の化学成
分と配合比から全粉鉱石の平均Al2O3/平均Al2
O3+平均Fe2O3値を計算し、この平均値を基準と
して各種粉鉱石を分類し、前記平均値より低い
Al2O3/Al2O3+Fe2O3値を持つ粉鉱石について、
全焼結原料の混合、造粒に先立つて、媒溶剤とし
て配合するCaO源をスラリー状に散布することを
特徴とする焼結原料の事前処理方法。 2 焼結原料として配合する各種粉鉱石の化学成
分と配合比から全粉鉱石の平均Al2O3/平均Al2
O3+平均Fe2O3値と平均SiO2量を計算し、これら
平均値を基準として各種粉鉱石を分類し、前記平
均値より低いAl2O3/Al2O3+Fe2O3値を持ちか
つ前記平均値より低いSiO2量を持つ粉鉱石につ
いて、全焼結原料の混合、造粒に先立つて、媒溶
剤として配合するCaO源をスラリー状にして散布
することを特徴とする焼結原料の事前処理方法。
[Claims] 1. Average Al 2 O 3 /average Al 2 of all powder ores based on the chemical components and blending ratio of various powder ores blended as sintering raw materials.
Calculate the O 3 + average Fe 2 O 3 value, classify various fine ores based on this average value, and classify the ores that are lower than the above average value.
Regarding fine ore with 3 values of Al 2 O 3 /Al 2 O 3 + Fe 2 O,
A method for pre-processing sintering raw materials, which is characterized in that, prior to mixing and granulating all sintering raw materials, a CaO source blended as a solvent is sprinkled in the form of a slurry. 2. Average Al 2 O 3 /average Al 2 of all fine ores from the chemical components and blending ratio of various fine ores mixed as sintering raw materials.
Calculate the O 3 + average Fe 2 O 3 value and average SiO 2 amount, classify various fine ores based on these average values, and calculate the Al 2 O 3 /Al 2 O 3 + Fe 2 O 3 value lower than the average value. , and has an amount of SiO 2 lower than the average value, prior to mixing and granulation of all the sintering raw materials, a CaO source blended as a solvent is dispersed in the form of a slurry. How to pre-process raw materials.
JP22133686A 1986-09-19 1986-09-19 Preliminary treatment of sintering raw material Granted JPS6376824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22133686A JPS6376824A (en) 1986-09-19 1986-09-19 Preliminary treatment of sintering raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22133686A JPS6376824A (en) 1986-09-19 1986-09-19 Preliminary treatment of sintering raw material

Publications (2)

Publication Number Publication Date
JPS6376824A JPS6376824A (en) 1988-04-07
JPH0442457B2 true JPH0442457B2 (en) 1992-07-13

Family

ID=16765208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22133686A Granted JPS6376824A (en) 1986-09-19 1986-09-19 Preliminary treatment of sintering raw material

Country Status (1)

Country Link
JP (1) JPS6376824A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322036B1 (en) * 1997-11-26 2002-05-13 이구택 Sintered ore manufacturing method using steelmaking sludge
JP5786921B2 (en) * 2013-11-01 2015-09-30 住友金属鉱山株式会社 Ore slurry manufacturing equipment and ore slurry manufacturing method
WO2016117051A1 (en) * 2015-01-21 2016-07-28 住友金属鉱山株式会社 Mineral slurry manufacturing facility and mineral slurry manufacturing method
JP6376143B2 (en) * 2016-01-15 2018-08-22 Jfeスチール株式会社 Processing method of sintering raw material

Also Published As

Publication number Publication date
JPS6376824A (en) 1988-04-07

Similar Documents

Publication Publication Date Title
JP6020832B2 (en) Sintering raw material manufacturing method
CN110527826B (en) Sintering method for inhibiting perovskite generation in sintering process
JP4205242B2 (en) Granulation method of sintering raw material
JPH0442457B2 (en)
JPH0543953A (en) Pre-treating method in manufacture of agglomerate
JP3394563B2 (en) Method for producing sintered ore with excellent softening and melting properties
JPS627253B2 (en)
JP6004191B2 (en) Sintering raw material manufacturing method
JP2004225147A (en) Method for manufacturing sintered ore for blast furnace
JPH0610313B2 (en) Pretreatment method for sintering raw material
JPH0610314B2 (en) Pretreatment method for sintering raw material
JPH0617152A (en) Manufacture of sintered ore for blast furnace using high goethite ore as raw material
JPH0610312B2 (en) Pretreatment method for sintering raw material
KR102177527B1 (en) Method for pretreating binding material for sintering, apparatus for pretreating binding material for sintering and manufacturing method of sintered ore
JPS61113732A (en) Sintering method of chrome ore
JP4661077B2 (en) Method for producing sintered ore
JPS58213837A (en) Method for sintering chrome ore
JP4635559B2 (en) Method for manufacturing raw materials for sintering
JP2009167466A (en) Method for producing sintered ore
KR100383271B1 (en) Sintered ore manufacturing method with improved recovery
JP5831397B2 (en) Method for producing sintered ore
JPH0610316B2 (en) Pretreatment method for sintering raw material
CN115491488A (en) Iron-containing material for sintering with low usage amount of Brazilian mixed powder, sintering composition, sintered ore and preparation method thereof
JPH0610315B2 (en) Pretreatment method for sintering raw material
JP4077668B2 (en) Sinter with excellent softening and melting properties

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees