JPH0610312B2 - Pretreatment method for sintering raw material - Google Patents

Pretreatment method for sintering raw material

Info

Publication number
JPH0610312B2
JPH0610312B2 JP22133786A JP22133786A JPH0610312B2 JP H0610312 B2 JPH0610312 B2 JP H0610312B2 JP 22133786 A JP22133786 A JP 22133786A JP 22133786 A JP22133786 A JP 22133786A JP H0610312 B2 JPH0610312 B2 JP H0610312B2
Authority
JP
Japan
Prior art keywords
weight content
content ratio
average
sio
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22133786A
Other languages
Japanese (ja)
Other versions
JPS6376825A (en
Inventor
英俊 野田
汎 斎藤
登 坂本
寛 福与
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP22133786A priority Critical patent/JPH0610312B2/en
Publication of JPS6376825A publication Critical patent/JPS6376825A/en
Publication of JPH0610312B2 publication Critical patent/JPH0610312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自溶性焼結鉱用原料の事前処理方法に関す
る。
TECHNICAL FIELD The present invention relates to a pretreatment method for a raw material for self-fluxing sinter.

(従来技術) 高炉原料として使用される自溶性焼結鉱は、一般に以下
に述べる方法により製造される。まず、本船から荷上げ
した粉鉱石を銘柄ごとに粉鉱ヤードに山積みする。この
後山積みされた各種粉鉱石を予め設定している割合でベ
ッディング法により混合し、ブレンディング粉とする。
このブレンディング粉と石炭石、粉コークスおよび返鉱
等の各原料をそれぞれ別々の配合槽に入れ、それぞれの
配合槽から各原料を所定量連続的に切り出す。これを一
次ミキサーに送って水分添加及び造粒を行なう。必要に
応じて二次ミキサーで更に造粒する。このようにして造
粒された原料(疑似粒子)をホッパから焼結機のパレッ
ト上に連続的に供給し、かつ点火炉により原料表層の粉
コークスに点火し、焼結機下方に設置されている風箱で
強制的に吸引通風する。以上の操作により高炉原料とし
ての自溶性焼結鉱を製造する。
(Prior Art) The self-fluxing sinter used as a blast furnace raw material is generally manufactured by the method described below. First, the powdered ore loaded from the ship is piled up in the powdered ore yard for each brand. After that, various powdered ores piled up are mixed by a bedding method at a preset ratio to obtain a blending powder.
This blending powder and each raw material such as coal stone, powder coke, and return ore are put in separate mixing tanks, and a predetermined amount of each raw material is continuously cut out from each mixing tank. This is sent to a primary mixer for water addition and granulation. If necessary, further granulate with a secondary mixer. The raw material (pseudo particles) granulated in this way is continuously supplied from the hopper onto the pallet of the sintering machine, and the coke on the surface layer of the raw material is ignited by the ignition furnace. Forced ventilation with the air box. By the above operation, a self-fluxing sintered ore as a blast furnace raw material is manufactured.

一方焼結鉱の品質を示す基準として、SI(常温強
度)、RDI還元粉化性指数)、RI(被還元性指数)
などがある。これらの品質は、これら焼結鉱を原料とし
て使用する高炉において、その燃料比、生産性、操業性
等に多大な影響を及ぼす。このため従来から各種技術が
検討されている。例えば、焼結鉱のCaO重量含有割合
/SiO重量含有割合(以下、重量含有割合を省略し
て単に「CaO/SiO」と省略する。)を増加させ
る方法が提案されている。しかし高炉の操業条件により
焼結鉱のCaO/SiOは一義的に決める必要があ
り、実際には適用できない。またSiO源の微細化に
よる微粉部のAl重量含有割合/SiO重量含
有割合(以下、重量含有割合を省略して単に「Al
/SiO」と略称する。)を制御する方法、あるい
は石英等の脈石を持つ南米産の粉鉱石と石炭石を予備造
粒して供する方法等が検討されたが、いずれも製造コス
トが増加する割には明確な効果が得られず、工業的には
実用化されていない。
On the other hand, SI (normal temperature strength), RDI reduction powderability index), RI (reducibility index) are used as criteria for indicating the quality of sinter.
and so on. These qualities have a great influence on the fuel ratio, productivity, operability, etc. in a blast furnace using these sinters as raw materials. Therefore, various techniques have been studied conventionally. For example, a method of increasing the CaO weight content ratio / SiO 2 weight content ratio (hereinafter, the weight content ratio is omitted and simply referred to as “CaO / SiO 2 ”) of the sinter is proposed. However, CaO / SiO 2 of the sintered ore needs to be uniquely determined depending on the operating conditions of the blast furnace, and cannot be applied in practice. Also, the Al 2 O 3 weight content ratio / SiO 2 weight content ratio in the fine powder portion due to the refinement of the SiO 2 source (hereinafter, the weight content ratio is omitted and simply referred to as “Al 2 O
3 / SiO 2 ”. ), Or a method of preliminarily granulating South American powdered ore and coal stone with gangue such as quartz, etc., but both have a clear effect despite the increase in manufacturing cost. Is not obtained, and it has not been put to practical use industrially.

(発明が解決しようとする技術的課題) 本発明は、低{Al重量含有割合/(Al
重量含有割合+Fe重量含有割合)}、(以下、
重量含有割合を省略して単に「Al/Al
+Fe」と略称する。)粉鉱石でかつ高SiO
重量含有割合(以下、重量含有割合を省略して単に「S
iO」と略称する。)の粉鉱石に配合するCaO源を
全焼結原料の平均(CaO重量含有割合/SiO重量
含有割合)値、(以下、重量含有割合を省略して単に
「平均CaO/SiO値」と略称する。)よりも高く
なるように配合することにより、高Al/Al
+Fe粉鉱石において低CaO/SiO
成とし、被還元性が劣る短冊状のカルシウムフェライト
の生成を抑制し、同時に常温強度及び耐還元粉化性の優
れた非晶質スラグの生成を促進し、常温強度、還元粉化
性及び被還元性の優れた焼結鉱を歩留り良く製造する方
法を提供することを目的とする。
(Technical problem to be solved by the invention) The present invention provides a low {Al 2 O 3 weight content ratio / (Al 2 O 3
Weight content + Fe 2 O 3 weight content)}, (hereinafter,
Omitting the weight content ratio, simply saying “Al 2 O 3 / Al 2 O 3
+ Fe 2 O 3 ”. ) Fine ore and high SiO 2
Weight content ratio (Hereinafter, the weight content ratio is omitted and simply "S
referred to as iO 2 ". ) The CaO source mixed in the powdered ore is the average (CaO weight content ratio / SiO 2 weight content ratio) value of all the sintering raw materials, (hereinafter, the weight content ratio is omitted and simply referred to as “average CaO / SiO 2 value”). Higher Al 2 O 3 / Al 2
O 3 + Fe 2 O 3 powder ore has a low CaO / SiO 2 composition, which suppresses the formation of strip-shaped calcium ferrite that is inferior in reducibility, and at the same time, forms an amorphous slag that is excellent in room-temperature strength and reduction powdering resistance. It is an object of the present invention to provide a method for accelerating the production of sinter, which has excellent room temperature strength, reduced pulverization property and reducibility, and is manufactured with high yield.

(技術的課題を解決する手段) 本発明は、焼結原料として配合する各種粉鉱石の化学成
分と配合比から全粉鉱石の{平均Al重量含有割
合/(平均Al重量含有割合+平均Fe
量含有割合)}値、(以下、重量含有割合を省略して単
に「平均Al/平均Al+平均Fe
値」と略称する。)と平均SiO量を計算し、これら
平均値を基準として各種粉鉱石を分類し、前記平均値よ
り低いAl/Al+Fe値を持ちか
つ前記平均値より高いSiO量を持つ粉鉱石について
媒溶剤として配合するCaO源を全焼結原料の平均Ca
O/SiO値よりも高くなるように配合し、この配合
物を全焼結原料の混合、造粒に先立って混合、造粒する
ことを特徴とする焼結原料の事前処理方法である。
(Means for Solving the Technical Problem) The present invention is based on the chemical composition and the compounding ratio of various powdered ores to be mixed as a sintering raw material, {average Al 2 O 3 weight content ratio / (average Al 2 O 3 weight) of all powdered ores. Content ratio + average Fe 2 O 3 weight content ratio) value, (hereinafter, the weight content ratio is omitted and simply referred to as "average Al 2 O 3 / average Al 2 O 3 + average Fe 2 O 3
It is abbreviated as "value". ) And the average SiO 2 amount are calculated, and various powder ores are classified on the basis of these average values, and the Al 2 O 3 / Al 2 O 3 + Fe 2 O 3 values lower than the above average values and higher than the above average values. The average Ca of all the sintering raw materials is the CaO source compounded as a solvent for the powdered ore having the amount of SiO 2.
It is a pretreatment method for a sintering raw material, which is characterized in that it is blended so as to have a value higher than the O / SiO 2 value, and this mixture is mixed and granulated prior to mixing of all sintering raw materials and granulation.

(発明の具体的な説明) 焼結鉱は、各種の鉱物組織から構成されている。すなわ
ち焼結鉱の品質はこれらの各種組織の品質(物性値)お
よび構成比率によって決定される。そこで先ず焼結鉱を
構成する各種の組織を相、形態別に分類し、それぞれの
組織について強度及び被還元性を測定した。その結果珪
酸塩化合物である非晶質スラグは強度が高いこと、およ
び上記非晶質スラグ中に存在する短冊状のカルシウムフ
ェライト(以下短冊状CaFと略称する)は他の鉱物組
織に比べ被還元性が著しく劣っていること等が判明し
た。即ち短冊状CaFを他の鉱物組織(例えば針状又は
微細型のカルシウムフェライト)として生成させかつ短
冊状を含まない非晶質スラグの生成を促進すれば強度の
高い高被還元性の焼結鉱を製造できる。
(Detailed Description of the Invention) Sintered ore is composed of various mineral structures. That is, the quality of the sintered ore is determined by the quality (physical property value) and the composition ratio of these various structures. Therefore, first, various structures constituting the sintered ore were classified according to phase and morphology, and strength and reducibility of each structure were measured. As a result, the amorphous slag, which is a silicate compound, has a high strength, and the strip-shaped calcium ferrite (abbreviated as strip-shaped CaF hereinafter) present in the amorphous slag is reduced compared to other mineral structures. It was found that the sex was extremely poor. That is, if strip-shaped CaF is produced as another mineral structure (for example, acicular or fine-type calcium ferrite) and formation of amorphous slag that does not contain strip-shaped is promoted, a highly reducible sinter having high strength is obtained. Can be manufactured.

そこで次に非晶質スラグ中に存在する短冊状CaFの生
成条件について検討した。まず焼結鉱中に存在する短冊
状CaFについてXMAを用いて元素分析を行なった。
この測定により短冊状CaFは、周囲の非晶質スラグ相
に比べ高いCa/Si比を持っていることが明らかとな
った。次に各種粉鉱石、石灰石、珪石を用い、種々の配
合組成で焼結組織の合成試験を行なった。その結果短冊
状CaFを生成させるためには、現在の原料配合よりも
高Al/Al+Fe、高CaO/S
iO組成が必要で、かつ高温で焼成された場合である
ことが判明した。即ち実際の焼結鉱にはミクロ的な成分
偏析があり、それゆえ焼結鉱の平均組成よりも高いAl
/Al+Feでかつ高CaO/Si
となる領域が存在し、実際の焼結鉱に短冊状CaF
が存在するのである。従ってこの高Al/Al
+Fe、高CaO/SiOとなる領域を減
ずることにより短冊状CaFの生成が抑制される。
Therefore, the conditions for producing strip-shaped CaF existing in the amorphous slag were examined next. First, elemental analysis was performed on the strip-shaped CaF existing in the sintered ore using XMA.
This measurement revealed that the strip-shaped CaF has a higher Ca / Si ratio than the surrounding amorphous slag phase. Next, various powdered ores, limestones, and silica stones were used to carry out synthetic tests of sintered structures with various composition. As a result, in order to generate strip-shaped CaF, higher Al 2 O 3 / Al 2 O 3 + Fe 2 O 3 and higher CaO / S than the current raw material composition are used.
It has been found that this is the case when an iO 2 composition is required and is fired at high temperature. That is, the actual sinter has a microscopic component segregation, and therefore, the Al content higher than the average composition of the sinter is
2 O 3 / Al 2 O 3 + Fe 2 O 3 and high CaO / Si
There is a region that becomes O 2, and strip-shaped CaF is present in the actual sinter.
Exists. Therefore, this high Al 2 O 3 / Al 2
The generation of strip-shaped CaF is suppressed by reducing the region where O 3 + Fe 2 O 3 and high CaO / SiO 2 are formed.

そこで高Al/Al+Fe、高Ca
O/SiOの領域を減ずる方法として、全焼結原料を
微粉砕しかつ均一混合しミクロ的にも焼結鉱の平均組成
とする方法が考えられる。しかしながらこの方法は、製
造コストの大幅な増加をもたらすため工業的には適用で
きない。
Therefore, high Al 2 O 3 / Al 2 O 3 + Fe 2 O 3 and high Ca
As a method of reducing the O / SiO 2 region, a method is considered in which all the sintering raw materials are finely pulverized and uniformly mixed to obtain the average composition of the sintered ore microscopically. However, this method is not industrially applicable because it causes a large increase in manufacturing cost.

そこで本発明は、焼結原料用粉鉱石のうち低Al
/Al+Feでかつ高SiOの粉鉱石に
ついてCaO源を優先的に配合造粒することにより、同
一の原料配合条件で主たる焼結原料の化学組成を高Al
/Al+Fe、低CaO/SiO
組成となるようにした。
Therefore, the present invention provides low Al 2 O 3 powder ore for sintering raw materials.
/ Al 2 O 3 + Fe 2 O 3 and high SiO 2 powder ore by preferentially mixing and granulating the CaO source, the chemical composition of the main sintering raw material is changed to high Al under the same raw material mixing conditions.
2 O 3 / Al 2 O 3 + Fe 2 O 3 , low CaO / SiO 2
The composition was adjusted.

なお、CaO源を優先配合する粉鉱石を高SiO粉鉱
石と規定した理由は、CaO源を優先配合する原料のC
aO/SiO値の増加量を一定とした場合、CaO源
を優先配合する粉鉱石を高SiO粉鉱石とする方が主
たる焼結原料のCaO/SiOをより低下させること
ができるためである。
The reason why the powdered ore containing the CaO source preferentially is defined as the high SiO 2 powdered ore is that the raw material C containing the CaO source is preferentially mixed.
When the amount of increase in the aO / SiO 2 value is constant, it is possible to lower the CaO / SiO 2 of the main sintering raw material by making the powder ore containing the CaO source preferentially into the high SiO 2 powder ore. is there.

(発明の効果) したがって本発明によれば、被還元性が劣る短冊状Ca
Fの生成を抑制するとともに常温強度及び耐還元粉化性
の優れた非晶質スラグの生成を促進し、常温強度、還元
粉化性、被還元性の優れた焼結鉱を歩留り良く製造する
ことができる。
(Effects of the Invention) Therefore, according to the present invention, strip-shaped Ca having inferior reducibility is inferior.
It suppresses the formation of F and promotes the formation of amorphous slag that is excellent in room temperature strength and resistance to reduction pulverization, and produces a sintered ore that is excellent in room temperature strength, reduction pulverization property, and reducibility with good yield. be able to.

(実施例) 次に本発明の実施例を説明する。(Example) Next, the Example of this invention is described.

図面は、ブロセス化した場合の一例を示す。まず主たる
焼結原料用粉鉱石1、必要により加える返鉱3、石灰石
4、必要により加える珪石5、粉コークス6を主たる焼
結原料ライン7から混合造粒機8に送り、一方CaO源
優先配合用粉鉱石2、返鉱3、石灰石4、珪石5、粉コ
ークス6をCaO源優先配合ライン9から混合造粒機1
0に供給する。これら混合造粒機8、10で混合された
混合物は、必要により混合機11で混合された後焼結機
12で焼結される。
The drawing shows an example of the case of making a process. First, the main sintering raw material powdered ore 1, optional reclaimed ore 3, limestone 4, silica stone 5 and powder coke 6 sent from the main sintering raw material line 7 to the mixing granulator 8, while CaO source preferential mixing Mixing granulator 1 for fine ore 2, return ore 3, limestone 4, silica 5 and powder coke 6 from CaO source priority blending line 9
Supply to 0. The mixture mixed in the mixing granulators 8 and 10 is mixed in the mixer 11 if necessary and then sintered in the sintering machine 12.

次に本発明の効果を確認した実施例につき説明する。Next, an example in which the effect of the present invention is confirmed will be described.

焼結鍋試験1 焼結鍋条件 原料配合 粉鉱石:表1に示す10銘柄(A〜Dは南米産粉鉱石、
E〜Jは豪州、インド産粉鉱石) 珪石:成品焼結鉱中SiOが5.5%となるように配
合。
Sintering pot test 1 Sintering pot conditions Raw material mixture Powder ore: 10 brands shown in Table 1 (A to D are South American powder ores,
E to J are powdered ores from Australia, India) Silica: Compounded so that SiO 2 in the product sintered ore will be 5.5%.

石灰石:成品焼結鉱中CaO/SiOが1.6となる
ように配合。
Limestone: Compounded so that CaO / SiO 2 in the product sinter becomes 1.6.

返鉱:新原料に対して20% 粉コークス:新原料に対して4.5% 焼成条件 点火:1分 負圧:1200mmHO(一定) CaO源優先配合条件 1)CaO源優先配合なし(従来法) 2)本発明方法 3)比較法(1)…南米産粉鉱石の全量(A〜D)をC
aO源優先配合 4)比較法(2)…低Al/Al+Fe
粉鉱石の全量(A〜D、E、H)をCaO源優先配
合 表2に上記CaO源優先配合に供した粉鉱石の化学成分
及び配合割合を示す。
Return ore: 20% for new raw material Powder coke: 4.5% for new raw material Firing condition Ignition: 1 minute Negative pressure: 1200 mmH 2 O (constant) CaO source priority compounding condition 1) CaO source priority compounding (( Conventional method) 2) Method of the present invention 3) Comparative method (1) ... The total amount (A-D) of South American flour ore is C
aO source preferential formulation 4) Comparative method (2) ... Low Al 2 O 3 / Al 2 O 3 + Fe 2
O 3 the total amount of the fine ore (A~D, E, H) are shown the chemical composition and the mixing ratio of the fine ore subjected to the CaO source priority formulated CaO source priority recipe 2.

なお珪石、返鉱及び粉コークスのCaO源優先配合への
割合は、各焼結原料(粉鉱石)の配合割合に応じて行な
う。
The ratio of silica stone, return ore and powder coke to the CaO source preferential mixing is determined according to the mixing ratio of each sintering raw material (powder ore).

焼結鍋試験結果 表2に示すように、本発明方法で製造された焼結鉱は、
品質及び生産性が全てにおいて従来法のものより優れて
いることが分かる。これに対して比較法は、いずれも焼
結鉱の品質及び生産性への影響は少なく、ほとんど効果
がない。これは、比較法はCaO源を優先配合する粉鉱
石が多くかつ低Al/Al+Fe
あるが低SiO量であるためにCaO源優先配合(低
Al/Al+Fe)のCaO/Si
増加量一定とした場合、主たる焼結原料(高Al
/Al+Fe)のCaO/SiO
下量が少なく、短冊状CaFの生成が抑制できなかった
ことに由来すると考えられる。
Sinter pot test results As shown in Table 2, the sinter produced by the method of the present invention is
It can be seen that the quality and productivity are all superior to those of the conventional method. On the other hand, each of the comparative methods has little effect on the quality and productivity of the sinter and has almost no effect. This is because, in the comparative method, there are many powdered ores in which the CaO source is preferentially blended and there is a low Al 2 O 3 / Al 2 O 3 + Fe 2 O 3 value, but the low SiO 2 content results in the CaO source preferential blending (low Al 2 O 3 / Al 2 O 3 + Fe 2 O 3) of CaO / Si
If the amount of increase in O 2 is constant, the main sintering raw material (high Al 2
It is considered that this is because the decrease amount of CaO / SiO 2 in O 3 / Al 2 O 3 + Fe 2 O 3 ) was small and the generation of strip-shaped CaF could not be suppressed.

なお粉コークス配合量、CaO源優先配合への粉コーク
ス配合割合、珪石配合量及び石灰石配合量などを変えて
試験を行なったが、上記実施例と同様の効果を得た。
The test was conducted by changing the powder coke blending amount, the powder coke blending ratio to the CaO source preferential blending, the silica stone blending amount, the limestone blending amount, and the like, and the same effects as those in the above-described examples were obtained.

焼結鍋試験2 試験条件 原料配合、焼成条件は、試験例1と同一条件とした。ま
たCaO源優先配合条件は、粉鉱石については試験例1
の本発明方法と同一条件とした、なお珪石、返鉱につい
ては全量CaO源優先配合のものに配合した。
Sintering pot test 2 Test conditions The raw material composition and firing conditions were the same as in Test Example 1. In addition, the CaO source preferential mixing condition is Test Example 1 for powdered ore.
Under the same conditions as in the method of the present invention, the total amount of silica stone and return ore was compounded with CaO source priority compounding.

焼結鍋試験結果(表4) 本発明方法によれば、珪石、返鉱をCaO源優先配合の
ものに配合した方が焼結鉱の品質、生産性を高めること
ができる。これはCaO源優先配合に珪石、返鉱を優先
的に配合すると、主たる焼結原料(高Al/Al
+Fe、低SiO)のCaO/SiO
をより低下させることができたためと考えられる。
Sintering Pot Test Results (Table 4) According to the method of the present invention, it is possible to improve the quality and productivity of the sintered ore by blending silica stone and return ore with CaO source preferential blending. This is because the main sintering material (high Al 2 O 3 / Al
2 O 3 + Fe 2 O 3 , low SiO 2 ) CaO / SiO 2
It is thought that this was due to the fact that

なおこの試験条件においても粉コークス配合量、CaO
源優先配合への粉コークス配合割合、珪石配合量及び石
灰石配合量などを変化させた試験を行なったが、その効
果は同様であった。
Even under these test conditions, powder coke content and CaO
A test was conducted in which the powder coke blending ratio, the silica stone blending amount, and the limestone blending amount were changed to the source-first blending, but the effects were the same.

【図面の簡単な説明】 図面は本発明の1実施例を示すブロック図である。 1…主たる焼結原料用粉鉱石、2…CaO源優先配合用
粉鉱石、3…返鉱、4…石灰石、5…珪石、6…粉コー
クス、7…主たる焼結原料ライン、9…CaO源優先配
合ライン、8、10…混合造粒機、11…混合機、12
…焼結機
BRIEF DESCRIPTION OF THE DRAWINGS The drawing is a block diagram showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Main powder ore for sintering raw materials, 2 ... Powder ore for preferential mixing of CaO sources, 3 ... Return ore, 4 ... Limestone, 5 ... Silica, 6 ... Powder coke, 7 ... Main sintering raw material line, 9 ... CaO source Priority compounding line, 8, 10 ... Mixing granulator, 11 ... Mixer, 12
… Sintering machine

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】焼結原料として配合する各種粉鉱石の化学
成分と配合比から全粉鉱石の{平均Al重量含有
割合/(平均Al重量含有割合+平均Fe
重量含有割合)}値と平均SiO重量含有割合値を計
算し、これら平均値を基準として各種粉鉱石を分類し、
前記平均値より低い{Al重量含有割合/(Al
重量含有割合+Fe重量含有割合)}値を
持ちかつ前記平均値より高いSiO重量含有割合値を
持つ粉鉱石について、媒溶剤として配合するCaO源を
全焼結原料の平均(CaO重量含有割合/SiO重量
含有割合)値よりも高くなるように配合し、この配合物
を全焼結原料の混合、造粒に先立って混合、造粒するこ
とを特徴とする焼結原料の事前処理方法。
1. From the chemical composition and the compounding ratio of various powdered ores blended as a sintering raw material, {average Al 2 O 3 weight content ratio / (average Al 2 O 3 weight content ratio + average Fe 2 O 3
Weight content ratio)} value and average SiO 2 weight content ratio value are calculated, and various powdered ores are classified based on these average values,
Lower than the average value {Al 2 O 3 weight content ratio / (Al
2 O 3 weight content ratio + Fe 2 O 3 weight content ratio)} value and a powder ore having a SiO 2 weight content value higher than the above-mentioned average value, the CaO source compounded as a solvent is an average of all sintering raw materials ( CaO weight content ratio / SiO 2 weight content ratio) is blended so as to be higher than the value, and this mixture is mixed and granulated prior to the mixing of all the sintering raw materials and the granulation. Pretreatment method.
JP22133786A 1986-09-19 1986-09-19 Pretreatment method for sintering raw material Expired - Fee Related JPH0610312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22133786A JPH0610312B2 (en) 1986-09-19 1986-09-19 Pretreatment method for sintering raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22133786A JPH0610312B2 (en) 1986-09-19 1986-09-19 Pretreatment method for sintering raw material

Publications (2)

Publication Number Publication Date
JPS6376825A JPS6376825A (en) 1988-04-07
JPH0610312B2 true JPH0610312B2 (en) 1994-02-09

Family

ID=16765222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22133786A Expired - Fee Related JPH0610312B2 (en) 1986-09-19 1986-09-19 Pretreatment method for sintering raw material

Country Status (1)

Country Link
JP (1) JPH0610312B2 (en)

Also Published As

Publication number Publication date
JPS6376825A (en) 1988-04-07

Similar Documents

Publication Publication Date Title
JP4205242B2 (en) Granulation method of sintering raw material
JPH0543953A (en) Pre-treating method in manufacture of agglomerate
JP4268419B2 (en) Method for producing low slag sintered ore
JPH0610312B2 (en) Pretreatment method for sintering raw material
JPH0442457B2 (en)
JPH0610313B2 (en) Pretreatment method for sintering raw material
CN115491488B (en) Iron-containing material for sintering with low usage amount of Brazil mixed powder, sintering composition, sintered ore and preparation method of iron-containing material
JPH0610315B2 (en) Pretreatment method for sintering raw material
WO1996009415A1 (en) Sintered ore manufacturing method using high crystal water iron ore as raw material
JPH0610316B2 (en) Pretreatment method for sintering raw material
KR101486869B1 (en) Briquettes for manufacturing sintered ore, manufacturing method of it and method for manufacturing using it
JPH09272925A (en) Production of sintered ore excellent in property at high temperature and cold strength
JPH0610314B2 (en) Pretreatment method for sintering raw material
JPH0617152A (en) Manufacture of sintered ore for blast furnace using high goethite ore as raw material
JP4661077B2 (en) Method for producing sintered ore
JP4412313B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JPH0778256B2 (en) Manufacturing method of mini pellet for sintering
JP2009114485A (en) Method for manufacturing sintered ore
JP2515639B2 (en) Method for producing agglomerated ore using converter slag
JPS63111133A (en) Sintering method of iron ore
JP2548647B2 (en) Manufacturing method of sintered ore for iron making from high goethite iron ore
JP2004225147A (en) Method for manufacturing sintered ore for blast furnace
JPS58213837A (en) Method for sintering chrome ore
JPS6047887B2 (en) Sintered ore manufacturing method
JPH11229046A (en) Method for pre-treating raw material for sintering

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees