JPS6376824A - Preliminary treatment of sintering raw material - Google Patents
Preliminary treatment of sintering raw materialInfo
- Publication number
- JPS6376824A JPS6376824A JP22133686A JP22133686A JPS6376824A JP S6376824 A JPS6376824 A JP S6376824A JP 22133686 A JP22133686 A JP 22133686A JP 22133686 A JP22133686 A JP 22133686A JP S6376824 A JPS6376824 A JP S6376824A
- Authority
- JP
- Japan
- Prior art keywords
- average
- fine
- ore
- value
- al2o3
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002994 raw material Substances 0.000 title claims abstract description 30
- 238000005245 sintering Methods 0.000 title claims abstract description 20
- 239000000843 powder Substances 0.000 claims abstract description 26
- 239000002002 slurry Substances 0.000 claims abstract description 16
- 238000005507 spraying Methods 0.000 claims abstract description 6
- 239000000126 substance Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 25
- 238000002156 mixing Methods 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 10
- 238000005469 granulation Methods 0.000 claims description 7
- 230000003179 granulation Effects 0.000 claims description 7
- 238000007781 pre-processing Methods 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 37
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 22
- 229910052593 corundum Inorganic materials 0.000 abstract description 22
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract description 22
- 239000000377 silicon dioxide Substances 0.000 abstract description 18
- 235000019738 Limestone Nutrition 0.000 abstract description 16
- 239000006028 limestone Substances 0.000 abstract description 16
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 16
- 229910052681 coesite Inorganic materials 0.000 abstract description 15
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 15
- 229910052682 stishovite Inorganic materials 0.000 abstract description 15
- 229910052905 tridymite Inorganic materials 0.000 abstract description 15
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 abstract description 13
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000011068 loading method Methods 0.000 abstract description 3
- 229910017344 Fe2 O3 Inorganic materials 0.000 abstract 1
- 230000015556 catabolic process Effects 0.000 abstract 1
- 239000003795 chemical substances by application Substances 0.000 abstract 1
- 238000013329 compounding Methods 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 238000005453 pelletization Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 8
- 239000002893 slag Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- WETINTNJFLGREW-UHFFFAOYSA-N calcium;iron;tetrahydrate Chemical compound O.O.O.O.[Ca].[Fe].[Fe] WETINTNJFLGREW-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 229910018404 Al2 O3 Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000012733 comparative method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- -1 silicate compound Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、自溶性焼結鉱用原料の事前処理方法に関する
。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for pre-treating raw materials for self-fusing sintered ore.
(従来技術)
高炉原料として使用される自溶性焼結鉱は、一般に以下
に述べる方法により製造される。まず、本船から荷上げ
した粉鉱石を銘柄ごとに粉鉱ヤードに山積みする。その
後山積みされた各種粉鉱石を予め設定している割合でベ
ツディング法により混合し、ブレンディング粉とする。(Prior Art) Self-fusing sintered ore used as a raw material for a blast furnace is generally produced by the method described below. First, the fine ore unloaded from the ship is piled up in the fine ore yard by brand. After that, the piled up various powdered ores are mixed by a bedding method in a preset ratio to form a blended powder.
このブレンディング粉と石灰石、粉コークスおよび返鉱
等の各原料をそれぞれ別々の配合槽に入れ、それぞれの
′配合槽から各原料を所定量連続的に切り出す。これを
−次ミキサーに送って水分添加及び造粒を行なう。必要
に応じて二次ミキサーで更に造粒する。This blending powder and raw materials such as limestone, coke powder, and return ore are placed in separate blending tanks, and a predetermined amount of each raw material is continuously cut out from each blending tank. This is sent to a second mixer for water addition and granulation. Further granulation is performed using a secondary mixer if necessary.
このようにして造粒された原料(擬似粒子)をホツバか
ら焼結機のパレット上に連続的に供給し、かつ点火炉に
より原料表層の粉コークスに点火し、焼結機下方に設置
されている風箱で強制的に吸引通風する。以上の操作に
より高炉原料としての自溶性焼結鉱を製造する。The raw material (pseudo particles) granulated in this way is continuously supplied from the hotpot onto the pallet of the sintering machine, and the coke powder on the surface layer of the raw material is ignited in the ignition furnace, which is installed below the sintering machine. Forced suction ventilation with a wind box. Through the above operations, self-fusing sintered ore is produced as a raw material for a blast furnace.
このような一般的な焼結鉱の製造方法において、使用さ
れる原料は、いろいろな制約条件を受けている。このよ
うな制約条件を外すことができれば、コスト低減につな
がる。このため各種方法が検討されている。例えば、石
灰石については一般的な焼結鉱の製造方法では、微粉の
量に制限を受けている。これは、微粉の量が増加すると
生産性、品質いずれも低下するためである。そこで微粉
石灰石の有効利用を図るために、微粉石灰石の予備造粒
などの技術が検討されている。しかしながら、この技術
は、石灰石の予備造粒によるコスト増に見合う顕著な効
果が得られず、工業的には実用化されていない。即ち従
来は、適切な微粉石灰石の利用方法が見当たらないため
に、石灰石の微粉量は焼結鉱の製造における制約となっ
ている。In such a general method for producing sintered ore, the raw materials used are subject to various constraints. If such constraints can be removed, it will lead to cost reduction. For this reason, various methods are being considered. For example, in the case of limestone, the amount of fine powder is limited in the general method for producing sintered ore. This is because as the amount of fine powder increases, both productivity and quality decrease. Therefore, in order to effectively utilize pulverized limestone, techniques such as preliminary granulation of pulverized limestone are being considered. However, this technique has not been put into practical use industrially because it has not been able to achieve significant effects commensurate with the cost increase due to preliminary granulation of limestone. That is, conventionally, since no suitable method for utilizing finely divided limestone has been found, the amount of finely divided limestone has been a constraint in the production of sintered ore.
一方焼結鉱の品質を示す基準として、Sl(常温強度)
、RDI(還元粉化性指数)、RI(被還元性指数)な
どがある。これらの品質は製造した焼結鉱を原料として
使用する高炉において、燃料比、生産性、操業性等に多
大な影響を及ぼす。On the other hand, as a standard to indicate the quality of sintered ore, Sl (room temperature strength)
, RDI (reduction pulverizability index), RI (reducibility index), etc. These qualities have a great influence on the fuel ratio, productivity, operability, etc. in blast furnaces that use the manufactured sintered ore as raw materials.
これら品質を高めるために例えば、焼結鉱のCaO/5
iOzを増加させる方法が提案されている。In order to improve these qualities, for example, CaO/5 of sintered ore
Methods have been proposed to increase iOz.
しかし高炉の操業条件により焼結鉱のCaO/5iOz
は一義的に決める必要があり、実際には適用できない。However, due to the operating conditions of the blast furnace, the CaO/5iOz of sintered ore
must be determined uniquely and cannot be applied in practice.
またSiO2源の微細化による微粉部のAlzOa/S
iO2値を制御する方法、′あるいは石英等の脈石を持
つ南米産の粉鉱石と石灰石を予備造粒して供する方法等
が検討されたがいずれも製造コストの増加に対して明確
な効果が得られず、工業的には実用化されていない。In addition, AlzOa/S in the fine powder part due to the miniaturization of the SiO2 source
A method of controlling the iO2 value, or a method of pre-granulating limestone and powdered ore from South America with gangue such as quartz, etc., was considered, but none of them had a clear effect on increasing production costs. cannot be obtained and has not been put to practical use industrially.
(発明が解決しようとする技術的課題)本発明は、Ca
O源となる石灰石等の微粉を有効に活用して、しかも低
A12O. /Al2O3+Fe2O3粉鉱石、特に低
Al2O3/Al2O3+F e2O3で低SiO2の
粉鉱石とCaO源との反応を促進して、同時に高Al2
O3/Al2O3 +Fe2O3粉鉱石においてCaO
源との反応を抑制し、これにより常温強度及び耐還元粉
化性に優れた非晶質スラグの生成を促進し更に被還元性
の劣る短冊状カルシウムフェライトの生成を抑制し、こ
のことにより常温強度、耐還元粉化性及び被還元性の優
れた焼結鉱を歩留り良く製造する焼結鉱の事前処理方法
を提供することを目的とする。(Technical problem to be solved by the invention) The present invention solves the problem of Ca
Effectively utilizes fine powder such as limestone, which is an O source, and has a low A12O. /Al2O3+Fe2O3 fine ore, especially low Al2O3/Al2O3+Fe2O3, promotes the reaction between low SiO2 fine ore and CaO source, and at the same time high Al2
O3/Al2O3 +CaO in Fe2O3 fine ore
This suppresses the reaction with the source, thereby promoting the production of amorphous slag with excellent room temperature strength and reduction powdering resistance, and further suppressing the production of strip-shaped calcium ferrite with poor reducibility. An object of the present invention is to provide a method for pre-processing sintered ore, which produces sintered ore with a good yield and excellent strength, resistance to reduction and pulverization, and reducibility.
(技術的課題を解決する手段)
本発明は、焼結原料として配合する各種粉鉱石の化学成
分と配合比から全粉鉱石の平均Al2O3/平均Al2
O3+平均Fe2O3値を計算し、この平均値を基準と
して各種粉鉱石を分類し、前記平均値より低いA 12
O3 /A 12O3 +F e2O3値を持つ粉鉱石
について、全焼結原料の混合、造粒に先立って、媒溶剤
として配合するCaO源をスラリー状にして散布するこ
とを特徴とする焼結原料の事前処理方法であり、また焼
結原料として配合する各種粉鉱石の化学成分と配合比か
ら全粉鉱石の平均Al2O3/平均Al2O3十平均F
e2O3値と平均SiO2ffiを計算し、これら平均
値を基準として各種粉鉱石を分類し、前記平均値より低
°いA 12O3 /A 12O3 +F e2O3値
を持ちかつ前記平均値より低いSiO2量を持つ粉鉱石
について、全焼結原料の混合、造粒に先立って、媒溶剤
として配合するCaO源をスラリー状にして散布するこ
とを実施態様とする焼結原料の事前処理方法である。(Means for Solving Technical Problems) The present invention is based on the chemical components and blending ratio of various fine ores to be blended as sintering raw materials.
Calculate the O3+average Fe2O3 value, classify various fine ores based on this average value, and determine whether A12 is lower than the average value.
A pre-processing of sintering raw materials for powdered ore having a value of O3 /A 12O3 +F e2O3, which is characterized in that, prior to mixing and granulation of all sintering raw materials, a CaO source to be blended as a solvent is dispersed in the form of a slurry. It is also a method to calculate the average Al2O3/average Al2O3 and average F of all fine ores from the chemical components and blending ratio of various fine ores blended as sintering raw materials.
The e2O3 value and the average SiO2ffi are calculated, and various types of fine ore are classified based on these average values, and powders having A 12O3 /A 12O3 +F e2O3 value lower than the average value and a SiO2 amount lower than the average value are classified. This is a method for pre-processing sintering raw materials for ore, in which, prior to mixing and granulating all sintering raw materials, a CaO source blended as a solvent is made into a slurry and sprayed.
(発明の詳細な説明) 焼結鉱は、各種の鉱物組織から構成されている。(Detailed description of the invention) Sintered ore is composed of various mineral structures.
すなわち焼結鉱の品質はこれらの各種組織の品質″(物
性値)および構成比率によって決定される。That is, the quality of sintered ore is determined by the quality (physical property values) and composition ratio of these various structures.
そこで先ず焼結鉱を構成する各種の組織を相、形態別に
分類し、それぞれの組織について強度及び被還元性を測
定した。その結果珪酸塩化合物であ゛る非晶質スラグは
強度が高いこと、及び上記非晶質スラグ中に存在する短
冊状のカルシウムフェライト(以下短冊状CaFと略称
する)は、他の鉱物組織に比べ被還元性が著しく劣って
いること等が判明した。即ち短冊状CaFを他の鉱物組
織(例えば針状又は微細型のカルシウムフェライト)と
して生成させかつ短冊状を含まない非晶質スラグの生成
を促進すれば、強度の高い高被還元性の焼結鉱を製造で
きる。Therefore, first, the various structures constituting sintered ore were classified by phase and morphology, and the strength and reducibility of each structure were measured. As a result, the amorphous slag, which is a silicate compound, has high strength, and the rectangular calcium ferrite (hereinafter referred to as rectangular CaF) present in the amorphous slag has a structure similar to that of other minerals. It was found that the reducibility was significantly inferior. In other words, if the CaF strips are generated as other mineral structures (e.g., acicular or fine calcium ferrite) and the formation of amorphous slag that does not contain strips is promoted, a strong and highly reducible sintered product can be obtained. Can produce ore.
そこで次に非晶質スラグ中に存在する短期状CaFの生
成条件について検討した。まず焼結鉱中に存在する短冊
状CaFについてXMAを用いて元素分析を行なった。Next, we investigated the conditions for the formation of short-term CaF present in the amorphous slag. First, elemental analysis was performed using XMA on the CaF strips present in the sintered ore.
この測定により短冊状CaFは、周囲の非晶質スラグ相
に比べ高いCa/Si比を持っていることが明らかとな
った。次に各種粉鉱石、石灰石、珪石を用い、種々の配
合組成で焼結組織の合成試験を行なった。その結果短冊
状CaFを生成させるためには、現在の原料配合よりも
高A 12O3 /A 12O3 +F e2O3、高
Ca O/ S i O2組成が必要で、かつ高温で焼
成された場合であることが判明した。即ち実際の焼結鉱
にはミクロ的な成分偏析があり、それゆえ焼結鉱の平均
組成よりも高Al2O3/Al2O3+Fe2O3でか
つ高CaO/SiO2となる領域が存在し、実際の焼結
鉱に短lI状CaFが存在するのである。従ってこの高
Al2O3/Al2O3 +F e2O3 、高CaO
/SiO2となる領域を減することにより短冊状CaF
の生成が抑制される。This measurement revealed that the CaF strips had a higher Ca/Si ratio than the surrounding amorphous slag phase. Next, we conducted synthetic tests of sintered structures using various powdered ores, limestone, and silica stone with various compositions. As a result, in order to generate strip-shaped CaF, a higher A 12O3 /A 12O3 +F e2O3 and higher CaO/SiO2 composition than the current raw material composition is required, and it is necessary to sinter at a high temperature. found. In other words, there is microscopic component segregation in actual sintered ore, and therefore there are regions with higher Al2O3/Al2O3+Fe2O3 and higher CaO/SiO2 than the average composition of sintered ore. Therefore, lI-like CaF exists. Therefore, this high Al2O3/Al2O3 +F e2O3, high CaO
By reducing the area that becomes /SiO2, strip-shaped CaF
generation is suppressed.
そこで高A 12O3 /A 12O3 +F e2O
3、高CaO/SiO2の領域を減する方法として、全
焼結原料を微粉砕しかつ均一混合しミクロ的にも焼結鉱
の平均組成とする方法が考えられる。しかしながらこの
方法は、製造コストの大幅な増加をもたらすため工業的
には適用できない。So high A 12O3 /A 12O3 +F e2O
3. As a method of reducing the high CaO/SiO2 region, a method can be considered in which the entire sintering raw material is finely pulverized and mixed uniformly so that the average composition of the sintered ore is obtained even on a microscopic level. However, this method is not industrially applicable because it significantly increases manufacturing costs.
そこで本発明では、高A 12O3/ A l 2O3
+Fe2O3粉鉱石と石灰石等のCaO源との反応を抑
制させることにより同一の原料配合条件で高A 12O
3 /A 12O3 +F e2O3でかつ高CaO/
SiO2となるのを避けるようにした。Therefore, in the present invention, high A 12O3/A l 2O3
+By suppressing the reaction between Fe2O3 powder ore and a CaO source such as limestone, high A12O can be achieved under the same raw material blending conditions.
3 /A 12O3 +F e2O3 and high CaO/
I tried to avoid it becoming SiO2.
−即ち本発明は、余剰となっている反応性の高い微粉石
灰石を等のCa17Nをスラリー状とし、これを全焼結
原料の混合造粒に先だって、低Al2O5/Al2O3
+Fe2O3粉鉱石に散布することにより高A 12
O3 /A l 2O3 +F e2 o、。- That is, in the present invention, surplus highly reactive finely powdered limestone is made into a slurry of Ca17N, and prior to mixing and granulation of all sintering raw materials, a low Al2O5/Al2O3
+High A 12 by scattering on Fe2O3 powder ore
O3 /A l 2O3 +F e2 o,.
粉鉱石との反応を抑制する方法である。This is a method of suppressing the reaction with fine ore.
(発明の効果)
本発明によれば、低A12O3 /Al2O3 +Fe
2O3粉鉱石とCaO源との反応を促進するとともに高
A 12O3 /A 12O3 +F e2O3粉鉱石
とCaO源との反応を抑制し、これにより常温強度及び
耐還元粉化性に優れた非晶質スラグを促進しさらに被還
元性の劣る短冊状のカルシウムフェライトの生成を抑制
し、この結果常温強度、耐還元粉化性、被還元性に優れ
た焼結鉱を歩留り良く得ることができる。なお本発明で
は、散布するCaO源の量を一定とした場合、CaO源
を散布する粉鉱石は、低A12O3 /At2o3+F
e2O3でかつ低SiO2である粉鉱石の方が高A12
O3 /Al2O3 +Fe2 o、、粉鉱石において
低CaO/SiO2組成となるため効果が大きい。(Effect of the invention) According to the invention, low A12O3 /Al2O3 +Fe
It promotes the reaction between the 2O3 fine ore and the CaO source and suppresses the reaction between the high A 12O3 /A 12O3 +F e2O3 fine ore and the CaO source, thereby producing an amorphous slag with excellent room temperature strength and resistance to reduction and pulverization. Furthermore, the formation of rectangular calcium ferrite, which is poor in reducibility, is suppressed, and as a result, sintered ore with excellent room temperature strength, reduction powdering resistance, and reducibility can be obtained with a good yield. In addition, in the present invention, when the amount of CaO source to be sprinkled is constant, the fine ore to which the CaO source is sprinkled has a low A12O3 /At2o3+F
Fine ore with e2O3 and low SiO2 has higher A12
O3 /Al2O3 +Fe2 o, the effect is great because the fine ore has a low CaO/SiO2 composition.
(実施例)
次に本発明方法の実施例を添附したフロー図で説明する
。図中1は本船、2は粉鉱ヤードに山積みした銘柄毎の
粉鉱石、3はブレンディング粉鉱石、4は配合槽、5は
1次ミキサー、6は2次ミキサー、7はホッパー、8は
焼結機、9はパレット、10は点火炉、11は風箱を示
す。また矢印は粉鉱石の処理順序を示す。本発明ではr
IIl+1〜fnの銘柄の粉鉱石は低A12O3 /
A l 2O3 +Fe2O3粉鉱石又は低A 12O
3 /A 12O3+Fe2O3でかつ低SiO2の粉
鉱石を示す。(Example) Next, an example of the method of the present invention will be described with reference to the attached flowchart. In the figure, 1 is the ship, 2 is the powder ore of each brand piled up in the powder ore yard, 3 is the blending powder ore, 4 is the blending tank, 5 is the primary mixer, 6 is the secondary mixer, 7 is the hopper, and 8 is the calciner. 9 is a pallet, 10 is an ignition furnace, and 11 is a wind box. Also, arrows indicate the processing order of fine ore. In the present invention, r
Fine ore of brands IIl+1 to fn has low A12O3 /
A l 2O3 + Fe2O3 powder ore or low A 12O
3/A Indicates fine ore with 12O3+Fe2O3 and low SiO2.
またA−DはCaO源をスラリー状として散布する箇所
を示し、Aは荷上げ搬送中、Bは粉鉱ヤードでの山積み
時、Cはブレンディングヤードへの搬送中、Dはブレン
ディングヤードでの特定銘柄積み付は中を示す。本発明
では、A−Dのいずれの箇所でスラリー散布を行なって
も同様の効果を発揮する。In addition, A-D shows the locations where the CaO source is sprayed in the form of a slurry. A is during loading and transportation, B is when piled up in the powder ore yard, C is during transportation to the blending yard, and D is specified at the blending yard. Brand loading indicates inside. In the present invention, the same effect can be achieved no matter where the slurry is spread from A to D.
° 次に本発明の効果を確認した実施例につき説明する
。° Next, examples in which the effects of the present invention were confirmed will be described.
焼結鋼試験
焼結鍋条件
原料配合
粉鉱石二表1に示すlO銘柄(A−Dは南米産粉鉱石、
E−Jは豪州、インド産粉鉱石)珪石;成品焼結鉱中5
to2が5.5%となるように配合。Sintered steel test Sintering pot conditions Raw materials blended powder ore 2 IO brands shown in Table 1 (A-D are powder ore from South America,
E-J is powder ore from Australia and India) silica; finished product sintered ore 5
Blended so that to2 is 5.5%.
石灰石:成品焼結鉱中(ao/5iOzが1.6となる
ように配合を決め、−0,5msの約80%をスラリー
状として特定の粉鉱石に散布、残りは通常に配合。試験
は、通常粒度と細粒の石灰石について実施。(粒度分布
は表2に示す。)返鉱:新原料に対して2O%
粉コークス:新原料に対して4.5%
焼成条件
点火21分
4負圧: 12O0maH2O(一定)CaOスラリー
散布条件
1)CaO源スラスラリ−散布く従来法)2)全粉鉱石
にCaO源スラスラリ−散布較法)3)本発明方法(1
)・・・低A12 o、、/Al2O3+Fe2O3粉
鉱石(A−D、−E%H)にCa0源スラリー散布
4)本発明方法(2)・・・低A 12O3 /A 1
2O3 +F e2 o3 、低SiO2粉鉱石(A−
C,E)にCaO源スラスラリ−散
布)本発明方法(3)・・・低Al2O3/Al2O3
+i’ e2O3 、高SiO2粉鉱石(1,J)にC
aO源スラスラリ−散
焼結鋼試験結果
表3に示すように、本発明方法で製造された焼結鉱は、
全て生産性、品質が従来方法によるものよりも高い値を
示している。特に低Al2O3/A 12O3 +F
e2O3 、低SiO2粉鉱石にCaO源をスラリー散
布した場合には(本発明方法(2)) 、その効果が著
しい。なお全粉鉱石にCaO源をスラリー散布する比較
法は、従来法に比べて効果がない。また粉コークス配合
量、珪石配合量及び石灰石配合量などを変えて試験を行
なったが、上記実施例と同様の効果を得た。Limestone: In finished sintered ore (determine the blend so that ao/5iOz is 1.6, apply approximately 80% of -0.5ms as a slurry to the specific fine ore, and mix the rest normally. The test is , carried out on normal particle size and fine limestone. (Particle size distribution is shown in Table 2.) Return ore: 20% relative to new raw material Coke powder: 4.5% relative to new raw material Calcining conditions ignition 21 minutes 4 negative Pressure: 12O0maH2O (constant) CaO slurry spreading conditions 1) Conventional method of spreading CaO source slurry on whole powder ore) 3) Method of the present invention (1)
)...Low A12 o,,/Al2O3+Fe2O3 powdered ore (A-D, -E%H) with Ca0 source slurry spraying 4) Method of the present invention (2)...Low A12O3/A1
2O3 +F e2 o3, low SiO2 powder ore (A-
C, E) CaO source slurry spraying) Present invention method (3)...low Al2O3/Al2O3
+i' e2O3, C in high SiO2 powder ore (1, J)
aO source slurry - scattering sintered steel test results As shown in Table 3, the sintered ore produced by the method of the present invention has the following properties:
All of them show higher productivity and quality values than conventional methods. Especially low Al2O3/A 12O3 +F
When a slurry of CaO source is sprayed on e2O3 and low SiO2 fine ore (method (2) of the present invention), the effect is remarkable. Note that the comparative method of spraying a slurry of CaO source on all the powdered ore is not as effective as the conventional method. Tests were also conducted with different amounts of coke powder, silica stone, limestone, etc., and the same effects as in the above examples were obtained.
図面は本発明の1実施例を示すフロー図である。
1・・・本船、2・・・粉鉄ヤードに山積みした銘柄毎
の粉鉱石、3・・・ブレンディング粉鉱石、4・・・配
合槽、5・・・1次ミキサー、6・・・2次ミキサー、
7・・・ホッパー、8・・・焼結機、9・・・パレット
、10・・・点火炉、11・・・風箱The drawing is a flow diagram illustrating one embodiment of the invention. 1... Ship, 2... Powder ore of each brand piled up in the iron powder yard, 3... Blending powder ore, 4... Blending tank, 5... Primary mixer, 6... 2 Next mixer,
7... Hopper, 8... Sintering machine, 9... Pallet, 10... Ignition furnace, 11... Wind box
Claims (2)
配合比から全粉鉱石の平均Al_2O_3/平均Al_
2O_3+平均Fe_2O_3値を計算し、この平均値
を基準として各種粉鉱石を分類し、前記平均値より低い
Al_2O_3/Al_2O_3+Fe_2O_3値を
持つ粉鉱石についで、全焼結原料の混合、造粒に先立っ
て、媒溶剤として配合するCaO源をスラリー状に散布
することを特徴とする焼結原料の事前処理方法。(1) Average Al_2O_3/average Al_ of all powdered ores based on the chemical composition and blending ratio of various powdered ores blended as sintering raw materials
2O_3 + average Fe_2O_3 value is calculated, various types of fine ores are classified based on this average value, and fine ores with Al_2O_3/Al_2O_3 + Fe_2O_3 values lower than the average value are mixed with a medium prior to mixing and granulation of all sintering raw materials. A method for pre-processing sintering raw materials, characterized by spraying a CaO source blended as a solvent in the form of a slurry.
配合比から全粉鉱石の平均Al_2O_3/平均Al_
2O_3+平均Fe_2O_3値と平均SiO_2量を
計算し、これら平均値を基準として各種粉鉱石を分類し
、前記平均値より低いAl_2O_3/Al_2O_3
+Fe_2O_3値を持ちかつ前記平均値より低いSi
O_2量を持つ粉鉱石について、全焼結原料の混合、造
粒に先立って、媒溶剤として配合するCaO源をスラリ
ー状にして散布することを特徴とする焼結原料の事前処
理方法。(2) Average Al_2O_3/average Al_ of all powder ores based on the chemical components and blending ratio of various powder ores blended as sintering raw materials
2O_3 + average Fe_2O_3 value and average SiO_2 amount are calculated, various fine ores are classified based on these average values, and Al_2O_3/Al_2O_3 lower than the above average value.
+Fe_2O_3 value and lower than the average value
A method for pre-processing sintering raw materials for powdered ore having an amount of O_2, characterized in that, prior to mixing and granulating all sintering raw materials, a CaO source to be blended as a solvent is dispersed in the form of a slurry.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22133686A JPS6376824A (en) | 1986-09-19 | 1986-09-19 | Preliminary treatment of sintering raw material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22133686A JPS6376824A (en) | 1986-09-19 | 1986-09-19 | Preliminary treatment of sintering raw material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6376824A true JPS6376824A (en) | 1988-04-07 |
JPH0442457B2 JPH0442457B2 (en) | 1992-07-13 |
Family
ID=16765208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22133686A Granted JPS6376824A (en) | 1986-09-19 | 1986-09-19 | Preliminary treatment of sintering raw material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6376824A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100322036B1 (en) * | 1997-11-26 | 2002-05-13 | 이구택 | Sintered ore manufacturing method using steelmaking sludge |
JP2015086458A (en) * | 2013-11-01 | 2015-05-07 | 住友金属鉱山株式会社 | Installation and method for ore slurry production |
WO2016117051A1 (en) * | 2015-01-21 | 2016-07-28 | 住友金属鉱山株式会社 | Mineral slurry manufacturing facility and mineral slurry manufacturing method |
JP2017125247A (en) * | 2016-01-15 | 2017-07-20 | Jfeスチール株式会社 | Method for treating sintering raw material |
-
1986
- 1986-09-19 JP JP22133686A patent/JPS6376824A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100322036B1 (en) * | 1997-11-26 | 2002-05-13 | 이구택 | Sintered ore manufacturing method using steelmaking sludge |
JP2015086458A (en) * | 2013-11-01 | 2015-05-07 | 住友金属鉱山株式会社 | Installation and method for ore slurry production |
WO2016117051A1 (en) * | 2015-01-21 | 2016-07-28 | 住友金属鉱山株式会社 | Mineral slurry manufacturing facility and mineral slurry manufacturing method |
JP2017125247A (en) * | 2016-01-15 | 2017-07-20 | Jfeスチール株式会社 | Method for treating sintering raw material |
Also Published As
Publication number | Publication date |
---|---|
JPH0442457B2 (en) | 1992-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5464317B2 (en) | Manufacturing method of forming raw material for sinter production | |
JPS6376824A (en) | Preliminary treatment of sintering raw material | |
JP4205242B2 (en) | Granulation method of sintering raw material | |
JP2001348623A (en) | METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE | |
JP2000256731A (en) | Production of calcium ferrite for refining molten iron | |
JPH06212226A (en) | Powdery iron material for use as friction material and method for reduction thereof | |
JPH0543953A (en) | Pre-treating method in manufacture of agglomerate | |
JP6043271B2 (en) | Method for producing reduced iron | |
JPS6376827A (en) | Preliminary treatment of sintering raw material | |
US3825638A (en) | Method for producing cold bound agglomerates from particulate mineral concentrates | |
JPS6376826A (en) | Preliminary treatment of sintering raw material | |
JPS6376825A (en) | Preliminary-treatment of sintering raw material | |
JPH0778256B2 (en) | Manufacturing method of mini pellet for sintering | |
JPS627253B2 (en) | ||
JPH0347927A (en) | Method for pre-treating sintering raw material for blast furnace | |
JPS61113732A (en) | Sintering method of chrome ore | |
JP4412313B2 (en) | Manufacturing method of high quality low SiO2 sintered ore | |
JP4635559B2 (en) | Method for manufacturing raw materials for sintering | |
JPH09272925A (en) | Production of sintered ore excellent in property at high temperature and cold strength | |
JPS58213837A (en) | Method for sintering chrome ore | |
JP2004225147A (en) | Method for manufacturing sintered ore for blast furnace | |
JPS5983727A (en) | Preparation of iron ore stock material to be sintered | |
JPH1121634A (en) | Production of sintered ore | |
JPH02107724A (en) | Pretreatment of sintering material | |
JP2007277684A (en) | Nonfired agglomerated ore for iron manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |