JPS5983727A - Preparation of iron ore stock material to be sintered - Google Patents

Preparation of iron ore stock material to be sintered

Info

Publication number
JPS5983727A
JPS5983727A JP19294282A JP19294282A JPS5983727A JP S5983727 A JPS5983727 A JP S5983727A JP 19294282 A JP19294282 A JP 19294282A JP 19294282 A JP19294282 A JP 19294282A JP S5983727 A JPS5983727 A JP S5983727A
Authority
JP
Japan
Prior art keywords
ore
sintered
limestone
granulated
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19294282A
Other languages
Japanese (ja)
Other versions
JPH0232334B2 (en
Inventor
Yasushi Shiotani
靖 塩谷
Masaru Omizu
大水 勝
Yukio Umetsu
梅津 幸雄
Yasuyuki Sensui
泉水 康幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19294282A priority Critical patent/JPS5983727A/en
Publication of JPS5983727A publication Critical patent/JPS5983727A/en
Publication of JPH0232334B2 publication Critical patent/JPH0232334B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To attain to enhance the JIS reduction ratio and the reduction powdering index of a sintered ore, by obtaining a stock material to be sintered by mixing a granulated stock material to be sintered not contributing to the formation of calcium ferrite during sintering, limestone with a proper particle size and a powdery ore. CONSTITUTION:An iron ore powder forming calcium ferrite during sintering, limestone having particle size distribution wherein 70% or more is 1-3mm., pref., 10% or less is 3-5mm. and a fine particle with a particle size of -1.0mm. is 20% or less and a return ore are compounded in a first mixer. On the other hand, stock materials to be sintered each not contributed to the formation of calcium ferrite during sintering such as an iron ore powder, a silica sand powder or serpentinite are compounded with water, a binder or the like in a disc pelletizer to be granulated. Subsequently, the above mentioned granulated material and the stock material of the first mixer and mixed and granulated in a second mixer to obtain an iron ore stock material to be sintered wherein the above mentioned granulated material 1 and coarse particulate limestone 2 are dispersed in the powdery ore 3 so as to be coated with said powdery ore 3.

Description

【発明の詳細な説明】 本発明は、JIS還元率と還元粉化指数(RD I)の
向上を目的とした。鉄鉱石の焼結原料の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to improve the JIS reduction rate and reduced powdering index (RD I). The present invention relates to a method for producing a raw material for sintering iron ore.

高炉装入焼結鉱の品質としては、高炉操業条件の発展、
原料事情の変遷等に伴い常温強度の管理のみでは不充分
であり、最近では高炉内で加熱還元を受けるときの性状
すなわちJr8R元率と還元粉化指数(凡DI)を管理
することが重要になっている。
The quality of sintered ore charged into a blast furnace depends on the development of blast furnace operating conditions,
Due to changes in the raw material situation, it is not enough to control the strength at room temperature alone, and recently it has become important to control the properties when undergoing heat reduction in the blast furnace, that is, the Jr8R element ratio and the reduction pulverization index (DI). It has become.

JIS還元率を向上させるためKは、焼結鉱鉱物組織中
のマグネタイトを減らし、カルシウム。
In order to improve the JIS reduction rate, K reduces magnetite in the mineral structure of the sintered ore, and reduces calcium.

フェライトを多量に生成させる必要があること。It is necessary to generate a large amount of ferrite.

また還元粉化指数を改善するためには焼結過程で生成す
る2次へマタイトを減らす必要があることが予想されて
いた。
It was also expected that in order to improve the reduction index, it would be necessary to reduce secondary hematite generated during the sintering process.

従来JIS還元率及び還元粉化指数(R,DI)を向上
するための対策としては、焼結鉱中のスラグ量の調整、
粉コークス配合比を増減して焼結鉱中のIfigOをコ
ントロールすること、原料中のAt203 @T 10
.2 、 nイPM g Oの量な調整すること及び焼
結時の通風量をコントロールすること等が行なわれてい
るが、必ずしも充分な成果は得られていない。
Conventional measures to improve the JIS reduction rate and reduction pulverization index (R, DI) include adjusting the amount of slag in the sintered ore;
Controlling IfigO in sintered ore by increasing or decreasing the blending ratio of coke powder, At203 @T 10 in raw materials
.. 2. Efforts have been made to adjust the amount of PMgO and to control the amount of ventilation during sintering, but sufficient results have not always been obtained.

このため本出願人は、JISi元率を向上し。For this reason, the applicant has improved the JISi yuan rate.

還元粉化指数を改善するための対策として、配合原料中
の石灰石の粒度を1〜3泪が好ましくは全量、少なくと
も50%以上で不可避的には、3〜5節が10%以下お
よび、または−025mの微粒子が19%以下に粒度を
調整して焼結原料に配合する焼結鉱製造法を提案中であ
る。
As a measure to improve the reduction pulverization index, the particle size of limestone in the blended raw materials should be adjusted to 1 to 3 particles, preferably the total amount, at least 50% or more, and inevitably, 3 to 5 particles to be 10% or less, and/or We are currently proposing a method for producing sintered ore in which the particle size of -025m fine particles is adjusted to 19% or less and mixed into the sintering raw material.

及び焼結時カルシウム、フェライトの生成に寄与しない
焼結原料を予め造粒した造粒物と、石灰石の造粒物を含
めた焼結時カルシウム、フェライトを生成する焼結原料
とを混合して焼結原料とし焼結時、カルシウム。フェラ
イトが大量に生成するとともに、2次へマタイトの生成
が大幅に抑制される方法も提案中である。しかし、これ
らの方法はこれまでに知られている方法よシも改善され
ているが、以下に述べる理由によって必ずしも理想通り
の成果は得られていない。
and a granulated material that is pre-granulated with a sintering raw material that does not contribute to the production of calcium and ferrite during sintering, and a sintered raw material that produces calcium and ferrite during sintering, including limestone granules. Calcium is used as a sintering raw material during sintering. A method is currently being proposed in which a large amount of ferrite is produced and the production of secondary hematite is significantly suppressed. However, although these methods have been improved over previously known methods, they do not necessarily produce the ideal results for the reasons described below.

すなわち前者の方法は、石灰石は他の配合原料と均一に
混合されるため、石灰石粒子は配合原料中の高5j02
粒子と容易に接触し、焼結昇温過程でCaOと810□
が反応する部分が生じ、このためCaOとpA’203
の反応量が減じ、カルシウム、フェライトの生成が充分
でなく2次へマタイトの生成もある。
In other words, in the former method, limestone is uniformly mixed with other blended raw materials, so limestone particles have a high concentration of 5j02 in the blended raw materials.
It easily contacts particles and forms 810□ with CaO during the sintering temperature raising process.
A reaction site is created, and therefore CaO and pA'203
The amount of reaction decreases, and the production of calcium and ferrite is insufficient, and secondary hematite is also produced.

後者の方法は、高5102鉱石と石灰石が造粒されてい
るため、前者に比して石灰石粒子と高5ioz粒子の接
触は少ない。
In the latter method, since the high 5102 ore and limestone are granulated, there is less contact between the limestone particles and the high 5 ioz particles compared to the former method.

しかし、焼結時カルシウム。フェライトを生成する焼結
原料中の石灰石として造粒石灰石を用いているため、焼
結過程における水分凝縮過程で配合原料中の造粒石灰石
が過剰水分で一部崩懐し、造粒石灰石を構成している微
粒石灰石が配合原料中に存在するようになる。
However, calcium during sintering. Because granulated limestone is used as the limestone in the sintering raw material that produces ferrite, the granulated limestone in the blended raw material partially collapses due to excess moisture during the water condensation process during the sintering process, forming granulated limestone. Fine-grained limestone becomes present in the blended raw material.

このためこの微粒石灰石が焼結過程の早い段階で分解す
るためOaOはカルシウム、フェライトを生成する原料
中の5io2あるいはカルシウム、フェライト生成に寄
与しない原料中8102と反応し、シリケートスラグを
形成する部分が生ずる。このため、カルシウム、フェラ
イトの生成が抑制され。
For this reason, as this fine limestone decomposes at an early stage of the sintering process, OaO reacts with 5io2 in the raw materials that produce calcium and ferrite, or with 8102 in the raw materials that do not contribute to the production of calcium and ferrite, and the part that forms silicate slag. arise. Therefore, the production of calcium and ferrite is suppressed.

また2次へマタイトも生成する。It also generates secondary mattite.

したがって、これまで知られたものよりもJIS還元率
、還元粉化指数とも改善されてはいるが、寸だ十分には
改善されてい々い。
Therefore, although both the JIS reduction rate and reduction powdering index are improved compared to those known up to now, the improvements are still far from sufficient.

そこで本発明者等は、焼結時の2次へマタイトの生成を
抑え、カルシウム、フェライトを多量に生成さぜる研究
に涜手し、試験焼結鋼等で調査、検討を行なった、 その結果、焼結配合原料中の石灰石の焼結過程における
反応を遅らせることによジ、2次へマタイトの生成又は
成長を制御できることを見出した。
Therefore, the present inventors conducted research on suppressing the formation of secondary hematite during sintering and generating large amounts of calcium and ferrite, and conducted investigations and studies using test sintered steel. As a result, it was found that the generation or growth of secondary hematite can be controlled by delaying the reaction of limestone in the sintering compound raw material during the sintering process.

これは%焼結過程の前半ではCaOの反応を抑制してお
い−〔、焼結過程後半の系内雰囲気が敵化性になった時
点でFe2o3とOaOを積極的に反応させて、カルシ
ウム。フェライトを生成させて2次へマタイトの生成及
び成長を抑えようとするものである。
This is because the reaction of CaO is suppressed in the first half of the sintering process, and when the atmosphere in the system becomes hostile in the second half of the sintering process, Fe2O3 and OaO are actively reacted to form calcium. This is an attempt to suppress the generation and growth of secondary matite by generating ferrite.

そのためにtよ、焼結過程前半でのCaOの反応例えは
F’eO−5i02− CaO系融体でのOaOの反応
を抑える必要がある。
For this reason, it is necessary to suppress the reaction of OaO in the F'eO-5i02-CaO system melt, for example the reaction of CaO in the first half of the sintering process.

そこで本発明者等は、上記の知見を更に発展させ、焼結
時カルシウム、フェライトを生成する原料とカルシウム
。フェライト生成に寄与しない原料とを分別するととも
に、上記カルシウム、フェライトを生成する原料中の石
灰石を粒度1〜3smが好ましくは全量、少なくとも7
0%以上で不可避的には、3〜5嗣が10%以下丸・よ
び、または−1,0mの微粒子が20%以下に粒度を調
整したものを用いることにより、カルシウム。フェライ
トを多量に生成して2次へマタイトの生成が大幅に抑制
できることを見出した。
Therefore, the present inventors further developed the above knowledge and developed a raw material and calcium that generate calcium and ferrite during sintering. In addition to separating the raw materials that do not contribute to ferrite production, the calcium and limestone in the raw materials that produce ferrite have a particle size of 1 to 3 sm, preferably the total amount, at least 7 sq.
If the calcium is 0% or more and unavoidable, the particle size is adjusted to 3-5 times less than 10%, or -1.0m fine particles less than 20%. It has been found that the production of secondary hematite can be significantly suppressed by producing a large amount of ferrite.

これは本出願人が提案中のものよりも、 CaOと81
02の反応が殆んど行なわれず、aaOの大部分がFJ
’203と反応するからであることをつきとめfC,。
This is better than what the applicant is proposing, since CaO and 81
Almost no reaction of 02 takes place, and most of the aaO is FJ.
I found out that this is because it reacts with '203 fC.

本発明は斯様な知見を基に完成したものであシ、JIS
還元率と還元粉化指数の優れ几焼結鉱を製造するための
鉄鉱石焼結原料の製造方法を提供することを目白りとし
ている。
The present invention was completed based on such knowledge.
The aim is to provide a method for producing iron ore sintered raw material for producing sintered ore with excellent reduction rate and reduction powdering index.

前記目的を達成するため1本発明では焼結時カルシウム
、フェライトの生成に寄与しない焼結原料を予め造粒し
た造粒物と、粒度1〜3mが好ましくは全景、少なくと
も70%以上で、不可避的には3〜5mが10%以下お
よび、又は−1゜Ommの微粒子が20%以下の石灰石
を含めた焼結時カルシウム。フェライトを生成する焼結
原料とを混合して焼結原料とすることを特徴とする鉄鉱
石焼結原料の製造方法を提供するものである。
In order to achieve the above object, 1 the present invention uses a granulated material pre-granulated with a sintering raw material that does not contribute to the formation of calcium and ferrite during sintering, and a grain size of 1 to 3 m, preferably in full view, at least 70% or more, and unavoidable. Calcium at the time of sintering, including limestone with 10% or less of 3-5m particles and 20% or less of -1° Omm fine particles. The present invention provides a method for producing an iron ore sintering raw material, characterized in that the iron ore sintering raw material is mixed with a sintering raw material that produces ferrite.

更に詳述すれはカルシウム。フェライトの生成に寄与し
ない焼結原料の造粒に際してb51本出願人がすでに提
案しているごとく、水分4〜9%となるように且つ、造
粒物粒度が1節以下が20%。
More details on calcium. When granulating a sintering raw material that does not contribute to the formation of ferrite, b51 As already proposed by the present applicant, the moisture content is 4 to 9%, and the grain size of the granulated material is 20% of 1 knot or less.

5I+IwI以上が50%以下となるように調整する。Adjust so that 5I+IwI or more is 50% or less.

又、焼結時カルシウ゛ム、フェライトを生成する原料中
の石灰石粒度を前記のように特定するのは、3〜5誠が
11%を越すと石灰石の分解反応が行なわれない部分が
生じ、効果が小さいか又は焼結鉱の常温性状が悪化し、
又−1,Onrsの微粒子が21%以上になると、効果
が小さくなるfcめである。
In addition, specifying the particle size of limestone in the raw material that produces calcium and ferrite during sintering as described above is because if the 3-5 mass exceeds 11%, there will be parts where the decomposition reaction of limestone will not take place, resulting in ineffective results. It is small or the normal temperature properties of the sintered ore deteriorate,
Furthermore, when the amount of -1, Onrs fine particles exceeds 21%, the effect becomes smaller at fc.

以下本発明を図面に基すいて説明する。The present invention will be explained below based on the drawings.

第1図は本発明の1例を示すものである。FIG. 1 shows an example of the present invention.

先ず第1ミキサーに灯結時カルシウム。フェライトを生
成する粉鉱石と、前記粒度の石灰石を塩基度(OaO/
S 102 )が1.3〜20.0になるように配合す
る。
First, add calcium to the first mixer. The basicity (OaO/
Blend so that S 102 ) is 1.3 to 20.0.

返鉱は通常の工程に沼って第1ミキサーに配合する。The return ore is mixed into the first mixer in the normal process.

次にディクスペレタイザー等の造粒機に焼結時カルシウ
ム。フェライトの生成に寄与しない焼結原料1例えば粉
鉱石、珪石、蛇紋岩等の混合物及び水分を配合し、必要
によってはベントナイト等のバインダーを配合した後造
粒する。
Next, calcium is sintered into a granulator such as a disk pelletizer. A sintering raw material 1 that does not contribute to the formation of ferrite, such as a mixture of powdered ore, silica stone, serpentine, etc., and water are blended, and if necessary, a binder such as bentonite is blended, and then granulated.

この場合、珪石、蛇紋岩等は粉鉱石と混合して造粒しな
くても、珪石、蛇紋岩それぞれ個別にあるいはその混合
物を造粒しても良い。
In this case, silica stone, serpentine, etc. do not need to be mixed with powder ore and granulated, but silica stone and serpentine may be granulated individually or as a mixture thereof.

さらに珪石、蛇紋岩がCaOとほとんど反応しない粒度
の1〜5mmで入荷する場合には造粒する必要はない。
Furthermore, if silica stone or serpentine is received in a particle size of 1 to 5 mm, which hardly reacts with CaO, granulation is not necessary.

この場合には珪石、蛇紋岩は第1ミキサーに配合して良
い。
In this case, silica and serpentine may be mixed in the first mixer.

次いで上記造粒物及び第1ミキサーの原料を第2ミキザ
ーに配合し混合造粒する。
Next, the above granulated material and the raw materials from the first mixer are blended into a second mixer and mixed and granulated.

なお上記第1;第2ミキサーでの混合造粒に際しては、
コークス及び水分を通常の工程に基すいて混合し、焼結
原料とするものである。
In addition, when mixing and granulating in the above first and second mixers,
Coke and water are mixed together using a normal process and used as a sintering raw material.

このようにして製造した焼結原料は、第2図に模式的に
示すように、焼結時カルシウム、フェライトの生成に寄
与しない原料の造粒物1と、1〜3鰭を主体とした粗粒
石灰石2が焼結時カルシウム、フェライトを生成する粉
鉱石3によって被膜された状態で、粉鉱石3中に分散し
た状態を呈する。
As schematically shown in Figure 2, the sintering raw material produced in this way consists of a granulated material 1 that does not contribute to the production of calcium and ferrite during sintering, and a coarse material mainly consisting of fins 1 to 3. The granular limestone 2 is coated with the fine ore 3 that produces calcium and ferrite during sintering, and is dispersed in the fine ore 3.

従って、該焼結原料を焼結機を用いて焼結すると、該焼
結原料は焼結時カルシウム。フェライトを生成する焼結
原料と、カルシウム。フェン1ト生成に寄与しない原料
とに分別されていると共にカルシウム、フェライト生成
に寄与しない原料が造粒されていると同時に、その造粒
物の表面が焼結時カルシウム、フェライトを生成する粉
鉱石によって被覆されていることと、カルシウム。フェ
ライトを生成する原料中の石灰石が1〜3鰭粒度を主体
としていると同時に、その石灰石の表面が焼結時カルシ
ウム、フェライトを生成する粉鉱石によって被包されて
いるため、  OaOと8102の反応がほとんど行な
われず、aaOは大部分がFe’203と反応してカル
シウム、フェライトが大量に生ずるとともに、2次へマ
タイトの生成が大幅に抑制される。
Therefore, when the sintering raw material is sintered using a sintering machine, the sintering raw material becomes calcium during sintering. Sintered raw materials that produce ferrite, and calcium. Powdered ore that is separated into raw materials that do not contribute to the formation of ferrite, and the raw materials that do not contribute to the formation of calcium and ferrite are granulated, and at the same time, the surface of the granules produces calcium and ferrite during sintering. and that it is coated with calcium. The limestone in the raw material that generates ferrite mainly has a grain size of 1 to 3 fins, and at the same time, the surface of the limestone is encapsulated by powdered ore that generates calcium and ferrite during sintering, so the reaction between OaO and 8102 occurs. However, most of the aaO reacts with Fe'203 to produce large amounts of calcium and ferrite, and the production of secondary hematite is greatly suppressed.

したがって焼結鉱のJIS還元率、還元粉化指数が著し
く改善される。
Therefore, the JIS reduction rate and reduction powdering index of the sintered ore are significantly improved.

以下に本発明の実施例を比較例と共に示す。Examples of the present invention are shown below along with comparative examples.

実施例 カルシウム、フェライト生成に寄与しない焼結原料とし
て、ノ・マスレー粉鉱石、硅石粉の1〜5m、蛇紋岩粉
の1〜5鰭を準備した。
EXAMPLE As sintering raw materials that do not contribute to the formation of calcium or ferrite, 1 to 5 m of ore powder, 1 to 5 m of silica powder, and 1 to 5 m of serpentine powder were prepared.

カルシウム。フェライトを生成する原料としては、石灰
石、ヤンビー粉鉱石、パイラデイラ粉鉱石、ボア粉鉱石
を準備した。
calcium. As raw materials for producing ferrite, limestone, Yanby ore powder, Pailadeira ore powder, and Boa powder ore were prepared.

それぞれの配合と成分、石灰石を除く粒度を第1表に示
す。
Table 1 shows the respective formulations, ingredients, and particle sizes excluding limestone.

石灰石の粒度は第2表に示す。(憂印本発明例、他は比
較例) まずハマスレー粉鉱石をディスクペレタイザーで水分を
添加して造粒した。造粒ノ・マスレー鉱石の性状を第3
表に示す。
The particle size of limestone is shown in Table 2. (Example of the present invention, others are comparative examples) First, Hamasley powder ore was granulated by adding water using a disc pelletizer. The properties of granulated Masley ore are as follows:
Shown in the table.

次いで、造粒ハマスレー鉱石以外の原料を第1表のよう
な配合比でミキサーを用いて水分を添加して混合、造粒
した。
Next, raw materials other than the granulated Hamasley ore were mixed and granulated using a mixer with the addition of water in the mixing ratios shown in Table 1.

この1iiJ石灰石はrf42表の8独類のものをそれ
ぞれ別々に1史月1シ1ζ0 その後、上記1叛粒ハマスレー鉱石と、その他のミキサ
ー混合原料を1f)度ミキサーに装入し、混合造粒した
。なお、コークスは通常の工程に基ずいて混合し焼結試
験を行なった。
This 1iiJ limestone is made of 8 types of limestone listed in the RF42 table separately for 1 month, 1 year, 1 day, 1 ζ0.Then, the above 1 grain Hamasley ore and other mixer mixed raw materials are charged into a 1f) degree mixer, and mixed and granulated. did. Incidentally, coke was mixed based on a normal process and a sintering test was conducted.

焼結後、落下頻度、JIS還元率、還元粉化指数をぜ1
11定した。
After sintering, the falling frequency, JIS reduction rate, and reduction powdering index were measured.
It was fixed at 11.

また比較のためVC%上記上記表2表灰石のかわりに第
4表の通常粒糺の石灰石をディスクペレタイザーで造粒
し、第5表のような盾粒石灰石を配合する焼結も行なっ
た。
For comparison, instead of the VC% ashstone shown in Table 2 above, normal grained limestone shown in Table 4 was granulated using a disc pelletizer, and sintering was also carried out by blending shield grained limestone as shown in Table 5. .

これら央験条往をa!6表に示す。A! It is shown in Table 6.

第2表 第6表 焼結試験結果を第3図に示す。Table 2 Table 6 Figure 3 shows the sintering test results.

この図から本発明例の実験1乃至実験4は落下強度は実
、験9の方法とはソ同一に維持されるとともにJ l 
SR元率、還元粉化指数とも実験9の方法よシ史に一段
と改善されることがわかる。
From this figure, it can be seen that in Experiments 1 to 4 of the present invention, the drop strength was actually maintained the same as that of Experiment 9, and J l
It can be seen that both the SR rate and the reduction powdering index are much improved compared to the method of Experiment 9.

これに比し、比較例の実験5乃至実、験8はJIS還元
率、還元粉化指数、落下強度等が実験9よ、り悪化して
いる。
In comparison, in Experiments 5 to 8, which are comparative examples, the JIS reduction rate, reduction powdering index, drop strength, etc. were worse than in Experiment 9.

以上説明したように本発明のように、原料処理して焼結
鉱を製造することによって、従来の焼結鉱に1しべて焼
結鉱中にカルシウム。フェライトが多量に生成するので
、この焼結鉱を面炉片科と1〜て1史用する場合(では
、還元粉化が少ないので通気性が良く、又被還元性も優
れているので生産+qtを高めることが出来、工業的に
利用価値大なる発明である。
As explained above, by processing raw materials and producing sintered ore as in the present invention, calcium is added to the sintered ore compared to conventional sintered ore. Since a large amount of ferrite is produced, when this sintered ore is used for one to one time with a surface furnace, it is difficult to produce because there is little reduction and powdering, so it has good air permeability, and also has excellent reducibility. +qt can be increased, and this invention has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原料処理法の1例の説明図、282図
は本発明の焼結原料の模式的説明図、第3図は落下強!
、JIS還元率、還元粉化指数を示すグラフである。 ■は焼結時カルシウム。フェライトの生成に寄与しない
焼結原料の造粒物、2は石灰石、3は焼結時カルシウム
。フェライトを生成する粉鉱石。 代り!人 弁理士 秋 沢 政 光 信2名 井1m 首乙図 井3日
Fig. 1 is an explanatory diagram of an example of the raw material processing method of the present invention, Fig. 282 is a schematic explanatory diagram of the sintering raw material of the present invention, and Fig. 3 is a drop strength!
, JIS reduction rate, and reduction powdering index. ■ is calcium during sintering. Granules of sintering raw materials that do not contribute to the production of ferrite, 2 is limestone, and 3 is calcium during sintering. Fine ore that produces ferrite. Instead! People Patent Attorney Masaaki Akizawa Mitsunobu 2 Nai 1m Kubiotzu Well 3 days

Claims (3)

【特許請求の範囲】[Claims] (1)  m結時カルシウム、フェライトの生成に寄与
しない焼結原料を予め造粒した造粒物と、粒度1〜3門
が70%以上の石灰石を含めた焼結時カルシウム、フェ
ライトを生成する焼結原料とを混合して焼結原料とする
ことを特徴とする鉄鉱石焼結原料の製造方法。
(1) Pre-granulated sintering raw materials that do not contribute to the production of calcium and ferrite during sintering, and calcium and ferrite during sintering containing limestone with grain size 1 to 3 of 70% or more A method for producing an iron ore sintering raw material, characterized by mixing the iron ore raw material with a sintering raw material to obtain a sintering raw material.
(2)特許請求範囲第1項記載の方法に丸・いて、粒度
3〜5柄が10%以下の石灰石を混合して焼結原料とす
る鉄鉱石焼結原料の製造方法。
(2) A method for producing an iron ore sintering raw material, which is based on the method described in claim 1, and uses limestone having a particle size of 3 to 5 grains of 10% or less as a sintering raw material.
(3)特許請求範囲第1項又は第2項記載の方法におい
て粒度−1,0mlの微粒子が20%以下の石灰石を混
合して焼結原料とする鉄鉱石焼結原料の製造方法。
(3) A method for producing an iron ore sintering raw material in which limestone containing 20% or less of fine particles with a particle size of -1.0 ml is mixed as a sintering raw material in the method according to claim 1 or 2.
JP19294282A 1982-11-02 1982-11-02 Preparation of iron ore stock material to be sintered Granted JPS5983727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19294282A JPS5983727A (en) 1982-11-02 1982-11-02 Preparation of iron ore stock material to be sintered

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19294282A JPS5983727A (en) 1982-11-02 1982-11-02 Preparation of iron ore stock material to be sintered

Publications (2)

Publication Number Publication Date
JPS5983727A true JPS5983727A (en) 1984-05-15
JPH0232334B2 JPH0232334B2 (en) 1990-07-19

Family

ID=16299566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19294282A Granted JPS5983727A (en) 1982-11-02 1982-11-02 Preparation of iron ore stock material to be sintered

Country Status (1)

Country Link
JP (1) JPS5983727A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014987A1 (en) * 1992-12-24 1994-07-07 Bhp Iron Ore Pty. Ltd. Mineral processing
JP2006241575A (en) * 2005-03-07 2006-09-14 Nippon Steel Corp Method for pretreating raw material for sintering
JP2012528941A (en) * 2009-06-04 2012-11-15 ラインカルク ゲー エム ベー ハー Method for producing aggregate for raw materials charged in blast furnace from metal oxide-containing fine material
CN114480838A (en) * 2022-01-17 2022-05-13 重庆大学 Sintering method of prefabricated fluxed iron ore

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171631A (en) * 1981-04-16 1982-10-22 Nippon Steel Corp Spurious particle for sintering iron ore
JPS599131A (en) * 1982-07-07 1984-01-18 Nippon Steel Corp Production of sintered raw material of iron ore
JPS6017810A (en) * 1983-07-11 1985-01-29 昭和電線電纜株式会社 Method of producing paper insulated conductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171631A (en) * 1981-04-16 1982-10-22 Nippon Steel Corp Spurious particle for sintering iron ore
JPS599131A (en) * 1982-07-07 1984-01-18 Nippon Steel Corp Production of sintered raw material of iron ore
JPS6017810A (en) * 1983-07-11 1985-01-29 昭和電線電纜株式会社 Method of producing paper insulated conductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014987A1 (en) * 1992-12-24 1994-07-07 Bhp Iron Ore Pty. Ltd. Mineral processing
JP2006241575A (en) * 2005-03-07 2006-09-14 Nippon Steel Corp Method for pretreating raw material for sintering
JP2012528941A (en) * 2009-06-04 2012-11-15 ラインカルク ゲー エム ベー ハー Method for producing aggregate for raw materials charged in blast furnace from metal oxide-containing fine material
CN114480838A (en) * 2022-01-17 2022-05-13 重庆大学 Sintering method of prefabricated fluxed iron ore

Also Published As

Publication number Publication date
JPH0232334B2 (en) 1990-07-19

Similar Documents

Publication Publication Date Title
CN109423555B (en) Efficient iron ore sintering method using low-silicon iron fine powder
JPS5983727A (en) Preparation of iron ore stock material to be sintered
JPH04210432A (en) Manufacture of semireduced sintered ore
JPH03193828A (en) Production of sintering raw material and sintered ore
JPS55125240A (en) Sintering method for finely powdered starting material for iron manufacture
JPS599131A (en) Production of sintered raw material of iron ore
JPS63149331A (en) Production of burnt agglomerated ore
JPS6017810B2 (en) Manufacturing method of iron ore sintered raw material
JP2711588B2 (en) Unfired agglomerate production method
JPH0347927A (en) Method for pre-treating sintering raw material for blast furnace
JP2019173059A (en) Manufacturing method of nonfired agglomerated ore for blast furnace, and manufacturing method of pozzolanic reactive iron-containing raw material
JPS60248827A (en) Preliminary treatment of sintered raw material
JPH09272925A (en) Production of sintered ore excellent in property at high temperature and cold strength
JPH1121634A (en) Production of sintered ore
JPH066754B2 (en) Sintering method of iron ore
JPH04143208A (en) Manufacture of flux for refining molten metal
US3793036A (en) Method of producing rapid-hardening cement
KR960000051B1 (en) Making method of sintering ore
JPS58213837A (en) Method for sintering chrome ore
JP3206324B2 (en) Sinter production method
JPS6320288B2 (en)
JPS61113732A (en) Sintering method of chrome ore
JPS5891132A (en) Manufacture of sintered ore
JPH0621301B2 (en) Sintering method of iron ore
JPS5855221B2 (en) Pre-treatment method for sintering raw materials