JPH04210432A - Manufacture of semireduced sintered ore - Google Patents

Manufacture of semireduced sintered ore

Info

Publication number
JPH04210432A
JPH04210432A JP40534490A JP40534490A JPH04210432A JP H04210432 A JPH04210432 A JP H04210432A JP 40534490 A JP40534490 A JP 40534490A JP 40534490 A JP40534490 A JP 40534490A JP H04210432 A JPH04210432 A JP H04210432A
Authority
JP
Japan
Prior art keywords
raw material
ore
anthracite
sintering
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP40534490A
Other languages
Japanese (ja)
Other versions
JP2704673B2 (en
Inventor
Yozo Hosoya
陽三 細谷
Masaki Yano
正樹 矢野
Junsuke Haruna
淳介 春名
Tadahiro Inasumi
忠弘 稲角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP40534490A priority Critical patent/JP2704673B2/en
Publication of JPH04210432A publication Critical patent/JPH04210432A/en
Application granted granted Critical
Publication of JP2704673B2 publication Critical patent/JP2704673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To preliminarily reduce a part of powdery iron ore at the time of sintering and to improve the fuel ratio and the amt. of iron to be tapped in the operation of a blast furnace, by preparing a raw material for a blast furnace by pelletizing a raw material contg. pseudo- grains having a double structure with a reducing agent and powdery iron ore, an auxiliary material or the like. CONSTITUTION:At the time of manufacturing sintered ore as a raw material for a blast furnace, pseudo-grains of which a mixture constituted of, by weight, 5 to 2% reducing agent 10a such as cake breeze, anthracite or the like and the balance powdery iron ore 9 is used as an internal layer 30 and a mixture constituted of 2 to 5% coke breeze or anthracite 10b and the balance powdery iron ore 9 and an auxiliary material 2 such as scale, limestone or the like is used as an outer layer 31 is prepd. Or, pseudo-grains of which an internal layer 30 is constituted of cake breeze or anthracite 10a and an outer layer 31 is constituted of a raw material essentially consisting of powdery iron ore and contg. >2% Al2O3 is manufactured. The one mixed with the above pseudo-grains as a part of a sintering raw material is pelletized and is sintered by a sintering machine. The permeability of the sintering raw material is improved and a part of the raw material powdery iron ore 9 is directly reduced by the cake or the like in the process of the sintering, by which the manufacturing efficiency of the sintered ore is improved and the fuel ratio and the amt. of iron to be tapped in the operation of a blast furnace is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は、焼結プロセスで焼結鉱
の一部を還元した半還元焼結鉱の製造方法に関するもの
である。 [0002] 【従来の技術】焼結鉱の製造に際しては、粉鉱石や副原
料、スケール、粉コークスを配合して一部ミキサーで混
合し、二次ミキサーで造粒して装入し、焼結層の通気性
を良好にしながら操業している。この焼結原料層の通気
性を良好にするために、造粒を強化したり、また粉コー
クスの燃焼を改善するために、擬似粒子の表面に粉コー
クスを多く存在させるなどの工夫がなされてきた。 [0003]
[Industrial Field of Application] The present invention relates to a method for producing semi-reduced sintered ore in which a part of the sintered ore is reduced in a sintering process. [0002] [Prior Art] When producing sintered ore, ore powder, auxiliary raw materials, scale, and coke powder are mixed in a mixer, and then granulated and charged in a secondary mixer, and sintered. The plant is operated while maintaining good permeability of the strata. In order to improve the air permeability of this sintered raw material layer, efforts have been made to strengthen granulation, and to improve the combustion of coke breeze, efforts have been made to make more coke breeze present on the surface of the pseudo particles. Ta. [0003]

【発明が解決しようとする課題】しかし今日までの改善
は、焼結プロセスでの粉コークス燃焼効率改善による焼
結生産能率や、成品歩留り、焼結鉱品質を向上すること
が主体であった。そして上記効果に加えて、高炉燃料比
低減による出銑比大幅向上を実現する半還元焼結鉱製造
の実用化された例は少ない。 [0004]例えば、特公昭55−15536号公報の
技術は、焼結原料の混合調湿粒化に際し、はじめに鉱石
類のみ若しくはこれにコークスを全コークス量の70%
以下の量で加えて混合調湿擬似粒化を行い、次いでこれ
に全コークス量又は残部のコークスを予め5〜20wt
%の水分を含有させた状態、若しくはこれに親水性バイ
ンダーを添加した状態で添加し、混合擬似粒化を行うこ
とで焼結時のNOxを低減させる焼結原料の事前処理方
法である。 [00051この方法は、擬似粒子の内層部分のコーク
ス量はむしろ全体の平均配合より低く配合し、その表面
にコークスをコーティングしてコークスと酸素の接触を
活発にし、燃焼効率を向上させる方法である。したがっ
て、コークス燃焼効率向」二によるNOxの低減効果は
期待できるが、コークスが完全に燃焼するため、本方法
では融液と固体炭素との接触による直接還元反応は全く
期待できない。 [0006]また特公昭6112131号公報の技術は
、粉鉱石、粉コークスおよび返鉱からなる粉混合物を造
粒して形成した内層と、この内層の表面に、上記粉混合
物にバインダーとして、生石灰、消石灰、焼成ドロマイ
l−またはベントナイ1へのうちの1種以上を添加した
ものを造粒して外層を構成した焼結鉱用ペレットである
。 [0007]このペレットの内層コークスは全体の平均
配合値にほぼ等しく、外層のみにバインダーを添加して
バインダー添加量を低減する中でペレット強度を確保す
るというものである。従って焼結鉱品質を向上させたり
半還元焼結鉱を製造する技術ではない。 [00081本発明は、従来実用化された例の少ない半
還元焼結鉱製造に関するもので、焼結プロセスで鉄鉱石
の一部を還元して焼結生産率や焼結鉱品質を改善し、か
つ高炉に半還元焼結鉱を装入して高炉燃料比を低減し、
高炉出銑比を大幅に向上させる半還元焼結鉱の製造方法
を提供するものである。 [0009]
[Problems to be Solved by the Invention] However, improvements to date have mainly focused on improving sintering production efficiency, product yield, and sintered ore quality by improving coke breeze combustion efficiency in the sintering process. In addition to the above-mentioned effects, there are few practical examples of semi-reduced sinter production that achieves a significant improvement in the iron production ratio by reducing the blast furnace fuel ratio. [0004] For example, the technique disclosed in Japanese Patent Publication No. 15536/1980 is that when sintering raw materials are mixed and granulated to control humidity, firstly, only the ore or coke is added to it to make up 70% of the total amount of coke.
Add the following amounts to perform mixing and humidity control pseudo granulation, then add 5 to 20 wt of total coke or the remaining coke to this in advance.
This is a pre-treatment method for sintering raw materials in which NOx is reduced during sintering by adding % of water or adding a hydrophilic binder to the mixture and forming pseudo-granules. [00051 In this method, the amount of coke in the inner layer of the pseudo particles is rather lower than the overall average blend, and the surface is coated with coke to activate the contact between the coke and oxygen, thereby improving combustion efficiency. . Therefore, although an effect of reducing NOx due to improved coke combustion efficiency can be expected, since the coke is completely combusted, a direct reduction reaction due to contact between the melt and solid carbon cannot be expected at all in this method. [0006] Furthermore, the technique disclosed in Japanese Patent Publication No. 6112131 includes an inner layer formed by granulating a powder mixture consisting of powdered ore, powdered coke, and return ore, and on the surface of this inner layer, quicklime, quicklime, These are pellets for sintered ore, in which the outer layer is formed by granulating slaked lime, calcined dolomile, or bentonite with one or more of them added thereto. [0007] The inner coke layer of this pellet is approximately equal to the overall average blending value, and a binder is added only to the outer layer to ensure pellet strength while reducing the amount of binder added. Therefore, it is not a technology for improving the quality of sintered ore or producing semi-reduced sintered ore. [00081] The present invention relates to the production of semi-reduced sintered ore, which has rarely been put to practical use in the past, and improves the sinter production rate and quality of sintered ore by reducing a part of iron ore in the sintering process. In addition, the blast furnace is charged with semi-reduced sintered ore to reduce the blast furnace fuel ratio.
The present invention provides a method for producing semi-reduced sintered ore that significantly improves the blast furnace tap ratio. [0009]

【課題を解決するための手段】第1の本発明は、粉鉱石
に5〜20wt%の粉コークス・無煙炭を配合造粒して
内層とし、外層に粉鉱石、副原料および2〜5wt%の
粉コークス・無煙炭を混合コーティングして2層の擬似
粒子を形成し、この2層擬似粒子を焼結原料の一部とし
て混合、造粒したのち、焼結過程でその原料の外層から
生成する融液と内層の粉コークス・無煙炭中の固形炭素
との直接還元反応により焼結鉱の一部を還元することを
特徴とする半還元焼結鉱の製造方法である。 [00101また第2の本発明は、粉コークス・無煙炭
を造粒して内層とし、外層にAl2O3を2.0wt%
以上含む粉鉱石が主体の焼結原料でコーティングして2
層の擬似粒子を形成し、この2層擬似粒子を焼結原料の
一部として混合、造粒したのち、焼結過程で外層とそれ
以外の原料から生成する融液と内層の粉コークス・無煙
炭中の固形炭素の固形炭素との直接還元反応により焼結
鉱の一部を還元することを特徴とする半還元焼結鉱の製
造方法である。 [00111
[Means for Solving the Problems] The first aspect of the present invention is to mix and granulate powdered ore with 5 to 20 wt% of coke powder and anthracite to form an inner layer, and to form an outer layer of powdered ore, auxiliary raw materials, and 2 to 5 wt% of coke powder and anthracite. After coating coke powder and anthracite to form two layers of pseudo particles, and mixing and granulating these two layers of pseudo particles as part of the sintering raw material, the molten particles generated from the outer layer of the raw material during the sintering process are This is a method for producing semi-reduced sintered ore, which is characterized by reducing a part of the sintered ore through a direct reduction reaction between the liquid and solid carbon in coke powder and anthracite in the inner layer. [00101 The second invention also provides an inner layer made by granulating coke powder and anthracite, and 2.0 wt% Al2O3 in the outer layer.
Coating with sintering raw material mainly composed of fine ore containing the above 2
After forming a layer of pseudo-particles and mixing and granulating these two-layer pseudo-particles as part of the sintering raw material, the melt generated from the outer layer and other raw materials during the sintering process and the coke powder and anthracite in the inner layer are combined. This is a method for producing semi-reduced sintered ore, which is characterized in that a part of the sintered ore is reduced by a direct reduction reaction between the solid carbon contained therein and the solid carbon. [00111

【作用]本発明は、2層擬似粒子の内層に配合した5〜
20wt%の粉コークス・無煙炭が、焼結過程でその原
料の外層から生成する融液との直接還元反応により焼結
鉱の一部を還元するので、この直接還元反応による吸熱
により、通常発生する焼結ベツド下層部の熱過剰を防止
して焼結ベツド通気性を大幅に改善するものである。 [0012]以下、図面にもとづいて本発明を具体的に
説明する。図1−は、本発明を実施するためのプロセス
フローを示す工程図である。まず、粉鉱石9に粉コーク
ス・無煙炭10が5〜20wt%になるように配合した
原料で1次造粒11し、その造粒物に粉鉱石13と副原
料14及び粉コークス・無煙炭15が2〜5wt%に配
合された混合原料を加え、表面にコーティングする2次
造泣12による2段造粒法で2層擬似粒子を形成する。 [0013]この2層擬似粒子は、他の主原料1.副原
料2.スケール3.粉コークス・無煙炭4等と共に、焼
結原料5として1次ミキサー6.2次ミキサー7で混合
、造粒してから焼結機8に装入し焼成する。 [0014]また本発明の他の態様は、粉コークス・無
煙炭を予め擬似粒化し、この擬似粒子にAl2O3を2
.0wt%以上含む粉鉱石や副原料等でコーティングし
て2層擬似粒子となし、この2層擬似粒子を図1に示し
たような、それ以外の主原料1.副原料2.スケール3
.粉コークス・無煙炭4等と共に1次ミキサー6.2次
ミキサー7で混合、造粒してから焼結機8に装入し焼成
する。 [0015]図2は本発明方法の変形例のプロセスフロ
ーを示す工程図である。まず、主原料1.副原料2.ス
ケール3.粉コークス・無煙炭4等からなる通常の焼結
原料5を1次ミキサー6で混合し、その後、ホッパー1
6に篩分けて取り出した篩い下の焼結原料に、粉コーク
ス・無煙炭10が5〜20wt%になるように配合して
から1次造粒し、その後、上述したように篩い下の焼結
原料をホッパー16から切り出し、2次造粒12で表面
にコーティングす2段造粒法によって2層擬似粒子を形
成し、この2層擬似粒子を2次ミキサー7後に戻して残
りの焼結原料と共に焼結機8で焼成する方法である。 [00161図39図4は、上記の本発明法で形成した
2層擬似粒子の構造の概要を示す。図3は内層30の粉
コークス・無煙炭10aが5〜20wt%、外層31の
粉コークス・無煙炭10bが2〜5wt%の擬似粒子を
示す。図4は内層30が粉コークス・無煙炭10aのみ
で、外層31に粉鉱石9や副原料2が付着した擬似粒子
の状態を示している。 [0017]これらの擬似粒子のように内部に粉コーク
ス・無煙炭10aを閉じ込めると、焼結工程において昇
温過程前半では粉コークス・無煙炭が空気中の酸素と接
触しないので反応せず、1100℃の高温になってから
、初めて生成した融液と粉コークス・無煙炭中のCがF
eO+C=Fe+C0−36350kca l/km。 l 〔冶金物理化学(松下幸雄ら著)、r+310)の
直接還元反応を起こし、焼結鉱の一部にメタルFeが生
成される。この反応は吸熱反応であるので、熱過剰にな
るのを防ぐことができる。 [0018]また微粉コークスの造粒効果、更に偏析装
入により焼結ベツドの下層部に本発明法の擬似粒子が多
くある場合は、下層部の過剰熱を吸収して赤熱帯拡大が
防止され、特に焼結ベツド下層部の通気性が大幅に改善
される。 [0019]本発明で用いられる造粒機とては、通常良
く使われるドラム型や皿型の造粒機の他に、マルメライ
ザー〔造粒便覧(日本粉体工業協会)p、422〜42
5〕、アイリッヒミキサー〔混合混練技術(日本粉体工
業協会)p209〜210)、コンクリ−1へミキサー
〔混合混練技術(日本粉体工業協会)p185〜186
〕などの遠心力を利用したより強固な擬似粒子を形成で
きる型の造粒機の使用が適当である。また図1と図2に
は示していないが、生石灰やベン1ヘナイ1〜等のバイ
ンダーを添加するのはより効果的である。 [00201本発明において、図3のように2層擬似粒
子の内層の粉コークス・無煙炭配合比を5〜20wt%
としたのは、5wt%未満では通常の焼結鉱製造時とほ
ぼ同じであるので、直接還元反応は期待できないためで
あり、20wt%を越えると、スラグが多量に生成して
焼結過程の通気性を阻害し、焼結操業に悪影響を及ぼす
からである。 [00211図4の擬似粒子タイプで、外層31の粉鉱
石のAl2O3を2.0wt以上含むとしたのは、外層
の中の粉鉱石のAl2O3が2.0wt%未満であると
、外層とそれ以外の原料から生成するカルシュラムフェ
ライト系主体の融液の粘性が低くなり、粉コークス・無
煙炭から融液が流れ出して粉コークス・無煙炭が空気と
酸化反応を起こし、直接還元反応が不可能になるからで
ある[0022]外層31の中の粉鉱石のAl2O3を
2.0w1%以上であると、粉コークス・無煙炭は粘性
の高いカルシュラムフェライト系主体の融液に焼結反応
後半まで取り囲まれる割合が高くなるので、融液と固形
炭素との直接還元反応を焼結過程で活発に起こさせるこ
とができるからである。 [0023] 【実施例】強固な造粒物を形成するため、遠心力を利用
した図5に示すマルメライザー(600Φ、回転数30
0rpm)を使用して、以下の条件で半還元焼結鉱製造
の鍋試験を実施した。マルメライザーの代表的構造は、
図5の側面図および図6に示すように、固定円筒容器の
底部において、凹凸のあるまたは平面状のプレート19
が高速回転するものである。底のプレート19を高速で
回転させ、粉鉱石18を形成する粒子17を流動化させ
ることにより壁20と粒子17間の摩擦力で粒子17が
回転する。この粒子自体の回転により、粒子17内の水
分22はつねに粒子表面に向かってはじき出されるので
、強固な造粒物の生成が可能となる。なお符号21は粒
子の自転方向を示す。 [0024]まず本発明例1では、豪州・ニューマン鉱
石に粉コークスを15wt%添加した混合物8kgをマ
ルメライザーで1分間造粒したのち、ニューマン鉱石に
石灰石8wt%、粉コークスを3.5wt%添加した混
合原料を12kg加えて、さらに1分間造粒して2層の
擬似粒子を作成した。 [0025]本発明例2では、表1に示す鍋試験の配合
原料を一度ドラム型ミキサーで2分間混合したのち篩い
分けして、Lnun以下70’%以ヒの混合物を8kg
取り出して粉コークス1kgをさらに添加し、その混合
物をマルメライザーで1分間造粒した。そして同じ配合
原Hのlrnm以下70%以上の混合物をさらに12k
g添加して1分間造粒して2層の擬似粒子を作成した。 [00261本発明例3では、粉コークス8kgをまず
マルメライザーで1分間造粒し、その後にニューマン鉱
石12kgを添加してマルメライザーで2分間造粒した
。これらの造粒物を表1に示す配合原料の配合割合で焼
結原料に配合し1.40 k g鍋試験により比較例と
同じ鍋試験方法でテス1へしまた。 [0027]鍋試験の主要な条件は表2に示した。 [0028]
[Function] The present invention is characterized by the fact that 5-
Since 20wt% of coke powder and anthracite reduce a part of the sintered ore through a direct reduction reaction with the melt generated from the outer layer of the raw material during the sintering process, the heat absorption caused by this direct reduction reaction normally generates This prevents excessive heat in the lower layer of the sintered bed and greatly improves the air permeability of the sintered bed. [0012] Hereinafter, the present invention will be specifically explained based on the drawings. FIG. 1 is a process diagram showing a process flow for carrying out the present invention. First, primary granulation 11 is performed using a raw material in which powdered ore 9 is blended with powdered coke and anthracite 10 at a concentration of 5 to 20 wt%, and the granulated product contains powdered ore 13, auxiliary raw materials 14, and coke powder and anthracite 15. A two-layer pseudo particle is formed by a two-stage granulation method using a secondary granulation method 12 in which a mixed raw material blended at 2 to 5 wt% is added and the surface is coated. [0013] This two-layer pseudo-particle contains other main raw materials 1. Auxiliary raw materials 2. Scale 3. Together with coke powder, anthracite 4, etc., it is mixed as a sintering raw material 5 in a primary mixer 6 and a secondary mixer 7, granulated, and then charged into a sintering machine 8 and fired. [0014] In another aspect of the present invention, coke powder/anthracite is made into pseudo-granules in advance, and Al2O3 is added to the pseudo-particles.
.. Two-layer pseudo-particles are formed by coating with powdered ore, auxiliary raw materials, etc. containing 0 wt% or more, and these two-layer pseudo-particles are coated with other main raw materials 1. as shown in FIG. Auxiliary raw materials 2. scale 3
.. It is mixed and granulated with coke powder, anthracite 4, etc. in a primary mixer 6 and a secondary mixer 7, and then charged into a sintering machine 8 and fired. [0015] FIG. 2 is a process diagram showing a process flow of a modification of the method of the present invention. First, main ingredients 1. Auxiliary raw materials 2. Scale 3. A normal sintering raw material 5 consisting of coke powder, anthracite 4, etc. is mixed in a primary mixer 6, and then transferred to a hopper 1.
The sintered raw material under the sieve that was sieved and taken out in step 6 is mixed with powdered coke and anthracite 10 at a concentration of 5 to 20 wt%, and then subjected to primary granulation, and then sintered under the sieve as described above. The raw material is cut out from the hopper 16, and the surface is coated with the secondary granulation 12 to form two-layer pseudo-particles, and the two-layer pseudo-particles are returned after the secondary mixer 7 to be mixed with the remaining sintered raw materials. This is a method of firing with a sintering machine 8. [00161FIG. 39FIG. 4 shows an outline of the structure of the two-layer pseudo-particles formed by the above-described method of the present invention. FIG. 3 shows pseudo particles in which the inner layer 30 contains 5 to 20 wt% of coke powder and anthracite 10a, and the outer layer 31 contains 2 to 5 wt% of coke powder and anthracite 10b. FIG. 4 shows a state of pseudo particles in which the inner layer 30 is only made of coke powder and anthracite 10a, and the outer layer 31 has ore powder 9 and auxiliary raw materials 2 attached thereto. [0017] When coke powder and anthracite 10a are trapped inside like these pseudo particles, the coke powder and anthracite do not come into contact with oxygen in the air during the first half of the temperature rising process in the sintering process, so they do not react, and at 1100°C. The C in the melt, coke powder, and anthracite that is formed for the first time after the temperature rises is F.
eO+C=Fe+C0-36350kcal/km. 1 [Metallurgical Physical Chemistry (written by Yukio Matsushita et al., r+310)] direct reduction reaction occurs, and metal Fe is generated in a part of the sintered ore. Since this reaction is endothermic, excess heat can be prevented. [0018] In addition, if there are many pseudo particles of the present invention in the lower layer of the sintered bed due to the granulation effect of fine coke and further segregation charging, excess heat in the lower layer will be absorbed and red zone expansion will be prevented. In particular, the air permeability of the lower layer of the sintered bed is greatly improved. [0019] Granulators used in the present invention include, in addition to commonly used drum-type and dish-type granulators, Marmerizer [Granulation Handbook (Japan Powder Industry Association) p. 422-42
5], Eirich mixer [Mixing and kneading technology (Japan Powder Industry Association) p.209-210), Mixer for concrete 1 [Mixing and kneading technology (Japan Powder Industry Association) p.185-186
] It is appropriate to use a type of granulator that can form stronger pseudo-particles using centrifugal force. Although not shown in FIGS. 1 and 2, it is more effective to add a binder such as quicklime or binder. [00201 In the present invention, as shown in FIG.
This is because if it is less than 5wt%, the reaction is almost the same as in normal sintered ore production, so a direct reduction reaction cannot be expected.If it exceeds 20wt%, a large amount of slag will be generated and the sintering process will be affected. This is because it obstructs air permeability and adversely affects sintering operations. [00211 In the pseudo particle type shown in Fig. 4, the reason why the fine ore in the outer layer 31 contains 2.0 wt% or more of Al2O3 is that if the Al2O3 of the fine ore in the outer layer is less than 2.0 wt%, the outer layer and other The viscosity of the calcilum ferrite-based melt generated from the raw materials becomes low, and the melt flows out from the coke powder and anthracite, causing an oxidation reaction between the coke powder and anthracite and air, making a direct reduction reaction impossible. [0022] When the Al2O3 content of the ore powder in the outer layer 31 is 2.0w1% or more, the proportion of coke powder and anthracite that is surrounded by the highly viscous calcilum ferrite-based melt until the latter half of the sintering reaction is increased. This is because the direct reduction reaction between the melt and solid carbon can be actively caused during the sintering process. [0023] [Example] In order to form strong granules, a marmerizer (600Φ, rotation speed 30
A pot test for producing semi-reduced sintered ore was conducted under the following conditions. The typical structure of Marmerizer is
At the bottom of the fixed cylindrical container, as shown in the side view of FIG. 5 and in FIG.
rotates at high speed. By rotating the bottom plate 19 at high speed and fluidizing the particles 17 forming the fine ore 18, the particles 17 are rotated by the frictional force between the wall 20 and the particles 17. Due to the rotation of the particles themselves, the moisture 22 within the particles 17 is always pushed out toward the particle surface, making it possible to produce a strong granulated product. Note that the reference numeral 21 indicates the rotation direction of the particles. [0024] First, in Example 1 of the present invention, 8 kg of a mixture of Australian Newman ore with 15 wt% of coke powder added was granulated for 1 minute using a marmerizer, and then 8 wt% of limestone and 3.5 wt% of coke powder were added to Newman ore. 12 kg of the mixed raw material obtained was added and granulated for another minute to create two layers of pseudo particles. [0025] In Example 2 of the present invention, the raw materials for the pot test shown in Table 1 were mixed once for 2 minutes in a drum mixer and then sieved to obtain 8 kg of a mixture containing 70'% or less of Lnun or less.
It was taken out, 1 kg of coke powder was further added, and the mixture was granulated with a marmerizer for 1 minute. Then, add a further 12k of the mixture of 70% or less of lrnm of the same ingredient H.
g was added and granulated for 1 minute to create two-layer pseudo particles. [00261 In Example 3 of the present invention, 8 kg of coke powder was first granulated with a Marmerizer for 1 minute, and then 12 kg of Newman ore was added and granulated with a Marmerizer for 2 minutes. These granules were blended with the sintering raw material at the blending ratio of the blended raw materials shown in Table 1, and subjected to a 1.40 kg pot test using the same pot test method as the comparative example. [0027] The main conditions of the pot test are shown in Table 2. [0028]

【表1】 [0029][Table 1] [0029]

【表2】 [00301図7には鍋試験結果の生産率、成品歩留り
、TI(冷間強度、JISM8712により測定)。 RDI(還元粉化率、製銑部会報)、(5)RI(還元
率、J l5M8713)、  メタルFeを示した。 [00311その結果、本発明による方法の次の効果が
示された。 (1)焼結ベツド全体の通気性向上に加えて、特に下層
部の赤熱帯拡大が防止されるので、通気性が大幅に改善
され、生産率と成品歩留りが向上する。 (2)焼結ベツドの通気性改善と、特に焼結ベツド中・
下層部の均一焼成により、TI  (冷間強度)とRD
I(還元粉化性)が向上する。 (3)本発明方法の実施により焼結鉱中にメタル鉄が2
〜3wt%生成した。FeO分析値は約10wt%であ
った。なお、未然のカーボンは焼結鉱中に0.05wt
%程度しか残存していなかった。 [0032]以上の結果、焼結鉱のRI  (還元率)
で評価すると、本発明法はいずれも10%程度の還元率
向上がみられた。 [0(〕33]
[Table 2] [00301] Figure 7 shows the production rate, product yield, and TI (cold strength, measured according to JISM8712) of the pot test results. RDI (reduction rate, ironmaking department bulletin), (5) RI (reduction rate, J15M8713), and metal Fe are shown. [00311 As a result, the following effects of the method according to the present invention were shown. (1) In addition to improving the air permeability of the entire sintered bed, the expansion of the red zone in the lower layer in particular is prevented, so the air permeability is greatly improved, and the production rate and product yield are improved. (2) Improving the air permeability of the sintered bed, especially in the sintered bed.
Uniform firing of the lower layer improves TI (cold strength) and RD.
I (reduction pulverizability) is improved. (3) By carrying out the method of the present invention, two metal irons are added to the sintered ore.
~3wt% was produced. The FeO analysis value was about 10 wt%. In addition, the amount of unnatural carbon in the sintered ore is 0.05wt.
Only about % remained. [0032] As a result of the above, the RI (reduction rate) of sintered ore
When evaluated, all of the methods of the present invention showed an improvement in the reduction rate of about 10%. [0(]33]

【発明の効果】本発明によれば、焼結ベツド内での直接
還元反応により焼結鉱の一部を還元する二とができ、ま
た吸熱反応のため焼結ベツド老体と、特に■層部の熱過
刺を防止できるので通気性か改善され、生産率と成品歩
留り、焼結鉱品質が大幅に向上′する。また、メタルF
eの生成による焼結鉱の還元率向上により、高炉操業の
燃料比、出銑比を改善できる。
According to the present invention, it is possible to reduce a part of the sintered ore by a direct reduction reaction within the sintered bed, and due to the endothermic reaction, the aged sintered ore and especially the Since it prevents overheating of the parts, air permeability is improved, and the production rate, product yield, and quality of sintered ore are greatly improved. Also, metal F
By improving the reduction rate of sintered ore due to the production of e, it is possible to improve the fuel ratio and tap iron ratio in blast furnace operation.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明を実施するためのプロセスフ「]−の−
例を示す工程図である。
FIG. 1: Process flow for carrying out the present invention
It is a process chart which shows an example.

【図2】本発明を実施するためのプロセスフローの変形
例を示す工程図である。
FIG. 2 is a process diagram showing a modification of the process flow for implementing the present invention.

【図3】本発明法で形成した2層擬似粒子の構造を示す
図面である。
FIG. 3 is a diagram showing the structure of two-layer pseudoparticles formed by the method of the present invention.

【図4】内層が粉コークス・無煙炭、外層に粉鉱石や副
原料が付着した擬似粒子の構造を示す図面である。
FIG. 4 is a drawing showing the structure of pseudo particles in which the inner layer is coke powder and anthracite, and the outer layer is attached to fine ore and auxiliary materials.

【図5】マルメライザーの代表的構造を示す側面図であ
る。
FIG. 5 is a side view showing a typical structure of a marmerizer.

【図6】マルメライザー内の粒子の自転状況を示す図面
である。
FIG. 6 is a drawing showing the rotation of particles in the marmerizer.

【図7】鍋試験結果を示す図面である。FIG. 7 is a drawing showing the pot test results.

【符号の説明】[Explanation of symbols]

1 主原料 2 副原料 3 スケール 4 粉コークス・無煙炭 5 焼結原料 61次ミキサー 72次ミキサー 8 焼結機 9 粉鉱石 10.10a、10b  粉コークス・無煙炭111次
造粒 122次造粒 13 粉鉱石 14 副原料 15 粉コークス・無煙炭 16 ホッパー 17 造粒物 18 造粒前の粉鉱石、副原料、粉コークス、無煙炭1
9 プレート 20 壁面 21 粒子の自転方向 22 水分 30 内層 31 外層
1 Main raw material 2 Sub-raw material 3 Scale 4 Coke powder/Anthracite 5 Sintering raw material 6 Primary mixer 7 Secondary mixer 8 Sintering machine 9 Powdered ore 10.10a, 10b Coke powder/Anthracite 11 Primary granulation 12 Secondary granulation 13 Powder ore 14 Auxiliary raw materials 15 Coke powder/anthracite 16 Hopper 17 Granules 18 Powdered ore before granulation, auxiliary raw materials, coke powder, anthracite 1
9 Plate 20 Wall surface 21 Particle rotation direction 22 Moisture 30 Inner layer 31 Outer layer

【図2】[Figure 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】粉鉱石に5〜20wt%の粉コークス・無
煙炭を配合造粒して内層とし、外層に粉鉱石、副原料お
よび2〜5wt%の粉コークス・無煙炭を混合コーティ
ングして2層の擬似粒子を形成し、この2層擬似粒子を
焼結原料の一部として混合、造粒したのち、焼結過程で
その原料の外層から生成する融液と内層の粉コークス・
無煙炭中の固形炭素との直接還元反応により焼結鉱の一
部を還元することを特徴とする半還元焼結鉱の製造方法
Claim 1: The inner layer is made by blending and granulating 5 to 20 wt% of coke powder and anthracite to powdered ore, and the outer layer is coated with a mixture of ore powder, auxiliary raw materials, and 2 to 5 wt% of coke powder and anthracite, resulting in two layers. The two-layer pseudo particles are mixed and granulated as part of the sintering raw material, and then the melt produced from the outer layer of the raw material and the coke powder from the inner layer are mixed during the sintering process.
A method for producing semi-reduced sintered ore, which comprises reducing a portion of the sintered ore through a direct reduction reaction with solid carbon in anthracite coal.
【請求項2】粉コークス・無煙炭を造粒して内層とし、
外層にAl_2O_3を2.0wt%以上含む粉鉱石が
主体の焼結原料でコーティングして2層の擬似粒子を形
成し、この2層擬似粒子を焼結原料の一部として混合、
造粒したのち、焼結過程で外層とそれ以外の原料から生
成する融液と内層の粉コークス・無煙炭中の固形炭素の
固形炭素との直接還元反応により焼結鉱の一部を還元す
ることを特徴とする半還元焼結鉱の製造方法。
[Claim 2] Granulating coke powder and anthracite to form the inner layer,
The outer layer is coated with a sintering raw material mainly composed of fine ore containing 2.0 wt% or more of Al_2O_3 to form two-layer pseudo particles, and the two-layer pseudo particles are mixed as part of the sintering raw material.
After granulation, a part of the sintered ore is reduced through a direct reduction reaction between the melt generated from the outer layer and other raw materials during the sintering process and the solid carbon in the coke powder and anthracite in the inner layer. A method for producing semi-reduced sintered ore, characterized by:
JP40534490A 1990-12-06 1990-12-06 Method for producing semi-reduced sintered ore Expired - Lifetime JP2704673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40534490A JP2704673B2 (en) 1990-12-06 1990-12-06 Method for producing semi-reduced sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40534490A JP2704673B2 (en) 1990-12-06 1990-12-06 Method for producing semi-reduced sintered ore

Publications (2)

Publication Number Publication Date
JPH04210432A true JPH04210432A (en) 1992-07-31
JP2704673B2 JP2704673B2 (en) 1998-01-26

Family

ID=18514954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40534490A Expired - Lifetime JP2704673B2 (en) 1990-12-06 1990-12-06 Method for producing semi-reduced sintered ore

Country Status (1)

Country Link
JP (1) JP2704673B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544465B1 (en) * 2001-09-07 2006-01-24 주식회사 포스코 A Method for Manufacturing Sinter
JP2006070294A (en) * 2004-08-31 2006-03-16 Jfe Steel Kk Method for manufacturing sintered ore
JP2006206981A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Method for producing semi-reduced sintered ore
JP2006274440A (en) * 2004-05-19 2006-10-12 Jfe Steel Kk Semi-reduced sintered ore and method for production thereof
EP1749894A1 (en) * 2004-05-19 2007-02-07 JFE Steel Corporation Semi-reduced sintered ore and method for production thereof
JP2007056306A (en) * 2005-08-24 2007-03-08 Jfe Steel Kk Method for producing sintered ore, and pseudo particle for producing sintered ore
WO2015005190A1 (en) * 2013-07-10 2015-01-15 Jfeスチール株式会社 Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore
EP3447157A4 (en) * 2016-04-22 2020-03-18 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
US11608543B2 (en) 2016-04-27 2023-03-21 Sumitomo Metal Mining Co., Ltd. Oxide ore smelting method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544465B1 (en) * 2001-09-07 2006-01-24 주식회사 포스코 A Method for Manufacturing Sinter
JP2006274440A (en) * 2004-05-19 2006-10-12 Jfe Steel Kk Semi-reduced sintered ore and method for production thereof
EP1749894A1 (en) * 2004-05-19 2007-02-07 JFE Steel Corporation Semi-reduced sintered ore and method for production thereof
EP1749894A4 (en) * 2004-05-19 2008-07-02 Jfe Steel Corp Semi-reduced sintered ore and method for production thereof
JP2006070294A (en) * 2004-08-31 2006-03-16 Jfe Steel Kk Method for manufacturing sintered ore
JP2006206981A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Method for producing semi-reduced sintered ore
JP2007056306A (en) * 2005-08-24 2007-03-08 Jfe Steel Kk Method for producing sintered ore, and pseudo particle for producing sintered ore
JP5790966B2 (en) * 2013-07-10 2015-10-07 Jfeスチール株式会社 Method for producing carbonaceous interior sinter
WO2015005190A1 (en) * 2013-07-10 2015-01-15 Jfeスチール株式会社 Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore
CN105308194A (en) * 2013-07-10 2016-02-03 杰富意钢铁株式会社 Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore
AU2014288374B2 (en) * 2013-07-10 2016-12-08 Jfe Steel Corporation Carbon material-containing granulated particles in production of sintered ore, method for producing the same and method for producing sintered ore
CN107419093A (en) * 2013-07-10 2017-12-01 杰富意钢铁株式会社 For the granulation particle and its manufacture method and the manufacture method of sintering deposit of the interior bag Carbon Materials for manufacturing sintering deposit
CN105308194B (en) * 2013-07-10 2018-11-13 杰富意钢铁株式会社 The manufacturing method of the sinter of interior packet Carbon Materials
CN107419093B (en) * 2013-07-10 2021-12-21 杰富意钢铁株式会社 Granulated particle of carbon-encapsulated material for use in producing sintered ore, method for producing same, and method for producing sintered ore
EP3447157A4 (en) * 2016-04-22 2020-03-18 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
EP3778938A1 (en) * 2016-04-22 2021-02-17 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
US11479832B2 (en) 2016-04-22 2022-10-25 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
US11608543B2 (en) 2016-04-27 2023-03-21 Sumitomo Metal Mining Co., Ltd. Oxide ore smelting method

Also Published As

Publication number Publication date
JP2704673B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
JPH04210432A (en) Manufacture of semireduced sintered ore
US3661555A (en) Pelletized chromium addition agents for ferro alloys production and method therefor
JP3708981B2 (en) Agglomerate for iron making
US3649248A (en) Process for producing a calcium ferrite for making steels
JP3736500B2 (en) Method for producing sintered ore
CN102337444A (en) Technology for producing vanadium chromium manganese alloyed pig iron by melting vanadium extraction tailings
JP4786022B2 (en) Method for producing sintered ore
US4001007A (en) Material for sintering emitting a lesser amount of nitrogen oxide and a method for manufacturing the same
US4518428A (en) Agglomerates containing olivine
JP3344151B2 (en) Sinter production method
US4082540A (en) Material for sintering emitting a lesser amount of nitrogen oxide and a method for manufacturing the same
JP3859995B2 (en) Low fuming aluminum content
JPH0583620B2 (en)
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JP7424339B2 (en) Raw material particles for producing agglomerates, method for producing raw material particles for producing agglomerates, agglomerates, method for producing agglomerates, and method for producing reduced iron
JP2001262241A (en) Method for producing sintered ore containing carbon
JPH07166248A (en) Production of burnt agglomerated ore
JP3206324B2 (en) Sinter production method
JPH03503399A (en) Manufacture of SiC, MnC and ferroalloys
JP2004225147A (en) Method for manufacturing sintered ore for blast furnace
JPH06220549A (en) Pretreatment of raw material to be sintered
JPH04165025A (en) Manufacture of reduced pellet
JPH0237410B2 (en)
JPS61113732A (en) Sintering method of chrome ore
JPH066754B2 (en) Sintering method of iron ore

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970909