JP2006070294A - Method for producing sintered ore - Google Patents
Method for producing sintered ore Download PDFInfo
- Publication number
- JP2006070294A JP2006070294A JP2004252197A JP2004252197A JP2006070294A JP 2006070294 A JP2006070294 A JP 2006070294A JP 2004252197 A JP2004252197 A JP 2004252197A JP 2004252197 A JP2004252197 A JP 2004252197A JP 2006070294 A JP2006070294 A JP 2006070294A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- ore
- sio
- content
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 174
- 229910052742 iron Inorganic materials 0.000 claims abstract description 87
- 239000002994 raw material Substances 0.000 claims abstract description 82
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 78
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 52
- 238000005245 sintering Methods 0.000 claims abstract description 28
- 238000013329 compounding Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 20
- 239000012256 powdered iron Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 13
- 239000004484 Briquette Substances 0.000 claims description 9
- 238000009472 formulation Methods 0.000 claims description 6
- 239000008187 granular material Substances 0.000 claims description 4
- 238000005469 granulation Methods 0.000 claims description 3
- 230000003179 granulation Effects 0.000 claims description 3
- 239000004615 ingredient Substances 0.000 claims description 3
- 239000002893 slag Substances 0.000 abstract description 11
- 238000001816 cooling Methods 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 235000019738 Limestone Nutrition 0.000 description 7
- 239000006028 limestone Substances 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000004907 flux Effects 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000000446 fuel Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000010450 olivine Substances 0.000 description 3
- 229910052609 olivine Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 150000002505 iron Chemical class 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 235000013379 molasses Nutrition 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- -1 after mixing Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
【課題】 高炉スラグ形成成分の含有量が少なくても被還元性がよくかつ90%以上の高い落下強度をもつ金属鉄含有焼結鉱を製造方法する提案する。
【解決手段】 粉鉄鉱石その他の鉄系原料、副原料および炭材等からなる配合原料を、焼結機に供給し、前記炭材を燃焼させて該鉄系原料の少なくとも一部を溶融させたのち冷却し塊成化する焼結鉱の製造方法において、SiO2含有量が3.6 mass%以下の粉鉄鉱石を含む配合原料中に、炭材を10 mass%以上添加して焼結機へ供給し、焼結する焼結鉱の製造方法。
【選択図】 図1PROBLEM TO BE SOLVED: To provide a method for producing a sintered iron ore containing metallic iron which has good reducibility even when the content of a blast furnace slag forming component is small and has a high drop strength of 90% or more.
SOLUTION: A blended raw material composed of fine iron ore and other iron-based raw materials, auxiliary raw materials and carbonaceous materials is supplied to a sintering machine, and the carbonaceous materials are burned to melt at least a part of the iron-based raw materials. the method of manufacturing a sintered ore cooling and agglomerated of then was, compounding the raw material SiO 2 content containing 3.6 mass% or less of the fine iron ore with the addition of carbonaceous material 10 mass% or more to the sintering machine A method for producing sintered ore to be supplied and sintered.
[Selection] Figure 1
Description
本発明は、焼結鉱の製造方法に関し、特に高炉スラグ形成成分であるSiO2やCaOの含有量が少ないにもかかわらず、高い強度特性を示す焼結鉱を有利に製造するための方法を提案する。 The present invention relates to a method for producing a sintered ore, and in particular, a method for advantageously producing a sintered ore exhibiting high strength characteristics even though the content of SiO 2 and CaO as blast furnace slag forming components is small. suggest.
近年、高炉に装入する鉄系原料としては、良質の塊状鉄鉱石が不足していることもあって、焼結鉱への依存率が高まっている。その焼結鉱は、一般に、粉状鉄鉱石の他、返鉱、硫酸滓、砂鉄、スケール、高炉ダストおよび転炉ダスト等の鉄系原料に、造滓材としての石灰石、焼成のための熱源となる炭材等を混合してなる主として粉状の配合原料を焼結して製造されている。即ち、前記配合原料に適量の水を加えて混合し、造粒した後、焼結機パレット上に装入し、空気を下向きに流通させながら前記炭材を燃焼させることにより、該配合原料の少なくとも一部を溶融させてから冷却固化し、破砕することにより、製造している。つまり、焼結鉱は、粉状鉄鉱石等の鉄系原料がフラックスとして使われるCaOやSiO2等の造滓(スラグ)成分と反応し、少なくとも一部が溶融して塊状化した人工鉱石と言い得るものである。 In recent years, the iron-based raw material charged in the blast furnace has been increasingly dependent on sintered ore due to the lack of high-quality massive iron ore. In general, the sintered ore is not only powdered iron ore, but also iron-based raw materials such as returned ore, sulfated iron, sand iron, scale, blast furnace dust and converter dust, limestone as a slagging material, heat source for firing It is manufactured by sintering mainly powdery blended raw materials obtained by mixing carbonaceous materials and the like. That is, an appropriate amount of water is added to the blended raw material, mixed, granulated, charged onto a sinter pallet, and the carbonaceous material is burned while circulating air downwards. At least a part is melted and then cooled, solidified, and crushed. In other words, sintered ore is an artificial ore in which iron-based raw materials such as powdered iron ore react with a slag component such as CaO or SiO 2 used as a flux and at least partly melts and agglomerates. It can be said.
高炉で使用されている前記焼結鉱は、現在、塊状鉄鉱石と比較すると、SiO2やCaOの含有量が多いのが普通である。そのため、高炉に装入する鉄系原料中の該焼結鉱の配合割合が高くなるにつれ、高炉スラグの発生量が増加し、その結果、高炉の燃料比および高炉スラグの処理費の増大を招くという問題が生じる。しかも、最近では、省資源・省エネルギーの観点から、高炉の燃料比およびスラグ比の低減に対する要望が高まっているのが実情である。 The sintered ore used in the blast furnace usually has a higher content of SiO 2 and CaO than the massive iron ore. Therefore, as the blending ratio of the sintered ore in the iron-based raw material charged into the blast furnace increases, the amount of blast furnace slag generated increases, resulting in an increase in the fuel ratio of the blast furnace and the processing cost of the blast furnace slag. The problem arises. Moreover, recently, from the viewpoint of resource saving and energy saving, there is an increasing demand for reduction in the fuel ratio and slag ratio of the blast furnace.
一方で、焼結鉱中のSiO2、CaO含有量を減少させることは、該焼結鉱の強度低下を招くことになるため、現在、SiO2含有量の下限値を4.5 mass%程度、CaO含有量の下限値を9.O mss%程度に抑えている。例えば、CaOが6〜9mass%の低スラグ焼結鉱の製造方法(特許文献1参照)、SiO2が平均5mass%以下で、CaO/SiO2が1.90〜2.10の焼結鉱の製造方法(特許文献2参照)、SiO2が4.2〜4.9 mass%、MgOが1.5〜3.O mass%で、CaO/SiO2 が1.8〜2.2の焼結鉱の製造方法(特許文献3参照)、あるいはSiO2が4.6 mass%以下、CaO/SiO2が1.0〜3.0、MgOが0.5 mass%超の焼結鉱の製造方法(特許文献4参照)などが提案されている。 On the other hand, reducing the SiO 2 and CaO contents in the sintered ore leads to a decrease in the strength of the sintered ore. Therefore, the lower limit value of the SiO 2 content is currently about 4.5 mass%, CaO The lower limit of the content is suppressed to about 9.O mss%. For example, a manufacturing method (see Patent Document 1) low slag sinter of CaO is 6~9Mass%, of SiO 2 is less than or equal to the average 5 mass%, the production method of the sintered ore of CaO / SiO 2 is 1.90 to 2.10 (JP Reference 2), a method for producing sintered ore with 4.2 to 4.9 mass% of SiO 2 , 1.5 to 3.O mass% of MgO and 1.8 to 2.2 of CaO / SiO 2 (see Patent Document 3), or SiO 2 There 4.6 mass% or less, CaO / SiO 2 is 1.0 to 3.0, MgO is like 0.5 mass% greater than the production method of the sintered ore (refer to Patent Document 4) have been proposed.
しかしながら、これらの従来技術はいずれも、SiO2、CaO含有量の低下に伴い、落下強度(シャッター強度:SI)が85%程度に低下しており、焼結鉱中のSiO2含有量は4.5〜5.5 mass%程度、CaO含有量は下限値を9.O mass%程度に留めているのが現状である。なお、SiO2含有量を4.5〜5.5 mass%以上、CaOを9.O mass%以上含有する現在の焼結鉱では、落下強度(SI)が89%程度になっている。また、含有させるSiO2、CaO等のいわゆるフラックス成分の減少に対し、配合原料中の炭材含有量を増加させることにより、必要な強度を確保しようという考え方もあるが、この場合には、焼結鉱のミクロ組織が溶融時に生成したオリビン系融液に由来する結晶が多いものとなり、該焼結鉱の被還元性(RI)が劣化するという問題があった。
本発明の目的は、従来技術が抱えている上述した問題点を克服できる技術の確立、即ち、高炉スラグを形成する成分(SiO2、CaO等)の含有量が従来より少なくても、90%以上の落下強度(SI)を示すこと、さらに被還元率特性の高い金属鉄含有焼結鉱を得ることができる焼結鉱の有利な製造方法を提案することにある。 The object of the present invention is to establish a technique capable of overcoming the above-mentioned problems of the prior art, that is, 90% even if the content of components (SiO 2 , CaO, etc.) forming the blast furnace slag is less than that of the prior art. An object of the present invention is to propose an advantageous method for producing a sintered ore that can exhibit the above-described drop strength (SI) and that can obtain a metal iron-containing sintered ore having high reducibility characteristics.
発明者らは、上記目的の実現に向けた研究の中で、以下に述べる要旨構成に係る本発明に想到した。
即ち、本発明は、粉鉄鉱石その他の鉄系原料、副原料および炭材等からなる配合原料を、焼結機に供給し、前記炭材を燃焼させて該鉄系原料の少なくとも一部を溶融させたのち冷却し塊成化する焼結鉱の製造方法において、SiO2含有量が3.6 mass%以下の粉鉄鉱石を含む配合原料中に、炭材を10 mass%以上添加して焼結機へ供給し、焼結することを特徴とする焼結鉱の製造方法である。
The inventors have arrived at the present invention according to the gist configuration described below during research aimed at realizing the above object.
That is, the present invention supplies a blended raw material consisting of fine iron ore and other iron-based raw materials, auxiliary raw materials, and carbonaceous materials to a sintering machine, and burns the carbonaceous materials to at least part of the iron-based raw materials. the method of manufacturing a sintered ore cooling and agglomerated of mixture was allowed to melt, the formulation in the raw material SiO 2 content containing 3.6 mass% or less of the fine iron ore with the addition of carbonaceous material 10 mass% or more sintering This is a method for producing a sintered ore, characterized in that it is supplied to a machine and sintered.
また、本発明は、粉鉄鉱石その他の鉄系原料、副原料および炭材等からなる配合原料を、焼結機に供給し、前記炭材を燃焼させて該鉄系原料の少なくとも一部を溶融させたのち冷却し塊成化する焼結鉱の製造方法において、まず、炭材を10 mass%以上含有すると共に、SiO2含有量が3.6 mass%以下である粉鉄鉱石を含有する配合原料の一部を加庄成形して得られる成形体と、炭材を10 mass%以下含有すると共に、SiO2含有量が3.6 mass%を超える粉鉄鉱石を含有する配合原料を造粒して得られる造粒物と、からなる混合物を焼結機へ供給し、焼結することを特徴とする焼結鉱の製造方法である。 The present invention also provides a compounding raw material comprising powdered iron ore and other iron-based raw materials, auxiliary raw materials, and carbonaceous materials to a sintering machine and combusting the carbonaceous materials to at least part of the iron-based raw materials. In the method for producing sintered ore which is melted and then cooled and agglomerated, first, a blended raw material containing fine iron ore containing 10% by mass or more of carbonaceous material and 3.6% by mass or less of SiO 2 and some pressurized Zhuang molded into a molded article to be obtained, along with containing carbonaceous material 10 mass% or less, and granulating the blended raw materials SiO 2 content contains fine iron ore of more than 3.6 mass% to obtain the A method for producing a sintered ore, characterized in that a mixture comprising a granulated product is supplied to a sintering machine and sintered.
本発明において、前記SiO2含有量が3.6 mass%以下である粉鉄鉱石を含む配合原料中には、6mass%以下のCaOを含有すること、そして、ブリケットマシンで加圧成形したものであり、前記造粒物はドラムミキサーで造粒したものである。 In the present invention, said the SiO 2 content in the mixed material containing fine iron ore is 3.6 mass% or less, containing 6 mass% or less of CaO, and is obtained by pressure forming in briquette machine, The granulated product is granulated with a drum mixer.
本発明においては、SiO2含有量が3.6 mass%以下である粉鉄鉱石を含む配合原料中に、炭材を10 mass%以上添加してなるものを焼結機に供給して焼結することにより、高強度金属鉄含有焼結鉱を製造する技術の提案を基本としている。この技術を開発するに到った背景には、SiO2含有量が3.6 mass%以下という粉鉄鉱石は、上述したように、高強度の焼結鉱を製造するのが困難な配合原料であるが、このような粉鉄鉱石を使用して、高強度の焼結鉱を製造する技術の開発が強く求められていたからである。 In the present invention, the SiO 2 content in the mixed material containing fine iron ore is 3.6 mass% or less, those obtained by adding the carbonaceous material 10 mass% or more is supplied to the sintering machine and sintered Based on the above, it is based on the proposal of the technique which manufactures high strength metallic iron containing sintered ore. As a background to the development of this technology, fine iron ore with a SiO 2 content of 3.6 mass% or less is a compounding raw material that makes it difficult to produce high-strength sintered ore as described above. However, there is a strong demand for the development of a technique for producing a high-strength sintered ore using such a powdered iron ore.
そこで、発明者らはまず、3.6 mass%以下というSiO2含有量が少ない粉鉄鉱石と、SiO2の含有量が多いその他の粉鉄鉱石とを併用することを考えた。しかも、SiO2含有量が3.6 mass%以下の粉鉄鉱石としては、例えば、別途に加圧成形して得られる成形体を用いることが望ましいとわかった。それは、たとえば、ドラムミキサーなどによる造粒物では、他の粉鉄鉱石との併用時に他の粉鉄鉱石造粒物との混合時に、一旦造粒したSiO2含有量が、3.6 mass%以下の粉鉄鉱石からなる擬似粒子が崩壊して、他の粉鉄鉱石と混合してしまうという問題を起すためである。そこで、本発明においては、炭材含有量が10 mass%以上、CaO含有量が6mass%以下、そして、SiO2含有量が3.6 mass%以下の粉鉄鉱石を含む配合原料を、焼結する際に、好ましくはその配合原料をブリケットマシンで一旦、加圧成形して成形体とし、この成形体を他の配合原料、例えば単味鉄鉱石や造粒物との混在物として焼結機に供給するのである。 In view of this, the inventors first considered using 3.6% by mass or less of a fine iron ore with a low SiO 2 content and another fine iron ore with a high SiO 2 content. Moreover, it was found that, for example, it is desirable to use a compact obtained by separately press-molding as the fine iron ore having a SiO 2 content of 3.6 mass% or less. For example, in a granulated product such as a drum mixer, the SiO 2 content once granulated is 3.6 mass% or less at the time of mixing with other powdered iron ore when combined with other powdered iron ore. This is because the pseudo particles made of fine iron ore collapse and mix with other fine iron ores. Therefore, in the present invention, carbonaceous material content of 10 mass% or more, CaO content is less 6 mass%, and, when the SiO 2 content of the mixed material containing 3.6 mass% or less of the fine iron ore, sintered Preferably, the blended raw material is once pressure-molded with a briquette machine to form a compact, and this compact is supplied to the sintering machine as a mixture of other blended raw materials such as simple iron ore or granulated material. To do.
本発明によれば、SiO2が3.6 mass%以下である粉鉄鉱石を焼結機への装入用配合原料として用いても、強度が高く被還元性の良好な焼結鉱を得ることができる。とくに、炭材を10 mass%以上含有すると共に、SiO2の含有量が3.6 mass%以下である粉鉄鉱石を含有する配合原料を焼結したものは、金属鉄、ウスタイトおよびマグネタイトなどの金属鉄系融液を生成させることができるので、高強度、高被還元性で、一部に金属鉄が残留した状態の焼結鉱とすることができる。 According to the present invention, it is possible to obtain a sintered ore having high strength and good reducibility even when powdered iron ore having a SiO 2 content of 3.6 mass% or less is used as a blending raw material for charging into a sintering machine. it can. In particular, sintered materials containing powdered iron ore containing 10 mass% or more of carbonaceous material and 3.6 mass% or less of SiO 2 are metallic iron such as metallic iron, wustite and magnetite. Since the system melt can be generated, a sintered ore with high strength, high reducibility, and a portion of metallic iron remaining can be obtained.
さらに、炭材を10 mass%以上含有すると共に、SiO2を3.6 mass%以下である粉鉄鉱石を含有する配合原料の一部を成形体とするとともに、残りの配合原料については造粒物の状態としたものとし、これらの成形体と造粒物との混合物の状態の配合原料を焼結機パレット上に装入して焼結を行うようにした場合には、得られる焼結鉱が、従来のものよりもSiO2量の低い、即ち、SiO2が4.0〜5.0 mass%で、CaOが7〜9mass%の高強度、高被還元性で、一部に金属鉄が安定して残留した状態の焼結鉱とすることができる。 Furthermore, a part of the blended raw material containing 10% by mass or more of carbonaceous material and powdered iron ore containing 3.6% by mass or less of SiO 2 is formed into a compact, and the remaining blended raw material is a granulated product. When the mixture raw material in the state of a mixture of these compacts and granulated materials is placed on a sintering machine pallet and sintered, the resulting sintered ore is The amount of SiO 2 is lower than that of the conventional one, that is, SiO 2 is 4.0 to 5.0 mass%, CaO is 7 to 9 mass%, high strength and high reducibility, and part of metal iron remains stably. It can be set as the sintered ore of the state.
このように、本発明によれば、高炉スラグ形成成分の含有量が従来よりも少なくても、被還元性が高くかつ90%以上の落下強度(SI)値を示す高強度の金属鉄含有焼結鉱を容易に製造することができる。 As described above, according to the present invention, even if the content of the blast furnace slag forming component is smaller than that of the conventional one, the high-strength metallic iron-containing fired metal having high reducibility and exhibiting a drop strength (SI) value of 90% or more. The ore can be produced easily.
一般に、高炉の燃料比を低減する方法の1つとして、高炉装入原料として金属鉄を使用するという考え方がある。そこで、その金属鉄を焼結鉱中に予め含有させておけば、上記と同様の作用効果、即ち高炉燃料比の低減に有効に作用すると考えられる。ただし、通常の焼結鉱は、金属鉄をほとんど含有していないのが実情である。その理由は、配合原料中の鉄源が、炭材等の作用による還元雰囲気によって、一時的に還元されて金属鉄を生成するものの、焼結反応終了後の高温酸化性雰囲気において、再酸化されてしまうからである。 In general, as one method for reducing the fuel ratio of a blast furnace, there is a concept of using metallic iron as a raw material for charging a blast furnace. Therefore, it is considered that if the metallic iron is contained in the sintered ore in advance, the same effect as described above, that is, effectively acts for reducing the blast furnace fuel ratio. However, the actual condition is that ordinary sintered ore contains almost no metallic iron. The reason for this is that the iron source in the blended raw material is temporarily reduced by the reducing atmosphere due to the action of the carbonaceous material, etc. to produce metallic iron, but is re-oxidized in the high-temperature oxidizing atmosphere after the sintering reaction is completed. Because it will end up.
以下、本発明を開発するに至った動機とともに、本発明の最良の実施形態について説明する。
焼結鉱は、粉鉄鉱石を、フラックス(つまり、CaOやSiO2等のスラグ成分)と反応−溶融させた後、冷却して塊成化したものである。そのため、該焼結鉱の強度には、配合原料の粒度や配合比率(塩基度)等、様々な因子が影響を及ぼすことは周知である。特に、SiO2含有量が4.0〜5.O mass%で、CaO含有量が7〜10 mass%程度の低スラグ系の焼結鉱では、CaOやSiO2等のフラックス成分の減少に伴い、融液量が不足して、成品焼結鉱の落下強度(SI)が低下することが知られている。
Hereinafter, the best embodiment of the present invention will be described together with the motivation for developing the present invention.
The sintered ore is obtained by reacting and melting powder iron ore with a flux (that is, slag components such as CaO and SiO 2 ) and then agglomerating by cooling. Therefore, it is well known that various factors such as the particle size and blending ratio (basicity) of the blended raw material influence the strength of the sintered ore. In particular, SiO 2 content is 4.0~5.O mass%, the sinter of CaO content low slag system about 7 to 10 mass%, with a decrease of the flux components such as CaO and SiO 2, fusion It is known that the drop strength (SI) of the product sinter decreases due to the lack of liquid volume.
そこで、発明者らは、融液生成量が添加フラックス成分量に依存しない特性をもつ成品焼結鉱について種々検討した。その結果、焼結機装入原料として、
(1)配合原料に、SiO2含有量が3.6 mass%以下である粉鉄鉱石を使用する場合、この粉鉄鉱石には炭材を予め混合した配合原料として、焼結機へ装入するか、
(2)配合原料中に、SiO2含有量が3.6 mass%以下の粉鉄鉱石と炭材とを予め混合したのちこれを加庄成形して成形体としたものと、残りの配合原料、例えばコークス粉等を混合したのち造粒して造粒物としたものとを予め準備し、これらの成形体と造粒物とを混合し、この混合物からなる配合原料を、焼結機への装入原料とするか、
という方法によって焼結鉱を製造した場合には、被還元性が高く、高強度の金属鉄含有焼結体が得られることを見出し、本発明を完成させた。
Therefore, the inventors have made various studies on the product sintered ore having the characteristics that the melt generation amount does not depend on the added flux component amount. As a result,
(1) When using powdered iron ore with a SiO 2 content of 3.6 mass% or less as the blended raw material, is this powdered iron ore charged into the sintering machine as a blended raw material premixed with carbonaceous materials? ,
(2) In a blended raw material, a powdered iron ore having a SiO 2 content of 3.6 mass% or less and a carbonaceous material are mixed in advance and then formed into a compact by molding and the remaining blended raw materials, for example, After preparing coke powder etc. and granulating it to prepare a granulated product, these compacts and granulated product are mixed together, and the blended raw material consisting of this mixture is loaded into a sintering machine. Or as a raw material
When the sintered ore was produced by this method, it was found that a highly reducible and high-strength metallic iron-containing sintered body was obtained, and the present invention was completed.
ところで、一般的な焼結鉱においては、炭材燃焼時の還元性雰囲気下ではFe2O3とSiO2に由来するオリビン系融液が多く生成し、この融液に由来するミクロ組織を含む焼結鉱は、被還元性が低くなることが知られている。
一方で、焼結鉱の製造に当たり、SiO2を3.6 mass%以下含有する鉱石を用いると共に、炭材を10 mass%以上含有するものを配合原料として用いた場合には、前記オリビン系融液の生成量が少なくなり、ウスタイト系融液由来のミクロ組織が多くなって、金属鉄の残留が観察され、ひいては高強度と高被還元性とが両立する焼結体が得られることがわかった。さらに、SiO2を3.6 mass%以下含有する鉱石に対し、炭材を10 mass%以上含有させたものを加圧成形してなる成形体を、配合原料の少なくとも一部として用いると、成形体がより緻密になり、炭材のガス化に伴なう成形体の内圧が上昇して還元雰囲気が強化され、酸化性ガスの侵入を抑制するように作用する。その結果として、焼結鉱中(成形体側)には金属鉄が多く残留する結果、高強度と高被還元性の両特性を有し、かつ金属鉄含有の焼結鉱が得られることもわかった。
Incidentally, in a general sinter ore, in a reducing atmosphere at the time of the carbonaceous material burned to generate many olivine melt derived from Fe2O3 and SiO 2, comprising a microstructure resulting from this melt sinter Is known to have low reducibility.
On the other hand, in the production of sintered ore, when using an ore containing 3.6 mass% or less of SiO 2 and using as a blending raw material containing 10 mass% or more of carbonaceous material, It was found that the amount produced was reduced, the microstructure derived from the wustite melt was increased, the residual metal iron was observed, and as a result, a sintered body having both high strength and high reducibility was obtained. Furthermore, when an ore containing 3.6 mass% or less of SiO 2 is used as a compounded raw material as a molded product obtained by pressure molding a carbonaceous material containing 10 mass% or more, the molded product becomes It becomes denser and increases the internal pressure of the molded body accompanying the gasification of the carbonaceous material, strengthens the reducing atmosphere, and acts to suppress the invasion of oxidizing gas. As a result, it can be seen that a large amount of metallic iron remains in the sintered ore (on the compact side), resulting in both high strength and high reducibility characteristics and a sintered iron containing metallic iron. It was.
次に、発明者らは、上述した所望の特性を有する焼結鉱を得るために、配合原料中3.6 mass%以下のSiO2を含む粉鉄鉱石に対して添加する炭材の量、とくにこの鉱石を用いて成形された前記成形体中への炭材添加量の好適範囲について検討した。その結果、該成形体中への炭材添加量が10 mass%未満では、金属鉄が得られない場合があったので、10 mass%を下限とした。一方、この炭材添加量が10 mass%以上であれば、金属鉄の存在と、前記ウスタイト系融液由来のミクロ組織増加によって高強度と高被還元性の両方の特性を有する焼結鉱が得られることがわかった。なお、この炭材添加量の上限は、特に設ける必要はないが、製造上の要請や経済性等により決定すればよく、例えば25 mass%程度とすることが好ましく、10〜20 mass%とすることがより好ましい。 Next, in order to obtain a sintered ore having the above-described desired characteristics, the inventors have added an amount of carbonaceous material added to fine iron ore containing 3.6 mass% or less of SiO 2 in the blended raw material, particularly this amount. The suitable range of the carbonaceous material addition amount in the said molded object shape | molded using the ore was examined. As a result, when the amount of carbonaceous material added to the compact was less than 10 mass%, metallic iron could not be obtained, so 10 mass% was set as the lower limit. On the other hand, if this carbonaceous material addition amount is 10 mass% or more, a sintered ore having both high strength and high reducibility characteristics due to the presence of metallic iron and an increase in the microstructure derived from the wustite melt. It turns out that it is obtained. The upper limit of the carbon material addition amount is not particularly required, but may be determined according to manufacturing requirements, economics, and the like, and is preferably about 25 mass%, for example, 10 to 20 mass%. It is more preferable.
また、本発明では、SiO2の含有量が3.6 mass%以下である粉鉄鉱石を、前記配合原料の一部として用いるとき、炭材に加えて、CaO含有副原料(例えば、石灰石や焼石灰)を添加し、CaOの添加量を6mass%以下と比較的少ない量に予め止めておくことが好ましい。その理由は、成形体中のCaO含有量が6mass%以下であれば、焼結鉱の強度や被還元性をさほど低下させないからである。加圧して成形する成形体としての使用においては、CaO含有副原料の添加を行わずとも実施可能である。
なお、配合原料の一部として、SiO2の含有量が3.6 mass%以下である粉鉄鉱石を用いる場合、残部の配合原料はSiO2の含有量が3.6 mass%超の粉鉄鉱石を用いる。このSiO2>3.6 mass%の粉鉄鉱石には、炭材を10 mass%以下添加する。この場合において、炭材の量を10 mass%以下とした理由は、10 mass%超ではオリビン系融液の生成量が過剰となり、被還元性が低下するとともに、焼結の通気も悪化して、生産性が低下するからである。
そして、この残部の炭材含有粉鉄鉱石(SiO2>3.6 mass%)についてはドラムキキサーで造粒したものを、配合原料の一部として用いることが好ましい。その理由は、この部分をブリケッティングする必要がなく、通常の造粒方法が適用できることによる。
Further, in the present invention, when using fine iron ore having a SiO 2 content of 3.6 mass% or less as a part of the blended raw material, in addition to the carbonaceous material, a CaO-containing auxiliary raw material (for example, limestone or calcined lime) It is preferable that the addition amount of CaO is previously stopped at a relatively small amount of 6 mass% or less. The reason is that if the CaO content in the compact is 6 mass% or less, the strength and reducibility of the sintered ore will not be reduced so much. Use as a molded body to be molded by pressurization can be performed without adding a CaO-containing auxiliary material.
In addition, when using the fine iron ore whose content of SiO 2 is 3.6 mass% or less as a part of the mixed raw material, the remaining mixed raw material uses fine iron ore with a content of SiO 2 exceeding 3.6 mass%. Carbonaceous material is added to 10 mass% or less of this iron ore with SiO 2 > 3.6 mass%. In this case, the reason for setting the amount of the carbon material to 10 mass% or less is that if it exceeds 10 mass%, the amount of olivine-based melt produced becomes excessive, the reducibility is reduced, and the aeration of sintering is also deteriorated. This is because productivity decreases.
Then, those granulated with Doramukikisa for carbonaceous material containing powder ore of the remainder (SiO 2> 3.6 mass%) , it is preferable to use as part of the mixed material. The reason is that it is not necessary to briquette this part, and a normal granulation method can be applied.
次に、図1を用いて、本発明にかかる焼結鉱の好ましい製造方法の例を説明する。
まず、SiO2含有量4.0〜5.0 mass%の焼結鉱を製造するための原料配合を決定する。
即ち、基準とする、SiO2含有量が3.60 mass%以下である粉鉄鉱石の配合量に基づき、これと混合して用いるその他の粉鉄鉱石配合量を求め、配合原料全体のSiO2含有量が4.0〜5.0 mass%となるように配合設計を行う。逆に、SiO2の含有量が3.60 mass%以下である粉鉄鉱石以外のその他の配合原料を、例えばSiO2の含有量が3.6 mass%超である粉鉄鉱石を炭材とともに含む配合原料を基準として、配合原料全体のSiO2含有量が4.0〜5.0 mass%となるように、SiO2含有量が3.60 mass%以下である粉鉄鉱石の配合量を求めてよい。
Next, an example of a preferable method for producing a sintered ore according to the present invention will be described with reference to FIG.
First, to determine the raw material formulation for the production of sintered ore in the SiO 2 content of 4.0 to 5.0 mass%.
That is, the reference, SiO 2 content based on the amount of fine iron ore is not more than 3.60 mass%, this and seek other fine iron ore amount used in mixture, SiO 2 content of the entire mixed material The formulation is designed to be 4.0-5.0 mass%. Conversely, the other compounding ingredients other than fine iron ore content of SiO 2 is 3.60 mass% or less, for example, a fine iron ore content of SiO 2 is 3.6 mass% than the formulation ingredients together with carbonaceous material as a reference, SiO 2 content of the entire mixed material is such that 4.0 to 5.0 mass%, may determine the amount of fine iron ore SiO 2 content is 3.60 mass% or less.
次いで、SiO2の含有量が3.60 mass%以下である粉鉄鉱石に対するCaO添加量、炭材添加量を決定し、これらを混合する。また、SiO2含有量が3.60 mass%以下である粉鉄鉱石以外の他の配合原料、例えばSiO2の含有量が3.6 mass%を超える粉鉄鉱石についても同様に、CaO添加量、炭材添加量を決定する。 Subsequently, the CaO addition amount and the carbonaceous material addition amount with respect to the fine iron ore whose content of SiO 2 is 3.60 mass% or less are determined, and these are mixed. Similarly, the SiO 2 content of other formulation materials other than fine iron ore is 3.60 mass% or less, for example fine iron ore content of SiO 2 exceeds 3.6 mass%, CaO addition amount, addition carbonaceous material Determine the amount.
SiO2含有量が3.60 mass%以下の粉鉄鉱石については、これに対するCaO、炭材の各添加量を決定し、混合した後、水を加え加圧成形して成形体とする。なお、この成形体は焼結機上に装入した際に成形された形態を維持できる程度であればよく、バインダーとして水、あるいは必要に応じベントナイトや糖蜜などを使用すればよい。 The SiO 2 content of 3.60 mass% or less of the fine iron ore, CaO to this, determining the respective amount of carbonaceous material, after mixing, water was added and molded under pressure to the molded body. The molded body only needs to have a shape capable of maintaining the shape formed when charged on a sintering machine, and water, bentonite, molasses, or the like may be used as a binder.
一方、SiO2含有量が3.60 mass%以下である粉鉄鉱石以外の他の配合原料、例えばSiO2を3.6 mass%超有する粉鉄鉱石などについては、これらを混合し、造粒(代表的にはドラムミキサーを用いる)して造粒物とする。この造粒物にはCaOや炭材、さらには必要に応じSiO2原料を加え、ドラムミキサーの入り側から装入して転動方式による造粒操作を加えて造粒し、こうして得られた造粒物を前記成形体に好ましくは上記2種類とともに焼結機に供給する。焼結機に供給する過程で両配合原料(成形体、造粒物)は、予め混合され、2つの原料が混在した状態となって焼結機パレット上に装入されたのち焼結される。 On the other hand, other raw materials other than fine iron ore with a SiO 2 content of 3.60 mass% or less, such as fine iron ore with more than 3.6 mass% of SiO 2 , are mixed and granulated (typically Use a drum mixer) to make a granulated product. To this granulated product, CaO, charcoal, and further SiO 2 raw material were added if necessary, charged from the entrance side of the drum mixer, granulated by a rolling method and granulated, and thus obtained. The granulated product is supplied to the compact, preferably to the sintering machine together with the above two types. In the process of supplying to the sintering machine, both blended raw materials (molded product, granulated product) are mixed in advance, and the two raw materials are mixed and charged on the sintering machine pallet and then sintered. .
前記混合操作は、混合用ドラムミキサーを用い、両原料を一旦ドラムミキサーを通すことにより均一な混合を図る方法、あるいは、前記成形体をその他の配合原料(造粒物混合)を造粒するためのドラムミキサーに加える方法、または、前記成形体、前記造粒物を同一ベルトコンベア上に層上に排出して、焼結機ホッパー内に貯鉱する際に混合する方法などでもよい。 In the mixing operation, a mixing drum mixer is used, and both raw materials are once passed through the drum mixer to achieve uniform mixing, or the molded product is granulated with other blended raw materials (granulated product mixture). A method of adding to the drum mixer, or a method of mixing the molded body and the granulated material when discharged on the same belt conveyor and stored in a sintering machine hopper may be used.
以下、本発明にかかる焼結鉱の製造方法を実施例に基づいて具体的に説明するとともに、本発明の要件から外れる例を比較例として、それぞれの作用効果を対比した。なお、製造に際しては、9銘柄の粉鉄鉱石を使用し、これらを表1に示す鉱石配合割合とした。また、主原料及び副原料の内訳を表2に示す。 Hereinafter, while manufacturing the sintered ore manufacturing method concerning this invention is demonstrated concretely based on an Example, the example which remove | deviates from the requirements of this invention was compared, and each effect was compared. In manufacturing, nine brands of fine iron ore were used, and these were set as the ore blending ratios shown in Table 1. Table 2 shows a breakdown of the main raw materials and auxiliary raw materials.
(実施例1)
この実施例において、配合原料を調整するに当っては、焼結鉱中のSiO2含有量が4.O mass%となるように珪石を、焼結鉱中のCaO含有量が7.O mass%となるように石灰石を配合した。また、返鉱を新原料(主原料及び副原料)に対し20 mass%となるように配合した。
Example 1
In this example, when adjusting the blending raw material, the silica was added so that the SiO 2 content in the sintered ore was 4.O mass%, and the CaO content in the sintered ore was 7.O mass. Limestone was blended so as to be%. Also, the return ore was blended so as to be 20 mass% with respect to the new raw material (main raw material and auxiliary raw material).
そして、製造に当っては、
(1)まず、鉱石A、B、D、Gに対し、炭材(粉コークス)の含有量が10 mass%となるように添加したのち混合し、その後、水分を添加してブリケットマシンにて加圧成形し成形体を得た。
この加圧成形処理において、成形体強度が不足したものについては、必要に応じベントナイトや糖蜜を加えた。成形体は、アーモンド状の形状として、10 ccの体積を有する粒径に成形した。従って、表1の鉱石銘柄のうち、上記以外のものは加圧成形されない、所謂、造粒物とすべき残りの配合原料である。
(2)次に、上述した残りの配合原料(C、E、F、H、I、これらについての量は配合設計で予め定めることができる)をドラムミキサーに投入し、副原料、水分を添加しながら混合−造粒して造粒物を得た。
(3)次に、前記造粒物が収容されている前記ドラムミキサー内に、前記(1)で得られた成形体(63 mass%)を投入し、前記造粒物(37 mass%)とよく混合した。
なお、配合した前記混合物中の全炭材量は、新原料に対し7.O mass%とした。次に、これらの製造条件を整理して表3に示す。
And in manufacturing,
(1) First, the ores A, B, D, and G are mixed after adding so that the carbonaceous material (powder coke) content is 10 mass%. A compact was obtained by pressure molding.
In this pressure molding treatment, bentonite and molasses were added as needed for those with insufficient molded body strength. The molded body was formed into a particle size having a volume of 10 cc as an almond-like shape. Therefore, among the ore brands in Table 1, those other than the above are the remaining blended raw materials that are not pressure-molded, and are to be formed into so-called granules.
(2) Next, the remaining blended raw materials (C, E, F, H, I, the amount of which can be determined in advance by blending design) are put into a drum mixer, and auxiliary raw materials and moisture are added. While mixing and granulating, a granulated product was obtained.
(3) Next, the molded product (63 mass%) obtained in (1) is charged into the drum mixer in which the granulated product is accommodated, and the granulated product (37 mass%) and Mix well.
The total amount of carbon in the blended mixture was 7.O mass% with respect to the new raw material. Next, these manufacturing conditions are organized and shown in Table 3.
次に、上記のように予備処理された成形体および造粒物からなる混合物を、焼結機のパレット上に装入し、空気吸引下の常法に従う焼結操業を行った。得られた焼結鉱の品質を表4に示す。焼結鉱の評価は、通常の化学分析により金属鉄含有量を求め、日本工業規格JIS M8711規定された方法により落下強度(シャッターインデックス(SI))を求め、また日本工業規格JIS M8713に規定された方法で被還元性指数(RI)を求めて行った。得られた焼結鉱は、SiO2含有量が4.O mass%、CaO含有量が7.O mass%であり、金属鉄を8.2 mass%程度安定して含有し、SIが92、RIが65と高強度で被還元性の良好な焼結鉱が得られた。 Next, the mixture consisting of the compact and the granulated product pretreated as described above was placed on a pallet of a sintering machine and subjected to a sintering operation according to a conventional method under air suction. Table 4 shows the quality of the obtained sintered ore. The evaluation of sintered ore is to obtain the metallic iron content by ordinary chemical analysis, to determine the drop strength (shutter index (SI)) by the method specified in Japanese Industrial Standard JIS M8711, and to be specified in Japanese Industrial Standard JIS M8713. The reducibility index (RI) was obtained by the method described above. The obtained sinter has a SiO 2 content of 4.O mass%, a CaO content of 7.O mass%, stably contains metallic iron of about 8.2 mass%, SI is 92, and RI is A sintered ore with high strength and good reducibility was obtained.
(実施例2)
鉱石銘柄A、B、D、Gの粉鉄鉱石、炭材およびCaOを含有する副原料を混合して、前記成形体を得るとき、この成形体中のCaO添加量が6mass%となるように石灰石を添加すると共に、炭材含有量を10 mass%となるように配合し、これらを混合した後、水分を添加しブリケットマシンにて加圧成形して成形体を得たこと以外は、実施例1と同様の方法で実施した。得られた焼結鉱は、SiO2含有量が4.O mass%、CaO含有量が7.0 mass%であり、金属鉄を6.6 mass%含有し、SIが93、RIが66と高強度で被還元性が良好な焼結鉱が得られた。
(Example 2)
When the powdered iron ore of ore brands A, B, D, and G, the carbonaceous material and the auxiliary raw material containing CaO are mixed to obtain the molded body, the added amount of CaO in the molded body is 6 mass%. In addition to adding limestone and blending so that the carbonaceous material content is 10 mass%, mixing these, adding moisture and pressing with a briquette machine to obtain a molded body This was carried out in the same manner as in Example 1. The obtained sinter has a SiO 2 content of 4.O mass%, a CaO content of 7.0 mass%, a metal iron content of 6.6 mass%, an SI of 93, and an RI of 66 with high strength. A sintered ore with good reducibility was obtained.
(実施例3)
鉱石A、B、D、Gに対し炭材を12 mass%となるように配合し、さらにこれらを混合後、水分を添加しブリケットマシンにて加圧成形して成形体を得た。配合した全炭材量は、新原料に対し8.0 mass%としたこと以外は、実施例1と同様の方法で実施した。得られた焼結鉱は、SiO2含有量が4.O mass%、CaO含有量が7.O mass%であり、金属鉄を11.2 mass%含有し、SIが93、RIが68と高強度で被還元性が良好な焼結鉱が得られた。
(Example 3)
Carbonaceous materials were added to ores A, B, D, and G so as to be 12 mass%, and after mixing these, moisture was added and pressure-molded with a briquette machine to obtain a compact. The total amount of blended charcoal was carried out in the same manner as in Example 1 except that the amount was 8.0 mass% with respect to the new raw material. The obtained sinter has a SiO 2 content of 4.O mass%, a CaO content of 7.O mass%, a metal iron content of 11.2 mass%, an SI of 93, and a RI of 68. A sintered ore with good reducibility was obtained.
(実施例4)
成品焼結鉱のSiO2含有量が5.O mass%となるように珪石を配合し、また、焼結鉱のCaO含有量が10.0 mass%となるように石灰石を配合したこと以外は、実施例1と同様の方法で実施した。得られた焼結鉱は、SiO2含有量が5.O mass%であり、CaO含有量が10.O mass%であり、金属鉄を7.5 mass%含有し、SIが94、RIが64と高強度で被還元性が良好な焼結鉱が得られた。
Example 4
SiO 2 content of finished product sintered ore is blended with silica so that 5.O mass%, also except for blending the limestone as CaO content of sintered ore is 10.0 mass%, performed This was carried out in the same manner as in Example 1. The obtained sinter has an SiO 2 content of 5.O mass%, a CaO content of 10.O mass%, a metal iron content of 7.5 mass%, an SI of 94, and an RI of 64. A sintered ore with high strength and good reducibility was obtained.
(比較例1)
焼結鉱のSiO2含有量が4.O mass%となるように珪石を、成品焼結鉱のCaO含有量が7.O mass%となるように石灰石を配合した。また、前記返鉱は、前記新原料に対し20 mass%となるように配合した。
すべての原料を、ドラムミキサーに一緒に投入し、水分を添加しながら混合−造粒した。配合原料中の全炭材量は、新原料に対し7.O mass%とした。これらの製造条件を整理して表5に示す。上記配合物を焼結機に装入し、焼結後に得られた焼結鉱の品質を表6に示す。ここで得られた焼結鉱はSiO2含有量が4.O mass%であり、CaO含有量が7.O mass%であったが、金属鉄はほとんど含有していないため、SIが77、RIが69と落下強度の低い焼結鉱となった。
(Comparative Example 1)
Silica stone was blended so that the SiO 2 content of the sintered ore was 4.O mass%, and limestone was blended so that the CaO content of the product sintered ore was 7.O mass%. Further, the return ore was blended so as to be 20 mass% with respect to the new raw material.
All raw materials were put together in a drum mixer and mixed and granulated while adding moisture. The total amount of coal in the blended raw material was 7.O mass% with respect to the new raw material. These manufacturing conditions are organized and shown in Table 5. Table 6 shows the quality of the sintered ore obtained after charging the above blend into a sintering machine. The sintered ore obtained here had a SiO 2 content of 4.O mass% and a CaO content of 7.O mass%, but contained almost no metallic iron, so SI was 77, The RI was 69 and it became a sintered ore with low drop strength.
(比較例2)
予め鉱石銘柄C、E、F、H、Iの粉鉄鉱石に対し、炭材として粉コークスを10 mass%となるように配合し、これらを混合したのち、水分を添加して混合−造粒した。即ち、全ての配合原料をブリケットマシンにて加圧成形したこと以外は、実施例1と同様の方法で実施した。得られた焼結鉱は、SiO2含有量が4.O mass%であり、CaO含有量が7.O mass%であり、金属鉄はほとんど含有していないため、SIが86、RIが50と強度が低く、被還元性も悪い焼結鉱となった。
(Comparative Example 2)
Pre-mixed ore grades C, E, F, H, and I powdered iron ore is blended so that it becomes 10 mass% as a carbonaceous material, and after mixing these, water is added and mixed and granulated. did. That is, it was carried out in the same manner as in Example 1 except that all the blended raw materials were pressure-molded with a briquette machine. The obtained sintered ore has a SiO 2 content of 4.O mass%, a CaO content of 7.O mass%, and almost no metallic iron, so that SI is 86 and RI is 50. It became a sintered ore with low strength and poor reducibility.
(比較例3)
予め鉱石銘柄A、B、D、Gの粉鉄鉱石、炭材およびCaOを含有する副原料を、成形物中へのCaO添加量が7mass%となるように配合すると共に、炭材を10 mass%となるように配合し、これらを混合したのち、水分を添加して混合−造粒した。即ち、ブリケットマシンにて加庄成形したこと以外は、実施例1と同様の方法で実施した。得られた焼結鉱は、SiO2含有量が4.O mass%であり、CaO含有量が7.O mass%であったものの、金属鉄を5mass%程度含有する部分も存在したが、SIが80、RIが64と強度がやや低く、被還元性も悪い焼結鉱となった。
(Comparative Example 3)
In addition to blending ore brands A, B, D, and G powdered iron ore, carbonaceous materials and CaO containing auxiliary materials so that the amount of CaO added to the molded product is 7 mass%, the carbonaceous material is 10 mass. After blending so as to be%, water was added and mixing and granulation were carried out. That is, it was carried out by the same method as in Example 1 except that it was formed by a briquette machine. Although the obtained sintered ore had a SiO 2 content of 4.O mass% and a CaO content of 7.O mass%, there was a portion containing about 5 mass% of metallic iron. However, the strength of the sinter was slightly low and the reducibility was poor.
(比較例4)
予め鉱石銘柄A、B、D、Gの粉鉄鉱石に対し炭材を4mass%となるように配合し、これらを混合したのち、水分を添加して混合−造粒した。即ち、ブリケットマシンにて加圧成形したこと以外は、実施例1と同様の方法で実施した。得られた焼結鉱は、SiO2含有量が4.O mass%であり、CaO含有量が7.O mass%であったが、金属鉄をほとんど含有しないもの(0.1 mass%)では、SIが87、RIが65と強度が低く、被還元性も悪い焼結鉱であった。
(Comparative Example 4)
Carbonaceous materials were blended in advance to 4 mass% with respect to ore brands A, B, D, and G, and after mixing these, water was added and mixed and granulated. That is, it was carried out in the same manner as in Example 1 except that it was pressure molded by a briquette machine. The obtained sintered ore had a SiO 2 content of 4.O mass% and a CaO content of 7.O mass%, but the one containing almost no metallic iron (0.1 mass%) No. 87, RI was 65, low in strength and poor reducibility.
(比較例5)
焼結鉱のSiO2含有量は5.O mass%となるように珪石を配合し、また、成品焼結鉱のCaO含有量が10.O mass%となるように石灰石を配合したこと以外は、比較例1と同様の方法で実施した。得られた焼結鉱のSiO2含有量が5.O mass%であり、CaO含有量が10.O mass%であったが、金属鉄をほとんど含有(0.1 mass%)しないものでは、SIが89、RIが64と強度が低く、被還元性も悪い焼結鉱となった。
(Comparative Example 5)
Except that silica stone is blended so that the SiO 2 content of sintered ore is 5.O mass%, and limestone is blended so that the CaO content of the product sintered ore is 10.O mass%. The same method as in Comparative Example 1 was performed. The obtained sintered ore had a SiO 2 content of 5.O mass% and a CaO content of 10.O mass%. 89, RI was 64 and the strength was low and the reducibility was poor.
本発明に係る技術は、高炉用装入原料である焼結鉱の製造技術として有用なだけでなく、還元鉄や海綿鉄用原料の製造技術としても利用が可能である。 The technique according to the present invention is not only useful as a technique for producing sintered ore that is a raw material for blast furnace charging, but can also be used as a technique for producing reduced iron or sponge iron raw material.
Claims (4)
SiO2含有量が3.6 mass%以下の粉鉄鉱石を含む配合原料中に、炭材を10 mass%以上添加して焼結機へ供給し、焼結することを特徴とする焼結鉱の製造方法。 Supply blended raw material consisting of fine iron ore and other iron-based raw materials, auxiliary raw materials and carbonaceous materials to a sintering machine, burn the carbonaceous materials to melt at least a part of the iron-based raw materials, and then cool. In the method for producing the agglomerated sintered ore,
Compounding the raw material SiO 2 content containing 3.6 mass% or less of the fine iron ore with the addition of carbonaceous material 10 mass% or more is supplied to the sintering machine, the production of sintered ore, which comprises sintering Method.
まず、炭材を10 mass%以上含有すると共に、SiO2含有量が3.6 mass%以下である粉鉄鉱石を含有する配合原料の一部を加庄成形して得られる成形体と、炭材を10 mass%以下含有すると共に、SiO2含有量が3.6 mass%を超える粉鉄鉱石を含有する配合原料を造粒して得られる造粒物と、からなる混合物を焼結機へ供給し、焼結することを特徴とする焼結鉱の製造方法。 Supply blended raw material consisting of fine iron ore and other iron-based raw materials, auxiliary raw materials and carbonaceous materials to a sintering machine, burn the carbonaceous materials to melt at least a part of the iron-based raw materials, and then cool. In the method for producing the agglomerated sintered ore,
First, a carbonaceous material as well as containing more than 10 mass%, a molded product obtained by vulcanizing Sho forming part of the formulation ingredients SiO 2 content contains fine iron ore is 3.6 mass% or less, the carbonaceous material A mixture consisting of a granulated product obtained by granulating a blended raw material containing 10% by mass or less of SiO 2 and more than 3.6% by mass of powdered iron ore is supplied to a sintering machine and sintered. A method for producing a sintered ore, characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004252197A JP4720127B2 (en) | 2004-08-31 | 2004-08-31 | Method for producing sintered ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004252197A JP4720127B2 (en) | 2004-08-31 | 2004-08-31 | Method for producing sintered ore |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006070294A true JP2006070294A (en) | 2006-03-16 |
JP4720127B2 JP4720127B2 (en) | 2011-07-13 |
Family
ID=36151228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004252197A Expired - Lifetime JP4720127B2 (en) | 2004-08-31 | 2004-08-31 | Method for producing sintered ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4720127B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7564682B2 (en) | 2020-10-23 | 2024-10-09 | 三和シヤッター工業株式会社 | Movable wind-resistant hook mounting structure and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5620129A (en) * | 1979-07-25 | 1981-02-25 | Nippon Steel Corp | Manufacture of sintered ore |
JPH04210432A (en) * | 1990-12-06 | 1992-07-31 | Nippon Steel Corp | Manufacture of semireduced sintered ore |
-
2004
- 2004-08-31 JP JP2004252197A patent/JP4720127B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5620129A (en) * | 1979-07-25 | 1981-02-25 | Nippon Steel Corp | Manufacture of sintered ore |
JPH04210432A (en) * | 1990-12-06 | 1992-07-31 | Nippon Steel Corp | Manufacture of semireduced sintered ore |
Also Published As
Publication number | Publication date |
---|---|
JP4720127B2 (en) | 2011-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101475125B1 (en) | Unfired carbon-containing agglomerate for blast furnaces and production method therefor | |
WO2009125814A1 (en) | Agglomerate, containing titanium oxide, for manufacturing granular metallic iron | |
JP2014214334A (en) | Method for manufacturing sintered ore | |
JP2013245377A (en) | Method for producing sintered ore | |
JP2006265569A (en) | Method for producing sintered ore and pseudo-grain for producing sintered ore | |
JP4720127B2 (en) | Method for producing sintered ore | |
JP2007327096A (en) | Method for producing sintered ore using brucite | |
JP3900721B2 (en) | Manufacturing method of high quality low SiO2 sintered ore | |
KR20140002218A (en) | Method for manufacturing pellet for blast firnace | |
JP4462008B2 (en) | Method for producing sintered ore and pseudo particles for producing sintered ore containing reduced iron | |
JP4241285B2 (en) | Method for producing semi-reduced sintered ore | |
JP6477167B2 (en) | Method for producing sintered ore | |
JP4972761B2 (en) | Method for producing sintered ore and pseudo particles for producing sintered ore | |
JP2008196027A (en) | Method for manufacturing sintered ore | |
JP4415690B2 (en) | Method for producing sintered ore | |
JP4997712B2 (en) | Blast furnace operation method | |
JP2003313614A (en) | Method for manufacturing sintered ore with little slag | |
JP4816119B2 (en) | Method for producing sintered ore | |
JP2008088533A (en) | Method for manufacturing sintered ore | |
JP4661077B2 (en) | Method for producing sintered ore | |
JP5995004B2 (en) | Sintering raw material manufacturing method | |
JP2007169707A (en) | Manufacturing method of dephosphorizing agent for steel making using sintering machine | |
JP5995005B2 (en) | Sintering raw material manufacturing method | |
JP3848453B2 (en) | Manufacturing method of metallic iron | |
KR101486869B1 (en) | Briquettes for manufacturing sintered ore, manufacturing method of it and method for manufacturing using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070820 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100629 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100708 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110321 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140415 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4720127 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |