JP4462008B2 - Method for producing sintered ore and pseudo particles for producing sintered ore containing reduced iron - Google Patents
Method for producing sintered ore and pseudo particles for producing sintered ore containing reduced iron Download PDFInfo
- Publication number
- JP4462008B2 JP4462008B2 JP2004316264A JP2004316264A JP4462008B2 JP 4462008 B2 JP4462008 B2 JP 4462008B2 JP 2004316264 A JP2004316264 A JP 2004316264A JP 2004316264 A JP2004316264 A JP 2004316264A JP 4462008 B2 JP4462008 B2 JP 4462008B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- content
- sio
- sintered ore
- ore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 176
- 238000004519 manufacturing process Methods 0.000 title claims description 40
- 239000002245 particle Substances 0.000 title claims description 16
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 90
- 229910052742 iron Inorganic materials 0.000 claims description 85
- 239000002994 raw material Substances 0.000 claims description 61
- 239000003575 carbonaceous material Substances 0.000 claims description 43
- 238000005245 sintering Methods 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 15
- 239000004484 Briquette Substances 0.000 claims description 12
- 239000012256 powdered iron Substances 0.000 claims description 9
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 126
- 239000000292 calcium oxide Substances 0.000 description 63
- 235000012255 calcium oxide Nutrition 0.000 description 63
- 238000002156 mixing Methods 0.000 description 21
- 239000002893 slag Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 238000005469 granulation Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 230000003179 granulation Effects 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 235000019738 Limestone Nutrition 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000006028 limestone Substances 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 230000004907 flux Effects 0.000 description 5
- 239000000155 melt Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 239000003610 charcoal Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000010450 olivine Substances 0.000 description 2
- 229910052609 olivine Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010405 reoxidation reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、焼結鉱の製造方法および還元鉄が存在する焼結鉱製造用擬似粒子に関し、特に高炉スラグ形成成分であるSiO2やCaOの含有量が少ないにもかかわらず、高い強度を有する焼結鉱の製造に関する。 The present invention relates to a method for producing sintered ore and pseudo particles for producing sintered ore in which reduced iron is present, and particularly has high strength even though the content of SiO 2 and CaO as blast furnace slag forming components is small. It relates to the production of sintered ore.
近年、高炉に装入する鉄系原料としては、良質の塊状鉄鉱石が不足していることもあり、焼結鉱への依存度が高まっている。その焼結鉱は、一般に、粉状鉄鉱石の他、返鉱、硫酸滓、砂鉄、スケール、高炉ダストおよび転炉ダスト等の鉄系原料に、造滓材としての石灰石、焼成のための熱源となる炭材等を混合してなる主として粉状の配合原料を焼結して製造されている。即ち、前記配合原料に適量の水を加えて混合し、造粒した後、焼結機パレット上に装入し、空気を下向きに流通させながら前記炭材を燃焼させることにより、該配合原料の少なくとも一部を溶融させてから冷却固化し、破砕することにより、製造している。つまり、焼結鉱は、粉状鉄鉱石等の鉄系原料がフラックスとして使われるCaOやSiO2等の造滓(スラグ)成分と反応し、少なくとも一部が溶融して塊状化した人工鉱石である。 In recent years, as iron-based raw materials charged in a blast furnace, there is a lack of high-quality lump iron ore, and the dependence on sintered ore is increasing. In general, the sintered ore is not only powdered iron ore, but also iron-based raw materials such as returned ore, sulfated iron, sand iron, scale, blast furnace dust and converter dust, limestone as a slagging material, heat source for firing It is manufactured by sintering mainly powdery blended raw materials obtained by mixing carbonaceous materials and the like. That is, an appropriate amount of water is added to the blended raw material, mixed, granulated, charged onto a sinter pallet, and the carbonaceous material is burned while circulating air downwards. At least a part is melted and then cooled, solidified, and crushed. In other words, sintered ore is an artificial ore in which iron-based raw materials such as powdered iron ore react with slag components such as CaO and SiO 2 used as a flux, and at least partly melts and becomes agglomerated. is there.
しかしながら、現在、高炉で使用されている焼結鉱は、塊状鉄鉱石と比較すると、SiO2、CaO含有量が多いので、高炉に装入する鉄系原料のうち、焼結鉱の割合が高くなるに従い、高炉スラグの発生量の増加し、その結果、高炉の燃料比および高炉スラグの処理費の増大を招く等の問題がある。しかも、最近では、省資源・省エネルギーの観点からも、高炉の燃料比およびスラグ比の低減に対する要望が高まっている。 However, since the sintered ore currently used in the blast furnace has a higher SiO 2 and CaO content than the massive iron ore, the ratio of sintered ore is high in the iron-based raw material charged in the blast furnace. As a result, the amount of blast furnace slag generated increases, and as a result, there are problems such as an increase in the fuel ratio of the blast furnace and the processing cost of the blast furnace slag. Moreover, recently, from the viewpoint of saving resources and energy, there is an increasing demand for reducing the fuel ratio and slag ratio of the blast furnace.
一方で、焼結鉱中のSiO2、CaO含有量を減少させることは、焼結鉱の強度低下を招くことになるため、現在はSiO2含有量の下限値を4.5mass%程度、CaO含有量の下限値を9.0mass%程度としている。例えば、CaOが6〜9mass%の低スラグ焼結鉱の製造方法(例えば、特許文献1参照。)、SiO2が平均5mass%以下で、CaO/SiO2が1.90から2.10の焼結鉱の製造方法(例えば、特許文献2参照。)、SiO2が4.2〜4.9mass%、MgOが1.5〜3.0mass%で、CaO/SiO2が1.8〜2.2の焼結鉱の製造方法(例えば、特許文献3参照。)、あるいはSiO2が4.6mass%以下、CaO/SiO2が1.0〜3.0、MgOが0.5mass%超の焼結鉱の製造方法(例えば、特許文献4参照。)が知られている。 On the other hand, reducing the SiO 2 and CaO contents in the sintered ore will cause a reduction in the strength of the sintered ore, so the lower limit of the SiO 2 content is currently about 4.5 mass%, CaO The lower limit of the content is about 9.0 mass%. For example, CaO manufacturing method of a low slag sinter the 6~9mass% (e.g., see Patent Document 1.), With SiO 2 average 5 mass% or less, CaO / SiO 2 is 2.10 from 1.90 baked A method for producing the ore (see, for example, Patent Document 2), SiO 2 is 4.2 to 4.9 mass%, MgO is 1.5 to 3.0 mass%, and CaO / SiO 2 is 1.8 to 2 . No. 2 sintered ore production method (for example, refer to Patent Document 3), or sintering with SiO 2 of 4.6 mass% or less, CaO / SiO 2 of 1.0 to 3.0, and MgO of over 0.5 mass%. A method for producing a ore (for example, see Patent Document 4) is known.
しかしながら、これらの従来技術で製造した焼結鉱ではいずれも、SiO2、CaO含有量の低下に伴い、落下強度(シャッター強度:SI)が85%程度に低下してしまうため、焼結鉱中のSiO2含有量は4.5〜5.5mass%程度、CaO含有量は下限値を9.0mass%程度に留めているのが現状である。なお、SiO2含有量を4.5〜5.5mass%以上、CaOを9.0mass%以上含有する現在の焼結鉱では、落下強度(SI)が89%程度である。また、含有させるSiO2、CaOなどのいわゆるフラックス成分の減少に対し、配合原料中の炭材含有量を増加させることにより、必要な強度を確保しようという考え方もあるが、この場合には、焼結鉱のミクロ組織が溶融時に生成したオリビン系融液に由来する結晶が多いものとなり、焼結鉱の被還元性(RI)が劣化するという問題があるのであまり望ましい方法ではない。
本発明者らは、かかる事情に鑑み、高炉スラグを形成する成分(SiO2、CaOなど)の含有量が従来より少ないSiO2:4.0〜5.0mass%、CaO:7〜9mass%の含有量でも、90%以上の落下強度(SI)を有する焼結鉱の製造方法として、特願2004−28881号を提案した。この技術は、粉鉄鉱石とその他の鉄源原料、CaOを含有する副原料および炭材とを混合し、水分を添加して造粒した後に焼結機へ供給し、前記炭材を燃焼させて溶融、冷却し、SiO2:4.0〜5.0mass%、CaO:7〜9mass%を含有する焼結鉱を製造するに際して、まず、SiO2含有量が3.6mass%以下の粉鉱石及び炭材を予め混合、造粒して造粒物を形成し、引き続き、該造粒物と残り原料とを再度混合、造粒してから焼結機に供給する焼結鉱の製造方法である。 In view of such circumstances, the present inventors have a content of components (SiO 2 , CaO, etc.) forming blast furnace slag, which is less than conventional SiO 2 : 4.0-5.0 mass%, CaO: 7-9 mass%. Japanese Patent Application No. 2004-28881 was proposed as a method for producing sintered ore having a drop strength (SI) of 90% or more even in the content. This technology mixes fine iron ore with other iron source materials, auxiliary materials containing CaO and carbonaceous materials, and after adding water and granulating the mixture, it is supplied to a sintering machine to burn the carbonaceous materials. is melt, cooled, SiO 2: 4.0~5.0mass%, CaO : in the production of sintered ore containing 7~9Mass%, firstly, SiO 2 content of 3.6Mass% less fine ore And a carbonaceous material mixed in advance and granulated to form a granulated product, and then the granulated product and the remaining raw material are mixed again, granulated, and then supplied to the sintering machine. is there.
しかしながら、前記焼結鉱の製造方法の製造においては、SiO2含有量が3.6mass%以下の粉鉱石及び炭材を用いて予め製造した造粒物が、引き続いて残り原料と混合、造粒する際に崩壊する場合があり、結局のところ、全原料を混合、造粒する従来技術と大差がなくなり、所定の焼結鉱を得ることができない場合があった。 However, in the production of the sintered ore production method, a granulated product produced in advance using fine ore and a carbonaceous material having a SiO 2 content of 3.6 mass% or less is subsequently mixed with the remaining raw material and granulated. In the end, there is a case where the material does not differ greatly from the conventional technique in which all raw materials are mixed and granulated, and a predetermined sintered ore may not be obtained.
したがって本発明の目的は、従来技術の抱えている上述した問題点を克服できる技術の確立、即ち、SiO2、CaOなどの高炉スラグを形成する成分の含有量が従来より少ないSiO2:4.0〜5.0mass%、CaO:7〜9mass%の含有量でも、90%以上の落下強度(SI)を有する焼結鉱をほぼ確実に製造できる製造方法を提供することにある。 Therefore, the object of the present invention is to establish a technique capable of overcoming the above-mentioned problems of the prior art, that is, the content of components forming blast furnace slag such as SiO 2 and CaO is less than that of conventional SiO 2 : 4. An object of the present invention is to provide a production method capable of almost certainly producing a sintered ore having a drop strength (SI) of 90% or more even when the content is 0 to 5.0 mass% and CaO: 7 to 9 mass%.
また本発明の他の目的は、高い落下強度を有すると同時に、被還元性が高く、かつ還元鉄が存在する焼結鉱製造用擬似粒子を提供することにある。 Another object of the present invention is to provide quasi-particles for producing sintered ore having high drop strength, high reducibility, and presence of reduced iron.
本発明者らは、上記目的の実現に向けた研究の中で、以下に述べる要旨構成に係る本発明に想到した。
(1)SiO2:4.0〜5.0mass%、CaO:7〜9mass%を含有する焼結鉱の製造方法であって、前記焼結鉱の配合原料のうちSiO2含有量が3.6mass%以下の粉鉄鉱石と炭材とを混合して成形体を、該成形体の炭材含有量が10mass%以上となるように成形し、前記成形体と前記配合原料の残部とを混合・造粒して焼結機に供給し焼結することを特徴とする焼結鉱の製造方法。
(2)前記SiO2含有量が3.6mass%以下である粉鉄鉱石からなる成形体は、CaO含有量を4mass%以下としたことを特徴とする(1)記載の焼結鉱の製造方法。
(3)前記成形体は、ブリケットマシンで加圧成形したものであることを特徴とする(1)または(2)記載の焼結鉱の製造方法。
(4)焼結鉱の配合原料のうち、SiO2含有量が3.6mass%以下である粉鉄鉱石と炭材とCaOを含有する副原料とで成形体を形成し、該成形体の表面に配合原料の残部の一部が外装された擬似粒子であって、前記成形体の炭材含有量が10mass%以上であり、前記成形体のCaO含有量が4mass%以下であることを特徴とする焼結鉱製造用擬似粒子。
The inventors of the present invention have come up with the present invention according to the gist configuration described below during research aimed at realizing the above object.
(1) SiO 2: 4.0~5.0mass% , CaO: containing 7~9Mass% A method of manufacturing a sintered ore, SiO 2 content of the mixed material of the sintered ore is 3. 6% by mass or less of powdered iron ore and a carbon material are mixed to form a molded body so that the carbon material content of the molded body is 10% by mass or more, and the molded body and the remainder of the blended raw material are mixed. A method for producing a sintered ore characterized by granulating, supplying to a sintering machine, and sintering.
(2) the molded body in which the SiO 2 content is from fine iron ore is less 3.6Mass% is characterized in that the CaO content is less 4 mass% (1) method for producing sintered ore according .
(3) The method for producing a sintered ore according to (1) or (2), wherein the compact is pressure-molded with a briquette machine.
(4) of the mixed material of sintered ore, SiO 2 content to form a molded body in the auxiliary material containing fine iron ore and carbonaceous material and CaO is not more than 3.6mass%, the surface of the molded article A pseudo-particle in which a part of the remainder of the blended raw material is sheathed, wherein the carbonaceous material content of the molded body is 10 mass% or more, and the CaO content of the molded body is 4 mass% or less. Pseudoparticles for sinter production.
本発明によれば、SiO2含有量が3.6mass%以下の粉鉄鉱石を用い、SiO2、CaOなどの高炉スラグを形成する成分の含有量が従来より少ないSiO2:4.0〜5.0mass%、CaO:7〜9mass%の含有量とする焼結鉱であっても、90%以上の落下強度(SI)を有する高強度焼結鉱を得ることができる。 According to the present invention, SiO 2 content using 3.6Mass% less fine iron ore, the content of the component forming the blast furnace slag such as SiO 2, CaO is less than the conventional SiO 2: 4.0-5 Even if it is a sintered ore with a content of 0.0 mass% and CaO: 7 to 9 mass%, a high-strength ore having a drop strength (SI) of 90% or more can be obtained.
また、本発明の焼結鉱製造用擬似粒子を用いれば、金属鉄、ウスタイトおよびマグネタイトなどの金属鉄系融液を生成させ、最終的には、高強度、高被還元性で、一部金属鉄が残留した状態の焼結鉱を得ることができる。すなわち、本発明によれば、従来よりもSiO2量の低いSiO2:4.0〜5.0mass%、CaO:7〜9mass%とする焼結鉱であっても、被還元性が高くかつ90%以上の落下強度(SI)を示す高強度の金属鉄含有焼結鉱を容易に製造することができる。 In addition, by using the pseudo-particles for producing sinter according to the present invention, metallic iron-based melts such as metallic iron, wustite and magnetite are generated, and finally, high strength, high reducibility, and some metals A sintered ore with iron remaining can be obtained. That is, according to the present invention, a low amount of SiO 2 than the conventional SiO 2: 4.0~5.0mass%, CaO: even sintered ore to 7~9Mass%, and high reducibility A high-strength metallic iron-containing sintered ore showing a drop strength (SI) of 90% or more can be easily produced.
本発明においてはSiO2:4.0〜5.0mass%、CaO:7〜9mass%を含有する焼結鉱を製造するに際し、SiO2含有量が3.6mass%以下の粉鉄鉱石は、予め成形して成形体とした後に焼結鉱原料として使用する。この理由は、SiO2含有量が3.6mass%以下の粉鉄鉱石を単に造粒するだけでは他の原料との混合造粒操作で崩壊する場合があるので、混合・造粒時崩壊せぬような強度を付与するためである。すなわち、混合・造粒として代表的なドラムミキサーによる混合・造粒操作でSiO2含有量が3.6mass%以下の粉鉄鉱石を造粒しただけでは、SiO2含有量が3.6mass%超えである粉鉄鉱石等の他の配合原料との混合、造粒時に予め造粒したSiO2含有量が3.6mass%以下の粉鉄鉱石からなる造粒物である擬似粒子が崩壊して、他の配合原料と混合、造粒されてしまうという問題を回避するためである。成形体の炭材含有量を10mass%以上として焼結機へ供給し、焼結することにより、安定して金属鉄を含有する還元鉄が存在する焼結鉱を得ることができる。 In the present invention SiO 2: 4.0~5.0mass%, CaO: upon producing sintered ore containing 7~9mass%, SiO 2 content of 3.6Mass% less fine iron ore is pre After forming into a compact, it is used as a raw material for sintered ore. The reason for this is that simply granulating fine iron ore with a SiO 2 content of 3.6 mass% or less may cause a collapse in a mixed granulation operation with other raw materials, so it does not collapse during mixing and granulation. This is to give such strength. That is, only the SiO 2 content was granulated 3.6Mass% less fine iron ore in the mixing-granulation operation by a typical drum mixer as mixing and granulation, SiO 2 content of more than 3.6Mass% Mixing with other compounding raw materials such as fine iron ore, the pseudo particles that are granulated products of fine iron ore with a SiO 2 content of 3.6 mass% or less pre-granulated during granulation, This is to avoid the problem of being mixed and granulated with other blended raw materials. By supplying the sintered body with a carbonaceous material content of 10% by mass or more to a sintering machine and sintering, a sintered ore containing reduced iron containing metallic iron can be obtained stably.
しかし、SiO2含有量が3.6mass%以下の粉鉄鉱石は、多量入手は困難な点もあり、全量SiO2含有量が3.6mass%以下の粉鉄鉱石を焼結原料として使用することは現実的ではない。したがって、SiO2含有量が3.6mass%以下の粉鉄鉱石と、その他のSiO2含有量が高い粉鉄鉱石との併用においてSiO2、CaOなどの高炉スラグを形成する成分の含有量が従来より少ない焼結鉱であるSiO2:4.0〜5.0mass%、CaO:7〜9mass%を含有する焼結鉱への原料配合調整を余儀なくされる。その場合SiO2含有量が3.6mass%以下の粉鉄鉱石側は、本発明においては、残りの焼結用原料との混合、造粒過程で崩壊を生じないように強度を高めるため予め成形した成形体として使用する。そしてSiO2含有量が3.6mass%以下の粉鉄鉱石の成形体と残りの焼結用原料とを混合、造粒して焼結鉱製造用擬似粒子を製造する。 However, it is difficult to obtain a large amount of powdered iron ore with a SiO 2 content of 3.6 mass% or less. Use a powdered iron ore with a total amount of SiO 2 content of 3.6 mass% or less as a sintering raw material. Is not realistic. Therefore, the content of components that form blast furnace slag, such as SiO 2 and CaO, in the combined use of fine iron ore with a SiO 2 content of 3.6 mass% or less and other fine iron ores with a high SiO 2 content is conventional. SiO 2 is less sinter: 4.0~5.0mass%, CaO: is forced to feed formulation adjustments to sinter containing 7~9mass%. In that case, the iron ore side with a SiO 2 content of 3.6 mass% or less is pre-molded in the present invention in order to increase the strength so as not to cause collapse in the mixing and granulation process with the remaining sintering raw materials. Used as a molded body. Then, the compacted iron ore compact having a SiO 2 content of 3.6 mass% or less and the remaining sintering raw material are mixed and granulated to produce pseudo particles for manufacturing the sintered ore.
SiO2含有量が3.6mass%以下の粉鉄鉱石は、成形体全体として炭材含有量が10mass%以上となるように炭材を加えて成形体を形成する。またCaO含有量は、成形体全体として4mass%以下とすることが望ましい。 Powdered iron ore having a SiO 2 content of 3.6 mass% or less forms a molded body by adding a carbonaceous material so that the carbonaceous material content of the molded body as a whole is 10 mass% or higher. Moreover, as for the CaO content, it is desirable to set it as 4 mass% or less as the whole molded object.
したがって、本発明の一実施形態として、SiO2含有量が3.6mass%以下の粉鉄鉱石を含む配合原料を、炭材含有量が10mass%以上で、CaO含有量を4mass%以下として予め成形した成形体の表面にSiO2含有量が3.6mass%を超える残りの配合原料の一部が外装されている焼結鉱の製造用擬似粒子を使用して焼結を行い焼結鉱を製造することができる。 Therefore, as an embodiment of the present invention, pre-molded blend material containing fine iron ore following 3.6mass% SiO 2 content in carbonaceous material content is 10 mass% or more, the CaO content of the following 4 mass% producing a sintered ore was sintered using the remaining manufacturing pseudo particles of sintered ore in which a part of the mixed material is exterior SiO 2 content in the surface of the molded product exceeds 3.6Mass% can do.
なお、予め成形する成形手段としては、加圧成形手段が容易で大量生産にむいており、具体的にはブリケットマシンによる成形体の製造が好ましい。 In addition, as a shaping | molding means to shape | mold previously, a pressure-molding means is easy and is suitable for mass production, and specifically, manufacture of the molded object by a briquette machine is preferable.
さらに本発明においては、焼結鉱の高炉スラグを形成する成分(SiO2、CaOなど)の含有量を従来より少なくしても強度を有するという他に、金属鉄含有焼結鉱が得られるという効果が重要である。一般に、高炉の燃料比を低減する方法の1つとして、高炉装入原料として金属鉄を使用するという考え方がある。そこで、その金属鉄を焼結鉱中に含有させておけば、上記と同様の作用効果、即ち高炉燃料比の低減に有効に作用すると考えられる。ただし、通常の焼結鉱は、金属鉄をほとんど含有していないのが実情である。その理由は、配合原料中の鉄源が、炭材等の作用による還元雰囲気によって、焼結中に一時的に還元されて金属鉄を生成するものの、焼結反応終了後の高温酸化性雰囲気において、再酸化されてしまうからである。 Furthermore, in the present invention, in addition to having strength even if the content of the components (SiO 2 , CaO, etc.) forming the blast furnace slag of the sintered ore is less than conventional, it is possible to obtain a sintered iron-containing sintered ore. The effect is important. In general, as one method for reducing the fuel ratio of a blast furnace, there is a concept of using metallic iron as a raw material for charging a blast furnace. Therefore, if the metallic iron is contained in the sintered ore, it is considered that the same function and effect as described above, that is, effective in reducing the blast furnace fuel ratio. However, the actual condition is that ordinary sintered ore contains almost no metallic iron. The reason is that the iron source in the blended raw material is temporarily reduced during sintering by the reducing atmosphere due to the action of the carbonaceous material, etc. to produce metallic iron, but in a high-temperature oxidizing atmosphere after the sintering reaction is completed. This is because it will be reoxidized.
しかし、本発明の焼結鉱の製造方法を用いれば、金属鉄(還元鉄)が存在する焼結鉱を製造することが可能となる。以下、本発明を開発するに至った動機とともに、金属鉄含有焼結鉱について説明し、本発明の最良の実施形態について説明する。 However, if the manufacturing method of the sintered ore of this invention is used, it will become possible to manufacture the sintered ore in which metallic iron (reduced iron) exists. Hereinafter, the metal iron-containing sintered ore will be described together with the motives leading to the development of the present invention, and the best embodiment of the present invention will be described.
焼結鉱は、粉鉄鉱石を、フラックス(つまり、CaOやSiO2等のスラグ成分)と反応―溶融させた後、冷却して塊成化したものである。そのため、焼結鉱の強度には、配合原料の粒度や配合比率(塩基度)等、様々な因子が影響を及ぼしていることは周知である。特にSiO2含有量が4.0〜5.0mass%で、CaO含有量が7〜10mass%程度の低スラグ焼結鉱では、CaOやSiO2等のフラックス成分の減少に伴い、融液量が不足して、製品焼結鉱の落下強度(SI)が低下することが知られている。 The sintered ore is obtained by reacting and melting powder iron ore with a flux (that is, slag components such as CaO and SiO 2 ) and then agglomerating by cooling. For this reason, it is well known that various factors such as the particle size of the blended raw material and the blending ratio (basicity) affect the strength of the sintered ore. In particular SiO 2 content is 4.0~5.0Mass%, the low slag sinter of about 7~10Mass% CaO content, with a decrease of the flux components such as CaO and SiO 2, is melt volume It is known that the drop strength (SI) of product sinter decreases due to shortage.
そこで、発明者らは、添加フラックス成分に依存しない融液生成を種々試みた。その結果、焼結機装入原料として、配合原料の一部に、SiO2含有量が3.6mass%以下である粉鉄鉱石を用い、該粉鉄鉱石と炭材とを、予め混合したのち、加庄成形して成形体としたものと、残りの前記配合原料を混合・造粒したものを用い、これを焼結装入原料として焼結鉱を製造すると、被還元性が比較的高く、高強度の金属鉄含有焼結体が得られることを見出し、本発明を完成させた。 Therefore, the inventors have made various attempts to generate a melt that does not depend on the added flux component. As a result, as a sintering machine The feedstock, a portion of the mixed material, after the SiO 2 content using a fine iron ore is less 3.6Mass%, a powder of iron ore and carbonaceous material, it was pre-mixed When a sintered ore is produced using a mixture formed by molding and formed into a molded body and a mixture and granulated of the remaining blended raw materials, and using this as a raw material for sintering, the reducibility is relatively high. The present inventors have found that a high-strength metallic iron-containing sintered body can be obtained and completed the present invention.
ところで、現在、製造されている焼結鉱においても、炭材燃焼時の還元雰囲気下でFe2O3とSiO2に由来するオリビン系融液が多く生成する。この融液に由来するミクロ組織を有する焼結鉱は、被還元性が低くなることが知られている。 By the way, also in the sintered ore currently manufactured, many olivine-type melts derived from Fe 2 O 3 and SiO 2 are generated in a reducing atmosphere at the time of combustion of carbonaceous materials. It is known that sintered ore having a microstructure derived from this melt has low reducibility.
一方で、本発明に示すように、焼結鉱の製造に当たり、SiO2含有量が3.6mass%以下である鉱石を用い、かつ炭材を10mass%以上含有する焼結原料を用いると、オリビン系融液の生成量が少なくなり、ウスタイト系融液由来のミクロ組織が多くなって、高強度と高被還元性を両立する焼結体が得られ金属鉄の残留が観察されたのである。そして、SiO2含有量が3.6mass%以下である鉱石を用い、かつ炭材を添加して加圧成形した成形体を用いると、成形体が緻密であることから炭材のガス化に伴ない成形体の内圧が上昇して還元雰囲気が強化され、酸化性ガスの侵入を抑制するように作用して再酸化抑止効果を生じる。 On the other hand, as shown in the present invention, in the production of sintered ore, when an ore having a SiO 2 content of 3.6 mass% or less is used and a sintered raw material containing 10 mass% or more of a carbonaceous material is used, olivine The production amount of the system melt decreased, the microstructure derived from the wustite melt increased, and a sintered body having both high strength and high reducibility was obtained, and the residual metal iron was observed. When using an ore having a SiO 2 content of 3.6 mass% or less and using a compact formed by adding carbonaceous material and press-molding, the compact is dense, which is associated with the gasification of the carbonaceous material. The internal pressure of the molded body that is not increased increases and the reducing atmosphere is strengthened, and acts to suppress the invasion of the oxidizing gas, thereby producing a reoxidation inhibiting effect.
その結果として、焼結鉱中(成形体側)には金属鉄が多く安定して残留し、高強度と高被還元性の両特性を有し、かつ金属鉄含有の焼結鉱が得られることが分かったのである。 As a result, a large amount of metallic iron remains stably in the sintered ore (on the compact side), and both high strength and high reducibility characteristics are obtained, and a sintered iron containing metallic iron is obtained. I understood.
以上のように金属鉄が残留することも、本発明においてSiO2含有量が3.6mass%以下の粉鉄鉱石を、加圧成形した成形体として使用する理由の一つである。 The fact that metallic iron remains as described above is one of the reasons why powdered iron ore having a SiO 2 content of 3.6 mass% or less is used as a compact formed by pressure molding in the present invention.
次に、本発明者らは、上述した所定の効果を有する焼結鉱を得るために、前記成形体中への炭材添加量の好適範囲について検討した。その結果、成形体中の炭材添加量が10mass%未満では、金属鉄が得られない場合があったので、10mass%を下限とした。10mass%以上であれば、金属鉄の存在と、前記ウスタイト系融液由来のミクロ組織増加によって高強度と高被還元性の両特性が成立する。なお、この炭材添加量の上限は特に設ける必要はないが、製造上の要請や経済性等により決定すればよく、例えば25mass%程度とする。より好ましくは10〜20mass%である。 Next, in order to obtain the sintered ore which has the predetermined effect mentioned above, the present inventors examined the suitable range of the carbonaceous material addition amount in the said molded object. As a result, when the amount of carbonaceous material added in the molded body is less than 10 mass%, metallic iron may not be obtained, so 10 mass% was set as the lower limit. If it is 10 mass% or more, both the properties of high strength and high reducibility are established by the presence of metallic iron and the increase in the microstructure derived from the wustite melt. The upper limit of the amount of added carbonaceous material is not particularly required, but may be determined according to demands on manufacturing, economic efficiency, and the like, for example, about 25 mass%. More preferably, it is 10-20 mass%.
また、本発明では、前記SiO2含有量が3.6mass%以下である粉鉄鉱石を用いる際、炭材に加えて、CaO含有副原料(例えば石灰石、焼石灰)をも添加し、予めCaOの添加量が4mass%以下と比較的少ない含有量に留めることが有効である。その理由は、この成形体にCaOが4mass%以下の含有量であれば、含まれていても、焼結鉱の強度や被還元性をさほど低下させないからである。加圧して成形する成形体としての使用においては、CaO含有副原料の添加を行わずとも実施可能である。 In the present invention, when using the fine iron ore SiO 2 content is less 3.6Mass%, in addition to the carbonaceous material, CaO-containing auxiliary raw material (e.g. limestone, burnt lime) also was added, in advance CaO It is effective to keep the content of the additive at a relatively small content of 4 mass% or less. The reason is that even if CaO is contained in the molded body in an amount of 4 mass% or less, the strength and reducibility of the sintered ore are not lowered so much. Use as a molded body to be molded by pressurization can be carried out without adding a CaO-containing auxiliary material.
次に図1を用いて、本発明にかかる焼結鉱の製造方法を説明する。 Next, the manufacturing method of the sintered ore concerning this invention is demonstrated using FIG.
図1は本発明に係る焼結鉱の製造工程例を説明するフロー図であり、(A)まず、SiO2含有量4.0〜5.0mass%の焼結鉱を製造するに当たり、原料配合を決定する。すなわち、SiO2含有量3.6mass%以下の粉鉄鉱石使用量に基づき、その他の粉鉄鉱石使用量を求め全焼結配合原料としてSiO2含有量4.0〜5.0mass%となる焼結原料配合を定める。これは、SiO2含有量3.6mass%以下の粉鉄鉱石以外のその他の配合から全焼結配合原料としてSiO2含有量4.0〜5.0mass%となるようにSiO2含有量3.6mass%以下の粉鉄鉱石使用量を求めてよいことは当然である。 FIG. 1 is a flow diagram for explaining an example of a manufacturing process of sintered ore according to the present invention. (A) First, in manufacturing a sintered ore having a SiO 2 content of 4.0 to 5.0 mass%, To decide. That is, based on the SiO 2 content 3.6Mass% less fine iron ore usage, the SiO 2 content 4.0~5.0Mass% as gutted sintering mixed material sought other fine iron ore usage sintering Define raw material composition. This, SiO 2 content such that the content of SiO 2 4.0~5.0Mass% as gutted sintering mixed material of SiO 2 content 3.6Mass% less other compounding other than fine iron ore 3.6Mass It is natural that the amount of fine iron ore used may be determined in%.
(B、C)引き続き、SiO2含有量3.6mass%以下の粉鉄鉱石に対するCaO、および炭材量を決定し、混合する。 (B, C) subsequently, CaO, and carbonaceous material amount determined with respect to SiO 2 content 3.6Mass% less fine iron ore and mixed.
(D)また、残りの焼結原料であるSiO2含有量3.6mass%以下の粉鉄鉱石以外の他の焼結原料についても同様にCaO、および炭材量を決定する。 (D) Moreover, CaO and the amount of carbonaceous materials are similarly determined about other sintering raw materials other than the fine iron ore whose content of SiO 2 is 3.6 mass% or less, which is the remaining sintering raw material.
(E)SiO2含有量3.6mass%以下の粉鉄鉱石に対するCaO、および炭材量を決定し、混合した後は、水を加え加圧成形して成形体とする。なお、この成形体は残りの他の焼結原料との混合・造粒時に崩壊しない程度の強度を有しておれば良く、バインダーとして水、あるいは必要に応じベントナイト、糖蜜などを使用すればよい。加圧成形機としては、ブリケットマシンを用いることができる。 (E) After determining and mixing CaO with respect to fine iron ore having a SiO 2 content of 3.6 mass% or less and mixing them, water is added to form a compact by pressing. The molded body only needs to have a strength that does not collapse when mixed and granulated with the remaining other sintering raw materials, and water, bentonite, molasses, or the like may be used as a binder. . A briquetting machine can be used as the pressure molding machine.
(F)また、前記成形体と、残りの焼結原料の混合・造粒には、代表的にはドラムミキサーを用いることができる。SiO2含有量3.6mass%以下の粉鉄鉱石以外の粉鉄鉱、CaOおよび炭材、必要に応じSiO2原料を加え、ドラムミキサーの入り側から成形体とともに装入して混合そして転動による造粒操作を加えて成形体の表面に粉状原料を外装化して擬似粒子化する。 (F) A drum mixer can be typically used for mixing and granulating the molded body and the remaining sintered raw materials. SiO 2 content 3.6Mass% less fine iron ore than the fine iron, CaO and carbonaceous material, the SiO 2 raw material added as required, by mixing and rolling by charging with moldings from inlet side of the drum mixer A granulation operation is applied to form a powdery raw material on the surface of the molded body to form pseudo particles.
(G)、焼結機パレット上に装入して、焼結する。 (G), charged on a sintering machine pallet and sintered.
図2は、本発明に係る焼結鉱製造用の擬似粒子の説明図であり、核粒子としてSiO2含有量が3.6mass%以下である粉鉄鉱石の成形体(ブリケット)1を有し、その周囲にSiO2含有量が3.6mass%を超える粉鉄鉱石の付着部(外装)2からなるものである。 FIG. 2 is an explanatory view of pseudo particles for producing sintered ore according to the present invention, and has a compacted iron ore compact (briquette) 1 having a SiO 2 content of 3.6 mass% or less as core particles. In addition, the adhering portion (exterior) 2 of fine iron ore having a SiO 2 content exceeding 3.6 mass% is formed around the periphery.
すなわち、成形体の表面に粉状原料が外装化され擬似粒子化が図られた焼結鉱の製造用擬似粒子は、SiO2含有量が3.6mass%以下である粉鉄鉱石と炭材含有量が10mass%以上、CaO含有量が4mass%以下で形成される前記成形体の表面に残りの配合原料の一部が外装されており、焼結後は、焼結鉱中(成形体側)には金属鉄が多く安定して残留し、高強度と高被還元性の両特性を有し、かつ金属鉄を含有する焼結鉱を得ることができる。 That is, the pseudo-particles for the production of sintered ore, in which the powdery raw material is packaged on the surface of the compact and made pseudo-particles, contain iron ore and carbonaceous material having a SiO 2 content of 3.6 mass% or less. A part of the remaining blended raw material is sheathed on the surface of the molded body formed with an amount of 10 mass% or more and a CaO content of 4 mass% or less, and after sintering, in the sintered ore (molded body side) A large amount of metallic iron remains stably, and has both high strength and high reducibility characteristics, and a sintered ore containing metallic iron can be obtained.
本発明にかかる焼結鉱の具体的な製造方法を実施例に基づいて説明するとともに、本発明の要件から外れる例を比較例とし、本発明の効果を確認した。なお、これらの焼結鉱を製造するに際しては、表1に示す組成を有する9銘柄の粉鉄鉱石を使用し、表1に示す鉱石配合割合で配合した。SiO2含有量3.6mass%以下の鉱石は、表1から明らかなように鉱石A、B、D、Gである。また、副原料の内訳と、鉱石A〜Iの鉄鉱石原料と副原料との配合割合を表2に示す。 A specific method for producing a sintered ore according to the present invention will be described based on examples, and an example deviating from the requirements of the present invention will be used as a comparative example to confirm the effect of the present invention. In addition, when manufacturing these sintered ores, nine grades of powdered iron ore having the composition shown in Table 1 were used and blended in the ore blending ratio shown in Table 1. As shown in Table 1, ores having an SiO 2 content of 3.6 mass% or less are ores A, B, D, and G. In addition, Table 2 shows a breakdown of the auxiliary raw materials and a blending ratio of the iron ore raw materials and auxiliary raw materials of ores A to I.
(本発明例1)
この実施例において、配合原料を調整するに当っては、焼結鉱中のSiO2含有量が4.0mass%となるように珪石を、焼結鉱中のCaO含有量が7.0mass%となるように石灰石を配合した。また、製品とならない5mm未満の焼結鉱は原料中に返鉱として戻されるが、その返鉱を新原料に対し20mass%となるように配合した。ここで新原料とは鉄鉱石原料及び副原料の和のことである。
(Invention Example 1)
In this example, in adjusting the blending raw material, silica stone was adjusted so that the SiO 2 content in the sintered ore was 4.0 mass%, and the CaO content in the sintered ore was 7.0 mass%. Limestone was blended so that Moreover, although the sintered ore of less than 5 mm which does not become a product is returned as a return ore in the raw material, the return ore was blended so as to be 20 mass% with respect to the new raw material. Here, the new raw material is the sum of the iron ore raw material and the auxiliary raw material.
そして、焼結鉱の製造に当っては、
(a)まず、鉱石A、B、D、Gに対し、炭材(粉コークス)の含有量が10mass%となるように添加・混合した後、水分を添加しブリケットマシンにて加圧成形して成形体を得た。I
And in the production of sintered ore,
(A) First, after adding and mixing the ores A, B, D, and G so that the content of the carbonaceous material (powder coke) is 10 mass%, water is added and pressure-molded with a briquette machine. Thus, a molded body was obtained. I
ブリケットマシンにて加圧成形して得られた成形体は、アーモンド状の形状であり、10ccの体積を有する粒径に成形した。従って、表1の鉱石銘柄のうち、上記鉱石A、B、D、G以外のものは加圧成形されない、残りの配合用原料である。ここで配合原料とは新原料と返鉱の和のことである。
(b)次に、上述した残りの配合原料(C、E、F、H、I、副原料、炭材、返鉱、これらについての量は配合計算で予め定めることができる)を(a)で得られた成形体とともにドラムミキサーに投入し、水分を添加しながら混合、造粒して造粒物を得た。前記(a)で得られた成形体は鉄鉱石原料中63mass%であり残りの鉄鉱石原料は、37mass%であった。
The molded body obtained by pressure molding with a briquette machine had an almond-like shape and was molded into a particle size having a volume of 10 cc. Therefore, among the ore brands in Table 1, those other than the ores A, B, D, and G are the remaining raw materials for blending that are not pressure-molded. Here, the blended raw material is the sum of new raw material and return ore.
(B) Next, the remaining blended raw materials described above (C, E, F, H, I, auxiliary raw materials, carbonaceous materials, return minerals, the amounts of these can be determined in advance by blending calculation) (a) The molded product obtained in the above was put into a drum mixer, mixed and granulated while adding water to obtain a granulated product. The compact obtained in (a) was 63 mass% in the iron ore raw material, and the remaining iron ore raw material was 37 mass%.
なお、配合した前記混合物中の全炭材量は、新原料に対し7.0mass%(全配合原料に対し、5.6mass%)とした。これらの製造条件を整理して表3に示す。 The total amount of carbon in the blended mixture was 7.0 mass% with respect to the new raw material (5.6 mass% with respect to the total blended raw material). Table 3 summarizes these manufacturing conditions.
次に、上記のようにして製造された造粒物を、焼結機のパレット上に装入し、通常操業に従う空気吸引下で焼結した。得られた焼結鉱の品質を表4に示す。焼結鉱の品質の評価は、通常の化学分析により金属鉄含有量を求め、日本工業規格JIS M8711規定された方法により落下強度(シャッターインデックス(SI))を求め、また日本工業規格JIS M8713に規定された方法で被還元性指数(RI)を求めて行った。得られた焼結鉱は、SiO2含有量が4.0mass%、CaO含有量が7.0mass%であり、金属鉄を安定して8.2mass%含有し、SIが92、RIが65と高強度で被還元性の良好な焼結鉱が得られた。 Next, the granulated material produced as described above was placed on a pallet of a sintering machine and sintered under air suction according to normal operation. Table 4 shows the quality of the obtained sintered ore. Evaluation of the quality of sintered ore is to obtain the content of metallic iron by ordinary chemical analysis, to obtain the drop strength (shutter index (SI)) by the method specified in Japanese Industrial Standard JIS M8711, and to the Japanese Industrial Standard JIS M8713 The reducibility index (RI) was determined by a prescribed method. Resulting sinter, SiO 2 content of 4.0 mass%, a 7.0 mass% is CaO content, the metallic iron stably contain 8.2mass%, SI is 92, RI is a 65 A sintered ore with high strength and good reducibility was obtained.
(本発明例2)
鉱石銘柄A、B、D、Gの粉鉄鉱石、炭材およびCaOを含有する副原料を混合して、成形体を得るとき、この成形体中のCaO添加量が4mass%となるように石灰石を添加すると共に、炭材含有量が10mass%となるようにを配合し、これらを混合した後、水分を添加しブリケットマシンにて加圧成形して成形体を得たこと以外は本発明例1と同様の方法で実施した。結果を表3、表4に併せて示す。
(Invention Example 2)
Limestone so that the amount of CaO added to the compact is 4 mass% when the compact is obtained by mixing the ore brands A, B, D, and G of fine iron ore, carbonaceous material and CaO. Example of the present invention except that the carbonaceous material content is 10 mass%, and these are mixed, then added with water and pressure-molded with a briquette machine to obtain a molded body. 1 was carried out in the same manner. The results are also shown in Tables 3 and 4.
得られた焼結鉱は、SiO2含有量が4.0mass%、CaO含有量が7.0mass%であり、金属鉄を6.6mass%含有し、SIが93、RIが66と高強度で被還元性が良好な焼結鉱が得られた。 The resulting sinter, SiO 2 content of 4.0 mass%, a 7.0 mass% is CaO content, the metallic iron contained 6.6mass%, SI is a 93, RI 66 with high strength A sintered ore with good reducibility was obtained.
(本発明例3)
鉱石A、B、D、Gに対し炭材を12mass%となるように配合し、さらにこれらを混合後、水分を添加しブリケットマシンにて加圧成形して成形体を得た。配合した全炭材量は、新原料に対し8.0mass%としたこと以外は本発明例1と同様の方法で実施した。結果を表3、表4に併せて示す。
(Invention Example 3)
Carbonaceous materials were blended to ores A, B, D, and G so as to have a mass of 12 mass%, and after mixing these, moisture was added and pressure-molded with a briquette machine to obtain a compact. The total amount of charcoal blended was the same as that of Example 1 of the present invention except that the mass was 8.0 mass% with respect to the new raw material. The results are also shown in Tables 3 and 4.
得られた焼結鉱は、SiO2含有量が4.0mass%、CaO含有量が7.0mass%であり、金属鉄を11.2mass%含有し、SIが93、RIが68と高強度で被還元性が良好な焼結鉱が得られた。 The obtained sintered ore has a SiO 2 content of 4.0 mass%, a CaO content of 7.0 mass%, a metal iron content of 11.2 mass%, an SI of 93, and an RI of 68. A sintered ore with good reducibility was obtained.
(本発明例4)
成品焼結鉱のSiO2含有量が5.0mass%となるように珪石を配合し、また、焼結鉱のCaO含有量が10・0mass%となるように石灰石を配合したこと以外は本発明例1と同様の方法で実施した。結果を表3、表4に併せて示す。
(Invention Example 4)
SiO 2 content of finished product sintered ore is blended with silica so that 5.0 mass%, also, the present invention except that the CaO content of the sintered ore is blended with limestone so that 10 · 0mass% This was carried out in the same manner as in Example 1. The results are also shown in Tables 3 and 4.
得られた焼結鉱は、SiO2含有量が5.0mass%であり、CaO含有量が10.0mass%であり、金属鉄を7・5mass%含有し、SIが94、RIが64と高強度で被還元性が良好な焼結鉱が得られた。 The resulting sinter, a SiO 2 content of 5.0 mass%, a 10.0 mass% is CaO content, the metallic iron 7-containing 5 mass%, SI is 94, RI 64 and the high A sintered ore with high strength and good reducibility was obtained.
(比較例1)
焼結鉱のSiO2含有量が4.0mass%となるように珪石を、成品焼結鉱のCaO含有量が7.0mass%となるように石灰石を配合した。また、返鉱は、新原料に対し20mass%となるように配合した。
(Comparative Example 1)
Silica stone as SiO 2 content of sintered ore is 4.0 mass%, CaO content of finished product sintered ore is blended with limestone so that 7.0 mass%. Further, the return ore was blended so as to be 20 mass% with respect to the new raw material.
すべての配合原料を、ドラムミキサーに投入し、水分を添加しながら混合・造粒した。配合した全炭材量は、新原料に対し7.0mass%とした。上記配合物を焼結機に装入し、焼結後に得られた焼結鉱の品質を本発明例と同様に測定した。ここで得られた焼結鉱はSiO2含有量が4.0mass%であり、CaO含有量が7.0mass%であったが、金属鉄はほとんど含有していないため、SIが77、RIが69と落下強度の低い焼結鉱となった。 All the ingredients were put into a drum mixer and mixed and granulated while adding water. The total amount of charcoal blended was 7.0 mass% with respect to the new raw material. The above blend was charged into a sintering machine, and the quality of the sintered ore obtained after sintering was measured in the same manner as in the present invention example. The sintered ore obtained here had a SiO 2 content of 4.0 mass% and a CaO content of 7.0 mass%, but contained almost no metallic iron, so SI was 77, and RI was It became 69 or a sintered ore with low drop strength.
(比較例2)
本発明例1の被成形原料A、B、D、Gにかえて、鉱石銘柄C、E、F、H、Iの粉鉄鉱石に対し炭材として粉コークスを10mass%となるように配合し、これらを混合した後、水分を添加してブリケットマシンにて加圧成形し、残りの配合原料を混合・造粒した以外は本発明例1と同様の方法で実施した。得られた焼結鉱は、SiO2含有量が4.0mass%であり、CaO含有量が7.0mass%であり、金属鉄はほとんど含有していないため、SIが86、RIが50と強度が低く、被還元性も悪い焼結鉱となった。
(Comparative Example 2)
In place of the raw materials A, B, D, and G of Example 1 of the present invention, powdered coke as a carbonaceous material is blended so as to be 10 mass% with respect to fine iron ore of ore brands C, E, F, H, and I. These were mixed and then subjected to the same method as Example 1 except that water was added and pressure-molded with a briquette machine, and the remaining blended raw materials were mixed and granulated. The obtained sintered ore has a SiO 2 content of 4.0 mass%, a CaO content of 7.0 mass%, and contains almost no metallic iron. Therefore, the strength of SI is 86 and RI is 50. Is a sintered ore with low reducibility.
(比較例3)
予め鉱石銘柄A、B、D、Gの粉鉄鉱石、炭材およびCaOを含有する副原料を成形物中へのCaO添加量が7mass%となるようにすると共に、炭材を10mass%となるように配合し、これらを混合した後、水分を添加して混合・造粒した。すなわち、ブリケットマシンにて加庄成形するところをCaOを添加して通常の造粒としたこと以外は本発明例1と同様の方法で実施した。得られた焼結鉱は、SiO2含有量が4.0mass%であり、CaO含有量が7.0mass%であったものの、金属鉄を5mass%程度含有している部分も存在したが、SIが80、RIが64と強度がやや低く、被還元性も悪い焼結鉱となった。
(Comparative Example 3)
The amount of CaO added to the molded product of the ore brands A, B, D, and G powder iron ore, carbonaceous material, and CaO in advance is set to 7 mass%, and the carbonaceous material is 10 mass%. After mixing and mixing these, water was added and mixed and granulated. That is, it was carried out by the same method as in Example 1 of the present invention except that CaO was added to the briquette machine to obtain normal granulation. Although the obtained sintered ore had a SiO 2 content of 4.0 mass% and a CaO content of 7.0 mass%, there was a portion containing about 5 mass% of metallic iron. However, it was a sintered ore with a slightly low strength and poor reducibility, with an RI of 64 and an RI of 64.
(比較例4)
予め鉱石銘柄A、B、D、Gの粉鉄鉱石に対し炭材を4mass%となるように配合し、これらを混合した後、水分を添加して混合・造粒した。すなわち、ブリケットマシンにて加圧成形するところを炭材の添加量を減らして通常の造粒としたこと以外は本発明例1と同様の方法で実施した。得られた焼結鉱は、SiO2含有量が4.0mass%であり、CaO含有量が7.0mass%であったが、金属鉄を含有する部分と金属鉄をほとんど含有しない(金属鉄を0.1mass%程度含有)部分とが存在し、金属鉄をほとんど含有しないものは、SIが87、RIが65と強度が低く、被還元性も悪い焼結鉱であった。
(Comparative Example 4)
Carbonaceous materials were preliminarily blended with 4% by mass of fine iron ore of ore brands A, B, D and G, and after mixing these, water was added and mixed and granulated. That is, it was carried out by the same method as Example 1 of the present invention, except that the pressure forming in the briquette machine was carried out for normal granulation by reducing the amount of carbonaceous material added. The obtained sintered ore had a SiO 2 content of 4.0 mass% and a CaO content of 7.0 mass%, but contained almost no metal iron and no metal iron (metal iron The portion containing about 0.1 mass%) and containing almost no metallic iron was a sintered ore having a low strength of SI of 87 and RI of 65 and poor reducibility.
(比較例5)
焼結鉱のSiO2含有量が5.0mass%となるように珪石を配合し、また、成品焼結鉱のCaO含有量が10.0mass%となるように石灰石を配合したこと以外は比較例1と同様の方法で実施した。得られた焼結鉱のSiO2含有量は5.0mass%であり、CaO含有量は10.0mass%であったが、金属鉄をほとんど含有しない(金属鉄を0.1mass%程度含有)ものでは、SIが89、RIが64と強度が低く、被還元性も悪い焼結鉱となった。
(Comparative Example 5)
Comparative example except that silica stone is blended so that the SiO 2 content of the sintered ore is 5.0 mass%, and limestone is blended so that the CaO content of the product sintered ore is 10.0 mass%. 1 was carried out in the same manner. The obtained sintered ore had a SiO 2 content of 5.0 mass% and a CaO content of 10.0 mass%, but contained almost no metallic iron (containing about 0.1 mass% of metallic iron) Thus, the sintered ore was low in strength with an SI of 89, RI of 64, and poor reducibility.
1 成形体(ブリケット)
2 付着部(外装)
1 Molded body (briquette)
2 Adhering part (exterior)
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004316264A JP4462008B2 (en) | 2004-10-29 | 2004-10-29 | Method for producing sintered ore and pseudo particles for producing sintered ore containing reduced iron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004316264A JP4462008B2 (en) | 2004-10-29 | 2004-10-29 | Method for producing sintered ore and pseudo particles for producing sintered ore containing reduced iron |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006124793A JP2006124793A (en) | 2006-05-18 |
JP4462008B2 true JP4462008B2 (en) | 2010-05-12 |
Family
ID=36719813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004316264A Active JP4462008B2 (en) | 2004-10-29 | 2004-10-29 | Method for producing sintered ore and pseudo particles for producing sintered ore containing reduced iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4462008B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3778937A1 (en) | 2016-04-22 | 2021-02-17 | Sumitomo Metal Mining Co., Ltd. | Method for smelting oxide ore |
AU2017257842B2 (en) | 2016-04-27 | 2020-07-09 | Sumitomo Metal Mining Co., Ltd. | Oxide ore smelting method |
CN106964271B (en) * | 2017-05-16 | 2022-12-23 | 山东钢铁股份有限公司 | Iron ore-containing powder composite batching system and method |
-
2004
- 2004-10-29 JP JP2004316264A patent/JP4462008B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006124793A (en) | 2006-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5384175B2 (en) | Titanium oxide-containing agglomerates for the production of granular metallic iron | |
JP2006265569A (en) | Method for producing sintered ore and pseudo-grain for producing sintered ore | |
KR101475125B1 (en) | Unfired carbon-containing agglomerate for blast furnaces and production method therefor | |
CN107614710B (en) | The manufacturing method of reduced iron | |
JP5950098B2 (en) | Method for producing sintered ore | |
JP6102463B2 (en) | Method for producing sintered ore | |
CN105899690A (en) | Method for producing manganese containing ferroalloy | |
JP5598399B2 (en) | Method for producing reduced iron | |
JP6288462B2 (en) | Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore | |
JP4972761B2 (en) | Method for producing sintered ore and pseudo particles for producing sintered ore | |
JP4918754B2 (en) | Semi-reduced sintered ore and method for producing the same | |
JP4462008B2 (en) | Method for producing sintered ore and pseudo particles for producing sintered ore containing reduced iron | |
JP3900721B2 (en) | Manufacturing method of high quality low SiO2 sintered ore | |
JP2007327096A (en) | Method for manufacturing sintered ore using brucite | |
JP2006291255A (en) | Method for operating blast furnace | |
JP2008196027A (en) | Method for manufacturing sintered ore | |
JP4797388B2 (en) | Method for producing semi-reduced sintered ore | |
JP4415690B2 (en) | Method for producing sintered ore | |
JP4720127B2 (en) | Method for producing sintered ore | |
JP4816119B2 (en) | Method for producing sintered ore | |
JP2008088533A (en) | Method for manufacturing sintered ore | |
JP5995004B2 (en) | Sintering raw material manufacturing method | |
JP2007291455A (en) | Method for manufacturing sintered ore | |
JP3233755B2 (en) | Sinter containing iron scrap | |
KR101246331B1 (en) | APPARATUS FOR MANUFACTURING Fe-Cr |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060921 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070926 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100126 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100208 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130226 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4462008 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130226 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |