JP2007291455A - Method for manufacturing sintered ore - Google Patents

Method for manufacturing sintered ore Download PDF

Info

Publication number
JP2007291455A
JP2007291455A JP2006121506A JP2006121506A JP2007291455A JP 2007291455 A JP2007291455 A JP 2007291455A JP 2006121506 A JP2006121506 A JP 2006121506A JP 2006121506 A JP2006121506 A JP 2006121506A JP 2007291455 A JP2007291455 A JP 2007291455A
Authority
JP
Japan
Prior art keywords
mass
sintered ore
granulated
content
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006121506A
Other languages
Japanese (ja)
Inventor
Koichi Nushishiro
晃一 主代
Koichi Ichikawa
孝一 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006121506A priority Critical patent/JP2007291455A/en
Publication of JP2007291455A publication Critical patent/JP2007291455A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing sintered ore by which, even when the content of components forming blast furnace slag is lower than before, a shatter strength of ≥90% and a reduction degradation impellent of ≤35% can be maintained and deterioration in reducibility index can be prevented. <P>SOLUTION: Blended raw materials consisting of iron source materials containing at least iron ore fines, auxiliary raw materials and a carbonaceous material, are mixed and pelletized with the addition of water, and the resulting pellets are supplied to a sintering machine, where the carbonaceous material is burned, melted and cooled to manufacture sintered ore containing 4.0 to 5.0 mass% SiO<SB>2</SB>and 7 to 9 mass% CaO. In this process, the method for manufacturing sintered ore is characterized in that first a part of the iron ore fines, a part of the carbonaceous material and at least a part of an MgO-containing auxiliary raw material among the auxiliary materials are premixed and pelletized to form a preliminarily pelletized material; then the outer circumference of the preliminarily pelletized material is coated with a part of a CaO-containing auxiliary material among the auxiliary materials to form a coated preliminarily pelletized material; successively the coated preliminarily pelletized material and the remaining portion of the blended raw materials are mixed and pelletized; and the resulting pellet is supplied to the sintering machine. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高炉で溶銑を溶製する際の原料に用いる焼結鉱の製造方法に係わり、特に高炉スラグを形成する成分であるSiO2及びCaOの含有量が少ないにもかかわらず、落下強度(シャッター強度)が高く、還元粉化性RDIが良好な特性を有する焼結鉱の製造技術に関する。 The present invention relates to a method for producing sintered ore used as a raw material when melting hot metal in a blast furnace, and in particular, the drop strength despite the low content of SiO 2 and CaO, which are components forming blast furnace slag. The present invention relates to a technique for producing sintered ore having a high (shutter strength) and good properties of reduced powdering RDI.

近年、良質の塊状鉄鉱石が枯渇する傾向にあるので、高炉へ装入する鉄源原料として、焼結鉱の利用比率が一層高まっている。この焼結鉱は、粉状鉄鉱石、硫酸滓、砂鉄、スケール、高炉ダスト及び転炉ダスト等の鉄源に、造滓材としての石灰石、返鉱及び焼成のための熱源としての炭材を混合したものを素材とする。通常は、その配合原料に適量の水分を添加、混合、造粒した後、パレット上に層状に充填し、空気を下向きに流通させながら前記炭材を燃焼し、配合原料を溶融してから冷却、破砕することで製造している。つまり、焼結鉱は、粉状鉄鉱石等の鉄源をフラックスとしてのCaOやSiO2等の造滓(スラグ)成分と反応、溶融させて塊状化する所謂人工鉱石である。この焼結鉱の焼成過程では凝結材であるコークス(炭材)の燃焼による発熱により、鉱石と石灰等の副原料が反応しカルシウムフェライト(CaO・nFe23、CaO・nFe34)やオリビン(SiO2・Fe23)等の融体が発生する。 In recent years, high-quality lump iron ore tends to be depleted, and the utilization ratio of sintered ore is further increased as an iron source material to be charged into a blast furnace. This sintered ore consists of iron sources such as powdered iron ore, sulfated iron, iron sand, scales, blast furnace dust and converter dust, limestone as ironmaking material, and carbonaceous material as heat source for return or firing. The mixture is used as the material. Usually, after adding, mixing, and granulating a proper amount of moisture to the blended raw material, filling it in layers on a pallet, burning the carbonaceous material with air flowing downward, melting the blended raw material, and then cooling Manufactured by crushing. That is, the sintered ore is a so-called artificial ore in which an iron source such as powdered iron ore reacts with a fossil (slag) component such as CaO or SiO 2 as a flux and is melted to be agglomerated. In the firing process of this sintered ore, the ore and auxiliary materials such as lime react with each other due to the heat generated by the combustion of coke, which is a coagulation material, and calcium ferrite (CaO · nFe 2 O 3 , CaO · nFe 3 O 4 ). And melts such as olivine (SiO 2 · Fe 2 O 3 ) are generated.

しかしながら、現在高炉で利用している焼結鉱は、塊状鉄鉱石に比較してSiO2、CaOの含有量が多いので、高炉へ装入する鉄源原料のうちで該焼結鉱の占める比率が高くなるに伴い、高炉スラグの発生量が増加し、高炉の燃料比(溶銑1トンを溶製するに必要な燃料の量)及び発生した高炉スラグの処理費の増大を招く等の問題が発生している。また、最近では、省資源・省エネルギーの観点からも、高炉の燃料比及びスラグ比(スラグ量/高炉原料量)の低減に対する要望が高まっている。 However, since the sintered ore currently used in the blast furnace has a higher content of SiO 2 and CaO than the massive iron ore, the ratio of the sintered ore in the iron source material charged into the blast furnace However, the amount of blast furnace slag generated increases and the fuel ratio of the blast furnace (the amount of fuel necessary to melt 1 ton of hot metal) and the cost of processing the generated blast furnace slag increase. It has occurred. Recently, from the viewpoint of resource saving and energy saving, there is an increasing demand for reduction of the fuel ratio and slag ratio (slag amount / blast furnace raw material amount) of the blast furnace.

一方、焼結鉱中のSiO2、CaO含有量の減少を図ることは、該焼結鉱の強度低下、還元粉化性(RDI)の悪化をもたらす原因となるため、例えば、CaOが6〜9wt%の低スラグ焼結鉱の製造方法(特許文献1参照)、SiO2が平均5wt%以下で、CaO/SiO2が1.90〜2.10の焼結鉱の製造方法(特許文献2参照)、SiO2が4.2〜4.9mass%,MgOが1.5〜3.0mass%で,CaO/SiO2が1.8〜2.2の焼結鉱の製造方法(特許文献3参照)及びSiO2が4.6%以下、CaO/SiO2が1.0〜3.0、MgOが0.5%超え程度の焼結鉱の製造方法(特許文献4参照)が提案されているが、これら従来の製造方法は、いずれもSiO2、CaO含有量の低下に伴い、落下強度(シャッター強度:以下「SI」と記載する。)が低下するという問題が解決されておらず、現状では、SiO2含有量の下限値は4.5mass%程度、CaO含有量の下限値は9.0mass%程度に抑えられ、落下強度(SI)が85%程度、還元粉化性(RDI)が40%程度となっている。なお、現状のSiO2を4.5mass%以上、CaOを9.0mass%以上含有する焼結鉱では、落下強度(SI)は89%程度、還元粉化性(RDI)が35%程度である。 On the other hand, reducing the content of SiO 2 and CaO in the sintered ore causes a decrease in strength of the sintered ore and deterioration of reduced powdering property (RDI). A method for producing a 9 wt% low slag sintered ore (see Patent Document 1), a method for producing a sintered ore with an SiO 2 average of 5 wt% or less and CaO / SiO 2 of 1.90 to 2.10 (Patent Document 2) see), SiO 2 is 4.2~4.9mass%, MgO is at 1.5~3.0mass%, method for producing sintered ore of CaO / SiO 2 is 1.8 to 2.2 (Patent Document 3 And a method for producing sintered ore with SiO 2 of 4.6% or less, CaO / SiO 2 of 1.0 to 3.0, and MgO exceeding 0.5% (see Patent Document 4). are, but the way these conventional manufacturing are all due to the reduction of SiO 2, CaO content drop strength (Shi Potter strength:. Which hereinafter referred to as "SI") not solve the problem of a decrease is, at present, the lower limit of the SiO 2 content of about 4.5Mass%, the lower limit of the CaO content is 9. It is suppressed to about 0 mass%, the drop strength (SI) is about 85%, and the reduced dustability (RDI) is about 40%. In addition, in the sintered ore containing 4.5 mass% or more of current SiO 2 and 9.0 mass% or more of CaO, the drop strength (SI) is about 89%, and the reduced powdering property (RDI) is about 35%. .

また、含有させるSiO2、CaO等の所謂「フラックス」を減少させる方法に対し、配合原料中の炭材含有量を増加させて現状の強度、還元粉化性を維持する方法も考えられるが、その場合には、焼結鉱のミクロ組織が溶融時に生成したオリビン系融液に由来する結晶の多いものとなり、焼結鉱の被還元性(RI)が劣化するという別の問題が発生する。 Also, in contrast to the method of reducing so-called “flux” such as SiO 2 and CaO to be contained, a method of increasing the carbonaceous material content in the blended raw material to maintain the current strength and reduced powdering property is also conceivable. In such a case, the microstructure of the sintered ore becomes a large number of crystals derived from the olivine-based melt produced at the time of melting, which causes another problem that the reducibility (RI) of the sintered ore is deteriorated.

所謂「フラックス」を減少させる方法としては、上記の他に、SiO2含有量の低い予備造粒物を形成した後、SiO2含有量の高い原料を加えて再度造粒を行う、高炉スラグを形成する成分の含有量が従来より少なくても、90%以上の落下強度(SI)を維持可能な焼結鉱の製造方法(特許文献5参照)が提案されている。
特開平10−273738号公報 特開平11−80845号公報 特開平11−131151号公報 特開2000−178659号公報 特開2005−220399号公報
As a method of reducing the so-called "flux", in addition to the above, after forming the lower pre-granulated product of SiO 2 content, performing granulation again by adding high SiO 2 content material, blast furnace slag There has been proposed a method for producing a sintered ore that can maintain a drop strength (SI) of 90% or more even if the content of the component to be formed is less than the conventional one (see Patent Document 5).
Japanese Patent Laid-Open No. 10-273738 Japanese Patent Laid-Open No. 11-80845 JP-A-11-131151 JP 2000-178659 A JP 2005-220399 A

しかしながら、特許文献5に記載の方法においては予備造粒物と残りの原料との結合を強化するため予備造粒物中に添加する炭材の量を多くする必要があり、トータルの炭材使用量が多くなる問題点がある。炭材使用量が増加すると、上記のように焼結鉱の被還元性(RI)が劣化する。   However, in the method described in Patent Document 5, it is necessary to increase the amount of carbonaceous material added to the preliminary granulated material in order to strengthen the bond between the preliminary granulated material and the remaining raw materials. There is a problem that the amount increases. As the amount of carbon material used increases, the reducibility (RI) of the sintered ore deteriorates as described above.

本発明は、かかる事情に鑑みなされたものであり、高炉スラグを形成する成分の含有量が従来より少なくても、90%以上の落下強度(SI)と、35%以下の還元粉化性(RDI)を維持可能であり、かつ被還元性(RI)の劣化を防止可能な焼結鉱の製造方法を提供することを目的としている。   This invention is made | formed in view of this situation, Even if there is less content of the component which forms a blast furnace slag than 90%, the fall strength (SI) of 90% or more and the reduction | restoration powdering property of 35% or less ( It is an object of the present invention to provide a method for producing sintered ore that can maintain (RDI) and prevent deterioration of reducibility (RI).

発明者らは、上記目的の実現に向けた研究の中で、従来技術の抱える上述した問題点について鋭意検討し、その成果を本発明に具現化した。   The inventors diligently studied the above-mentioned problems of the prior art during research aimed at realizing the above object, and realized the results in the present invention.

すなわち、本発明は、粉鉄鉱石と、その他の鉄源原料、副原料及び炭材とからなる配合原料を混合し、水分を添加して造粒した後に焼結機へ供給し、前記炭材を燃焼させて溶融、冷却し、SiO2:4.0〜5.0mass%、CaO:7〜9mass%含有する焼結鉱を製造するに際して、まず、少なくとも粉鉄鉱石を含有する鉄源原料の一部と、炭材の一部と、副原料のうちMgOを含有する副原料の少なくとも一部とを予め混合、造粒して予備造粒物を形成し、該予備造粒物の外周に副原料のうちCaOを含有する副原料の一部を被覆することにより被覆予備造粒物を形成し、引き続き、該被覆予備造粒物と前記配合原料の残部とを混合、造粒してから焼結機へ供給することを特徴とする焼結鉱の製造方法である。 That is, the present invention mixes a blended raw material composed of fine iron ore and other iron source raw materials, auxiliary raw materials, and carbonaceous material, and after adding water and granulating the mixture, the carbonaceous material is supplied to the sintering machine. by burning melted, cooled, SiO 2: 4.0~5.0mass%, CaO : in the production of sintered ore containing 7~9Mass%, first, the iron source material containing at least fine iron ore A part, a part of the carbonaceous material, and at least a part of the auxiliary raw material containing MgO among the auxiliary raw materials are premixed and granulated to form a preliminary granulated product, on the outer periphery of the preliminary granulated product A coated preliminary granulated material is formed by coating a part of the auxiliary raw material containing CaO among the auxiliary raw materials, and then the coated preliminary granulated material and the remainder of the blended raw material are mixed and granulated. It is a manufacturing method of a sintered ore characterized by supplying to a sintering machine.

この場合、前記被覆予備造粒に際して、SiO2含有量が3.6mass%以下の粉鉄鉱石を用いて予備造粒物を形成することが望ましい。さらに前記被覆予備造粒に際して、予備造粒物にCaOを含有する副原料を被覆して、CaO含有量が1mass%以上、9mass%以下の被覆予備造粒物を形成しても良い。さらに前記予備造粒に際して、粉鉄鉱石及び炭材とMgOを含有する副原料に加え、CaOを含有する副原料を添加して、CaO含有量が4mass%以下(0mass%を除く)の造粒物を形成しても良い。また、これらの本発明では、前記造粒物の炭材含有量を1mass%以上とするのが好ましい。 In this case, it is desirable to form a pre-granulated product using fine iron ore having a SiO 2 content of 3.6 mass% or less during the above-described pre-granulation. Furthermore, at the time of the coating preliminary granulation, the preliminary granulated product may be coated with an auxiliary raw material containing CaO to form a coated preliminary granulated product having a CaO content of 1 mass% or more and 9 mass% or less. Furthermore, in the preliminary granulation, in addition to the auxiliary raw material containing fine iron ore and charcoal and MgO, the auxiliary raw material containing CaO is added, and the granulation of CaO content of 4 mass% or less (excluding 0 mass%) is performed. An object may be formed. Moreover, in these present invention, it is preferable that the carbonaceous material content of the said granulated material shall be 1 mass% or more.

尚、焼結鉱の原料である副原料は、CaO、SiO2、Al23、MgO等を含有するものであるが、主としてCaOを含有し、MgOの含有量が10mass%未満のものがCaOを含有する副原料であり、主としてMgOを含有し、MgOの含有量が10mass%以上のものをMgOを含有する副原料とする。MgOを含有する副原料としては、ドロマイト、マグネサイト、ブルーサイト、蛇紋岩、Niスラグ等を用いることができる。 The auxiliary raw material that is the raw material of the sintered ore contains CaO, SiO 2 , Al 2 O 3 , MgO, etc., but mainly contains CaO, and the content of MgO is less than 10 mass%. An auxiliary material containing CaO, mainly containing MgO, and an MgO-containing auxiliary material containing 10 mass% or more of MgO. As an auxiliary material containing MgO, dolomite, magnesite, brucite, serpentine, Ni slag, or the like can be used.

本発明によれば、焼結用配合原料の一部を予備造粒して更にCaOを含有する副原料で被覆した後に、残りの配合原料と合わせて再造粒した後に焼結を行い、マグネタイト系融液を主体にした強度の大きい芯を有する焼結鉱が製造できる。その結果、高炉スラグを形成する成分の含有量が従来より少なくても、90%以上の落下強度(SI)と35%以下の還元粉化性(RDI)を有し、被還元性(RI)の良好な焼結鉱が製造できる。これにより、高炉スラグの発生量が減少し、高炉の燃料比も低減できる。   According to the present invention, after pre-granulating a part of the compounding raw material for sintering and further coating with the auxiliary material containing CaO, re-granulation together with the remaining compounding material is performed, and then sintering is performed. A sintered ore having a core having a high strength and mainly composed of a system melt can be produced. As a result, even if the content of the components forming the blast furnace slag is less than conventional, it has a drop strength (SI) of 90% or more and a reduced dusting property (RDI) of 35% or less, and the reducibility (RI). Can be produced. Thereby, the generation amount of blast furnace slag is reduced, and the fuel ratio of the blast furnace can be reduced.

以下、発明をなすに至った経緯をまじえ、本発明の最良の実施形態について説明する。   Hereinafter, the best embodiment of the present invention will be described based on the circumstances leading to the invention.

焼結鉱は、粉鉄鉱石等の鉄源を所謂「フラックス」、つまりCaOやSiO2等のスラグ成分と反応溶融させた後、冷却して塊成化したものである。そのため、焼結鉱の強度には、配合原料の粒度や配合比率(塩基度)等、様々な因子が影響を及ぼしていることは周知の通りである。特に、SiO2含有量が4.0〜5.0mass%、CaO含有量が7〜9mass%程度の低スラグ焼結鉱では、CaOやSiO2等のフラックス成分の減少に伴い、融液量が不足して、製品たる焼結鉱の落下強度(SI)の低下が顕著となる。またSiO2含有量が4.5mass%を下回る場合には還元粉化性(RDI)の悪化も顕著となる。 The sintered ore is obtained by reacting and melting an iron source such as fine iron ore with a so-called “flux”, that is, a slag component such as CaO or SiO 2 , and cooling to agglomerate. Therefore, it is well known that various factors such as the particle size of the blended raw material and the blending ratio (basicity) affect the strength of the sintered ore. In particular, SiO 2 content of 4.0~5.0Mass%, the low slag sinter of about 7~9Mass% CaO content, with a decrease of the flux components such as CaO and SiO 2, is melt volume Due to the shortage, the drop strength (SI) of the sintered ore as the product is significantly reduced. Further, when SiO 2 content is below 4.5Mass% becomes remarkable even deterioration of reduction degradation properties (RDI).

そこで、本発明者らは、添加フラックス成分に依存しない融液生成を種々試みたところ、SiO2含有量が3.6mass%以下である粉鉄鉱石と炭材の一部との造粒物を予め形成し(予備造粒で形成した予備造粒物と呼ぶものとする。)、その上を残りの原料(配合原料のうち、上記予備造粒に使用しなかった原料)で覆うように二層構造に再度造粒してから焼結すると、比較的被還元性が高く、高強度な焼結体が得られることを見出し、その知見に基づき特許文献5に記載の発明を完成させた。しかしながら予備造粒物中への炭材添加(含有)量が6mass%未満では、融液生成量が不足し、所望の強度が得られない場合があったので、炭材添加(含有)量は6mass%以上とすることが好ましいとするものであった。 Therefore, the present inventors have made various attempts to produce a melt that does not depend on the added flux component. As a result, a granulated product of fine iron ore having a SiO 2 content of 3.6 mass% or less and a part of the carbonaceous material is obtained. It is formed in advance (referred to as a pre-granulated product formed by pre-granulation), and is covered with the remaining raw materials (raw materials not used for pre-granulation among the blended materials). When it was granulated again into a layer structure and then sintered, it was found that a sintered body having a relatively high reducibility and a high strength could be obtained, and based on this finding, the invention described in Patent Document 5 was completed. However, if the amount of carbonaceous material added (contained) in the pre-granulated material is less than 6 mass%, the amount of melt produced may be insufficient and the desired strength may not be obtained. It was preferable that the content be 6 mass% or more.

そこで更なる改良を加えるため予備造粒物と残りの原料の界面の接着方法を検討した。その結果、予備造粒物にCaOを含有する副原料を被覆した被覆予備造粒物を形成し(被覆予備造粒で形成した被覆予備造粒物と呼ぶものとする。)、その上を残りの原料(配合原料のうち、上記予備造粒及び被覆予備造粒に使用しなかった原料)で覆うように再度造粒して三層構造の擬似粒子としてから焼結すると、比較的被還元性が高く、高強度な焼結体を、少ない炭材量で得られることを見出した。また予備造粒物中にMgOを含有する副原料を予め混合することによりマグネタイト構造を安定化させ、良好な還元粉化性が得られることを見出し、本発明を完成させた。   Therefore, in order to make further improvements, a method for bonding the interface between the pre-granulated material and the remaining raw materials was examined. As a result, a coated pre-granulated product obtained by coating the auxiliary granulated material containing CaO on the pre-granulated product is formed (referred to as a coated pre-granulated product formed by the coated pre-granulated product), and the rest is left. When re-granulated so as to cover with a raw material (a raw material that was not used for the above pre-granulation and coating pre-granulation among the blended raw materials), and then sintered as a three-layer pseudo-particle, it was relatively reducible. It has been found that a sintered body with high strength and high strength can be obtained with a small amount of carbonaceous material. Further, the present invention was completed by finding that the auxiliary granule containing MgO is mixed in advance in the pre-granulated product so that the magnetite structure is stabilized and good reduction powderability can be obtained.

焼結鉱の還元粉化は還元過程でのヘマタイトからマグネタイトへの結晶構造変化に伴う膨張に起因する。さらに還元粉化の主な原因は二次ヘマタイトであり、二次ヘマタイトは焼結反応時にカルシウムフェライトが分解溶融する1300℃以上の高温状態で存在するマグネタイトが冷却される際に再酸化されて生成するため、還元粉化を低減するには、二次ヘマタイトの生成抑制、すなわち、マグネタイトの残存比率向上が有効である。焼結においてMgOは酸化鉄と反応しマグネタイト構造を有するマグネシオフェライトの形成を促進することが知られており、一般的にはマグネタイト構造の生成は還元粉化性に対しては良好であるが、被還元性は悪化する。これはマグネタイトが融液から生成するため結晶が粗大化しやすく、焼結組織中の微細気孔量が少なくなるためであるが、本発明においては予備造粒物中の融液生成量を少なくすることができるため、MgOを含有するマグネタイトは被還元性を維持できる。したがって予備造粒物中のMgOの含有量はわずかでもその効果が発現する。予備造粒物中のMgO含有量の上限値は、MgOを含有する副原料が全て予備造粒物中に含有される場合として決定すればよい。   Reduced pulverization of sinter is caused by expansion associated with the crystal structure change from hematite to magnetite during the reduction process. Furthermore, the main cause of reduced powdering is secondary hematite, which is generated by reoxidation when magnetite existing at a high temperature of 1300 ° C or higher where calcium ferrite decomposes and melts during the sintering reaction is cooled. Therefore, in order to reduce reduced powdering, it is effective to suppress the formation of secondary hematite, that is, to improve the residual ratio of magnetite. It is known that MgO reacts with iron oxide to promote the formation of magnetio ferrite having a magnetite structure in sintering, and in general, the formation of magnetite structure is good for reducing powdering properties. The reducibility deteriorates. This is because magnetite is generated from the melt, so the crystals are likely to be coarsened, and the amount of fine pores in the sintered structure is reduced. In the present invention, however, the amount of melt produced in the pre-granulated product should be reduced. Therefore, magnetite containing MgO can maintain reducibility. Therefore, even if the content of MgO in the pre-granulated product is small, the effect is exhibited. What is necessary is just to determine the upper limit of MgO content in a preliminary granulation as a case where all the auxiliary materials containing MgO are contained in a preliminary granulation.

この被覆予備造粒に際しては、SiO2含有量が3.6mass%以下の粉鉄鉱石を用いて予備造粒物を形成することが望ましい。SiO2含有量が3.6mass%以下の粉鉄鉱石を用いた場合、オリビン系融液の生成量が少なくなり高被還元性が得やすくなる。 In this coating pre-granulation, it is desirable to form a pre-granulated product using fine iron ore having a SiO 2 content of 3.6 mass% or less. When fine iron ore having a SiO 2 content of 3.6 mass% or less is used, the amount of olivine-based melt produced is reduced, and high reducibility is easily obtained.

また、本発明では、被覆予備造粒に際して、予備造粒物にCaOを含有する副原料を被覆して、CaO含有量が1mass%以上、9mass%以下の被覆予備造粒物を形成することが望ましい。1mass%未満の場合は被覆効果が現れず、9mass%を超える場合は残りの原料中のCaO含有量が少なくなり、擬似粒子の外層部分の強度が低下するためである。   Further, in the present invention, in the preliminary coating granulation, the preliminary granulated product may be coated with an auxiliary material containing CaO to form a coated preliminary granulated product having a CaO content of 1 mass% or more and 9 mass% or less. desirable. This is because when the content is less than 1 mass%, the coating effect does not appear, and when it exceeds 9 mass%, the CaO content in the remaining raw material decreases, and the strength of the outer layer portion of the pseudo particles decreases.

次いで、本発明者らは、予備造粒物中への炭材添加量の好適範囲を検討した。CaOを含有する副原料を被覆させない、SiO2含有量が3.6mass%以下である粉鉄鉱石と炭材との予備造粒物(特許文献5に記載の予備造粒物)中では、融液生成量が不足し、所望の強度が得られない場合が生じるので、炭材添加(含有)量は6mass%を下限としたが、本発明においては、融液生成不足を予備造粒物にCaOを含有する副原料の一部を被覆して、予備造粒物外層でのCaOを含有する被覆により融液を形成させ、融液生成不足を補うこととした。この予備造粒物ならびに予備造粒物を被覆するCaOを含有する被覆副原料の組み合わせによって予備造粒物中の炭材添加(含有)量規制は緩和することができ、炭材添加(含有)量は、6mass%未満であっても製造が可能となった。前記予備造粒物ならびに予備造粒物を被覆するCaOを含有する被覆副原料の組み合わせにおいて、予備造粒物の炭材添加量は以下の通りである。 Next, the present inventors examined a suitable range of the amount of carbonaceous material added to the pre-granulated product. In a pre-granulated product (pre-granulated product described in Patent Document 5) of fine iron ore and carbonaceous material having an SiO 2 content of 3.6 mass% or less that does not cover CaO-containing auxiliary materials, Since the amount of liquid generation is insufficient and the desired strength cannot be obtained, the carbon material addition (content) amount is set to 6 mass% as the lower limit. However, in the present invention, the shortage of melt generation is used as a preliminary granulated product. A part of the auxiliary raw material containing CaO was coated, and a melt was formed by the coating containing CaO in the outer layer of the pre-granulated material to compensate for the lack of melt generation. The regulation of the amount of carbon material added (containing) in the pre-granulated product can be relaxed by the combination of this pre-granulated product and the coating auxiliary material containing CaO covering the pre-granulated material, and the addition of carbon material (containing) Even if the amount was less than 6 mass%, the production was possible. In the combination of the pre-granulated product and the coating auxiliary raw material containing CaO covering the pre-granulated material, the carbonaceous material addition amount of the pre-granulated material is as follows.

すなわち、予備造粒物中、炭材添加量は本発明においては、1mass%を下限とすることができる。炭材添加(含有)量が1mass%未満では、予備造粒物中の融液生成量が過少となり、予備造粒物と予備造粒物を被覆するCaOを含有する被覆副原料の組み合わせによっても強度が不足し、所望の強度が得られない場合があったので、炭材添加量は1mass%を下限とするのが好ましい。また、上記における炭材添加量の上限は特に設ける必要がなく、製造上の経済性により決定すれば良い。より高強度が必要な場合は、炭材添加量は6mass%以上とすることが望ましい。しかしながら融液量の増大にともないマグネタイトの被還元性が低下するため、炭材添加量は6mass%程度を上限として適宜調整して決定することが望ましい。   That is, the carbonaceous material addition amount in the pre-granulated product can be 1 mass% as the lower limit in the present invention. If the amount of carbon material added (contained) is less than 1 mass%, the amount of melt produced in the pre-granulated product is too small, and the combination of the auxiliary granulated material containing CaO covering the pre-granulated material and the pre-granulated material is also possible. Since the strength is insufficient and the desired strength may not be obtained, the carbon material addition amount is preferably set to 1 mass% as the lower limit. In addition, the upper limit of the amount of carbon material added in the above is not particularly required, and may be determined according to the manufacturing economy. When higher strength is required, the amount of carbonaceous material added is desirably 6 mass% or more. However, since the reducibility of magnetite decreases as the amount of melt increases, it is desirable that the amount of carbon material added is determined by appropriately adjusting the upper limit of about 6 mass%.

なお、本発明において、上記のように予備造粒物と予備造粒物を被覆するCaOを含有する被覆副原料の組み合わせによって強度が発揮されるのは、予備造粒物と被覆副原料界面でカルシウムフェライト生成が保持され、強度の弱いカルシウムシリケート生成が抑制される結果として強度上昇が発揮されたものと推察される。   In the present invention, the strength is exhibited by the combination of the pre-granulated product and the coated auxiliary material containing CaO covering the pre-granulated material as described above, at the interface between the pre-granulated material and the coated auxiliary material. It is presumed that the increase in strength was exhibited as a result of the formation of calcium ferrite being held and the generation of calcium silicate having a low strength being suppressed.

すなわち、カルシウムフェライトの引張強度は102MPaであり、カルシウムシリケートの引張強度は19MPaであり、また、カルシウムフェライトがカルシウムシリケートに変成する際のSiO2含有量が予備造粒物に少ない点(SiO2含有量が3.6mass以下)も強度保持に有利に作用することになり、これらが総合して強度上昇が発揮されたものと推察される。 That is, the tensile strength of calcium ferrite is 102 MPa, the tensile strength of calcium silicate is 19 MPa, and the SiO 2 content when calcium ferrite is transformed into calcium silicate is low in the pre-granulated product (SiO 2 containing An amount of 3.6 mass or less) also has an advantageous effect on strength retention, and it is presumed that the strength increase is exhibited as a whole.

次に図1を用いて、本発明にかかる焼結鉱の製造方法の一実施形態を説明する。図1は本発明に係わる焼結鉱の製造工程例を説明するフロー図であり、以下の説明においては鉄源原料として粉鉄鉱石のみを用い、(A)〜(I)の工程により焼結鉱を製造する場合である。以下、(A)〜(I)の各工程を詳しく説明する。   Next, an embodiment of a method for producing a sintered ore according to the present invention will be described with reference to FIG. FIG. 1 is a flowchart for explaining an example of a manufacturing process of sintered ore according to the present invention. In the following description, only powdered iron ore is used as an iron source material, and sintering is performed by the steps (A) to (I). This is the case of producing ore. Hereinafter, each process of (A)-(I) is demonstrated in detail.

(A)まず、SiO2含有量4.0〜5.0mass%の焼結鉱を製造するに当たり、鉄源である粉鉄鉱石の配合(焼結原料の配合)を決定する。すなわち、予備造粒物の製造に使用する粉鉄鉱石使用量に基づき、その他の粉鉄鉱石使用量を求め、全焼結配合原料としてSiO2含有量4.0〜5.0mass%となる焼結原料配合を定める。またSiO2含有量3.60mass%以下の粉鉄鉱石を予備造粒物に使用する場合は、SiO2含有量3.60mass%以下の粉鉄鉱石使用量に基づき、その他の粉鉄鉱石使用量を求め、全焼結配合原料としてSiO2含有量4.0〜5.0mass%となる焼結原料配合を定める。これとは逆に、SiO2含有量3.60mass%以下の粉鉄鉱石以外のその他の配合から全焼結配合原料としてSiO2含有量4.0〜5.0mass%となるようにSiO2含有量3.60mass%以下の粉鉄鉱石使用量を求めてもよい。 (A) First, in producing a sintered ore having a SiO 2 content of 4.0 to 5.0 mass%, a blend of fine iron ore that is an iron source (a blend of sintered raw materials) is determined. That is, based on the amount of powdered iron ore used for the production of the pre-granulated product, the amount of other powdered iron ore used is obtained, and the sintering with SiO 2 content of 4.0 to 5.0 mass% as the total sintering compound raw material Define raw material composition. In addition, when using powdered iron ore with a SiO 2 content of 3.60 mass% or less in the pre-granulated product, the amount of other fine iron ore used based on the amount of powdered iron ore with a SiO 2 content of 3.60 mass% or less. Is determined as a total sintering blending raw material, and a sintering raw material blending having a SiO 2 content of 4.0 to 5.0 mass% is determined. On the contrary, SiO 2 content such that the content of SiO 2 4.0~5.0Mass% as gutted sintering mixed material of SiO 2 content 3.60Mass% less other compounding other than fine iron ore You may obtain | require the usage-amount of fine iron ore of 3.60 mass% or less.

(B、C)引き続き、予備造粒物に使用する粉鉄鉱石に対するMgO含有副原料、および炭材量を決定し、これらを混合する。ここで用いられるMgO含有副原料としてはドロマイト、マグネサイト、ブルーサイト、蛇紋岩やNiスラグを用いることが出来る。   (B, C) Subsequently, the MgO-containing auxiliary material and the amount of carbon material for the fine iron ore used for the preliminary granulated material are determined, and these are mixed. As the MgO-containing auxiliary material used here, dolomite, magnesite, brucite, serpentine or Ni slag can be used.

(D)また、残りの焼結原料である予備造粒物に使用する粉鉄鉱石以外の他の焼結原料についても同様にCaO、炭材量を決定する。   (D) Moreover, CaO and the amount of carbonaceous materials are similarly determined about sintering raw materials other than the powdered iron ore used for the preliminary granulated material which is the remaining sintering raw materials.

(E)予備造粒物に被覆するCaOを含有する副原料の量を決定する。   (E) The amount of the auxiliary raw material containing CaO coated on the preliminary granulated material is determined.

(F)予備造粒物に使用する粉鉄鉱石に対するMgO含有副原料、および炭材量を決定し、混合した後は、水を加え造粒して予備造粒物とする。なお、この予備造粒物は残りの他の焼結原料との混合・造粒時に崩壊しない強度を有しておれば良く、バインダーとして水、あるいは必要に応じ生石灰、ベントナイト、糖蜜などを使用すればよい。造粒機としては、パンペレタイザーを用いることができる。   (F) After determining and mixing the MgO-containing auxiliary raw material and the amount of carbonaceous material with respect to the fine iron ore used for the preliminary granulated product, water is added and granulated to obtain the preliminary granulated product. The pre-granulated material only needs to have a strength that does not collapse during mixing and granulation with the remaining other sintering raw materials, and water or quick lime, bentonite, molasses, etc. may be used as a binder. That's fine A bread pelletizer can be used as the granulator.

(G)前記予備造粒物と被覆材料の被覆には代表的にはドラムミキサーを用いることができる。予備造粒物に被覆材料を加え、ドラムミキサーの入り側から装入して混合そして転動による造粒操作を加えて予備造粒物の表面に粉状被覆材料が外装化され、被覆予備造粒物が形成される。   (G) A drum mixer can be typically used for coating the preliminary granulated material and the coating material. Coating material is added to the pre-granulated material, charged from the entrance side of the drum mixer, mixed and granulated by rolling, and the powdered coating material is packaged on the surface of the pre-granulated material. Granules are formed.

(H)次いで、(G)で製造した被覆予備造粒物と、残りの焼結原料の混合・造粒にもドラムミキサーを用いることができる。CaOおよび、炭材、必要に応じSiO2原料を加え、ドラムミキサーの入り側から被覆予備造粒物とともに装入し、水を加え、混合そして転動による造粒操作を加えて被覆予備造粒物の表面に粉状原料が外装化され擬似粒子化し、3層構造を有する擬似粒子を製造する。 (H) Next, a drum mixer can also be used for mixing and granulating the coated pre-granulated product produced in (G) and the remaining sintered raw materials. CaO and carbonaceous material, the SiO 2 raw material needed in addition, charged from inlet side of the drum mixer with coated pre-granulated product, water was added, mixed and granulated manipulate added covering preliminary granulation by rolling A powdery raw material is packaged on the surface of the product to make pseudo particles, and pseudo particles having a three-layer structure are manufactured.

(I)焼結機パレット上に(H)で製造した擬似粒子が装入され、焼結機で焼結される。   (I) The pseudo particles produced in (H) are placed on a sintering machine pallet and sintered by a sintering machine.

以下に、本発明に係る焼結鉱の製造方法を具体的な実施例で説明すると共に、従来の製造方法を用いた比較例の焼結鉱についても記載し、本発明の効果を確認する。なお、これらの焼結鉱を製造するに際しては、表1に示す9銘柄の粉鉄鉱石を使用し、表1に示す鉱石配合割合で配合した。これらの焼結原料を、新原料と記載する。副原料としては、表2に示す化学成分を有する石灰石、ドロマイト、マグネサイト、ブルーサイト、Niスラグ、珪石を用いた。新原料及び副原料の配合割合は表3、4に示す2種類で行った。   In the following, the method for producing a sintered ore according to the present invention will be described in a specific example, and a sintered ore of a comparative example using a conventional production method will be described to confirm the effect of the present invention. In addition, when manufacturing these sintered ores, 9 brand iron ore shown in Table 1 was used, and it mix | blended with the ore compounding ratio shown in Table 1. These sintered raw materials are referred to as new raw materials. As the auxiliary material, limestone, dolomite, magnesite, brucite, Ni slag, and quartzite having chemical components shown in Table 2 were used. The mixing ratio of the new raw material and the auxiliary raw material was two kinds shown in Tables 3 and 4.

Figure 2007291455
Figure 2007291455

Figure 2007291455
Figure 2007291455

Figure 2007291455
Figure 2007291455

Figure 2007291455
Figure 2007291455

(本発明例1)
この実施例においては、表3に示す配合割合で焼結鉱を製造した。配合原料を調整するに当っては、焼結鉱中のSiO2含有量が4.0mass%となるように珪石を、焼結鉱中のCaO含有量が7.0mass%となるように石灰石を配合した。また、製品とならない5mm未満の焼結鉱は原料中に返鉱として戻されるが、その返鉱を新原料(粉鉄鉱石原料)と副原料の和に対し20mass%となるように配合した。
(Invention Example 1)
In this example, sintered ore was produced at a blending ratio shown in Table 3. In adjusting the blending raw material, silica stone is adjusted so that the SiO 2 content in the sintered ore is 4.0 mass%, and limestone is adjusted so that the CaO content in the sintered ore is 7.0 mass%. Blended. In addition, the sintered ore of less than 5 mm that does not become a product is returned to the raw material as a return ore, but the return ore is blended so as to be 20 mass% with respect to the sum of the new raw material (fine iron ore raw material) and the auxiliary raw material.

そして、焼結鉱の製造に当っては、下記(a)〜(c)のようにして行った。   And in manufacture of a sintered ore, it carried out as follows (a)-(c).

(a)まず、鉱石A、B、D、Gに対し、炭材(粉コークス)を含有量が1mass%となるように、ドロマイトをMaO含有量が同じく1mass%となるように添加・混合した後、水分を添加しながらパンペレタイザーで予備造粒して予備造粒物を得た。従って、表1の鉱石銘柄のうち、上記鉱石A、B、D、G以外のものが予備造粒されない、残りの焼結原料である。残りの焼結原料には、返鉱も含めるものとする。   (A) First, to ores A, B, D, and G, dolomite was added and mixed so that the content of MaO content would be 1 mass% so that the content of carbonaceous material (powder coke) would be 1 mass%. Thereafter, preliminary granulation was performed with a pan pelletizer while adding water to obtain a preliminary granulated product. Therefore, among the ore brands in Table 1, those other than the ores A, B, D, and G are the remaining sintered raw materials that are not pre-granulated. The remaining sintering raw material shall include return ore.

(b)次に予備造粒物にCaOを含有する副原料を被覆して、CaO含有量が1mass%となるようにし、(a)で得られた予備造粒物とともに、石灰石を被覆材としてドラムミキサーに投入し、水分を添加しながら混合、造粒して予備造粒物の表面に粉状被覆材料を外装化し被覆予備造粒物を得た。   (B) Next, the auxiliary granule containing CaO is coated on the pre-granulated product so that the CaO content becomes 1 mass%, and limestone is used as a covering material together with the pre-granulated product obtained in (a). The mixture was put into a drum mixer, mixed and granulated while adding water, and a powdered coating material was externally coated on the surface of the pregranulated material to obtain a coated pregranulated material.

(c)次に、上述した残りの焼結原料と、残りの副原料と、残りの炭材と、からなる配合原料の残部を、(b)で得られた被覆予備造粒物とともにドラムミキサーに投入し、水分を添加しながら混合、造粒して造粒物である3層構造の擬似粒子を得た。   (C) Next, the remainder of the blended raw material consisting of the remaining sintered raw material, the remaining auxiliary raw material, and the remaining carbonaceous material, together with the coated pre-granulated product obtained in (b), is a drum mixer. The mixture was mixed and granulated while adding water to obtain pseudo particles having a three-layer structure as a granulated product.

上記(a)で得られた予備造粒物は鉄鉱石原料中63mass%であり、残りの鉄鉱石原料は、37mass%であった。配合した全炭材量は、新原料と副原料の合計量に対し4.5mass%とした。これらの製造条件を整理して表5の本発明例1の欄に示す。   The pre-granulated product obtained in the above (a) was 63 mass% in the iron ore raw material, and the remaining iron ore raw material was 37 mass%. The total amount of coal blended was 4.5 mass% with respect to the total amount of new raw materials and auxiliary raw materials. These manufacturing conditions are organized and shown in the column of Invention Example 1 in Table 5.

Figure 2007291455
Figure 2007291455

上記の(c)で製造したの擬似粒子は焼結機に装入され、通常の空気吸引下で焼結した。得られた焼結鉱の品質を表6の本発明例1の欄に示す。焼結鉱の品質の評価は、日本工業規格JIS M8711規定された方法により落下強度(シャッターインデックス:SIで示されるシャッター強度)を、日本工業規格JIS M8713に規定された方法で被還元性指数(RI)を、また日本工業規格JIS M8720に規定された方法で還元粉化指数(RDI)を求めて行った。   The pseudo particles produced in the above (c) were charged into a sintering machine and sintered under normal air suction. The quality of the obtained sintered ore is shown in the column of Invention Example 1 in Table 6. Evaluation of the quality of sintered ore is based on the drop strength (shutter index: shutter strength indicated by SI) according to the method defined in Japanese Industrial Standard JIS M8711, and the reducibility index (method) defined in Japanese Industrial Standard JIS M8713. RI), and a reduced powder index (RDI) was determined by the method specified in Japanese Industrial Standard JIS M8720.

Figure 2007291455
Figure 2007291455

本発明例1で得られた焼結鉱は、SiO2含有量が4.0mass%、CaO含有量が7.0mass%であり、SIが90、RIが66、RDIが33と、高強度で被還元性、耐還元粉化性が良好な焼結鉱であった。 The sintered ore obtained in Inventive Example 1 has a high strength of SiO 2 content of 4.0 mass%, CaO content of 7.0 mass%, SI of 90, RI of 66, and RDI of 33. It was a sintered ore with good reducibility and resistance to reduction dusting.

(本発明例2)
この実施例においては、表4に示す配合割合で焼結鉱を製造した。予め鉱石銘柄A、B、D、Gの粉鉄鉱石に対し炭材を含有量が1mass%となるように、マグネサイトとブルーサイトをMaO含有量が同じく1mass%となるように添加・混合した後予備造粒したこと以外は実施例1と同様にして焼結鉱を製造した。製造条件と品質を表5、表6の本発明例2の欄に示す。
(Invention Example 2)
In this example, sintered ore was produced at a blending ratio shown in Table 4. Magnesite and brucite were previously added and mixed so that the content of MaO was 1 mass% so that the carbonaceous material content would be 1 mass% with respect to the ore brands A, B, D, and G fine iron ores. A sintered ore was produced in the same manner as in Example 1 except that the subsequent preliminary granulation was performed. Manufacturing conditions and quality are shown in Tables 5 and 6 in the column of Example 2 of the present invention.

得られた焼結鉱は、SiO2含有量が4.0mass%、CaO含有量が7.0mass%であり、SIが90、RIが66、RDIが34と,高強度で被還元性、耐還元粉化性が良好な焼結鉱であった。 The obtained sintered ore has a SiO 2 content of 4.0 mass%, a CaO content of 7.0 mass%, SI of 90, RI of 66, and RDI of 34, high strength, reducibility, resistance It was a sintered ore with good reduced powdering properties.

(本発明例3)
予備造粒物を製造する際に、ドロマイトをMaO含有量が4.0mass%となるように添加・混合したこと以外は実施例1と同様にして焼結鉱を製造した。製造条件と品質を表5、表6の本発明例3の欄に示す。
(Invention Example 3)
Sintered ore was produced in the same manner as in Example 1 except that dolomite was added and mixed so that the MaO content was 4.0 mass% when the preliminary granulated product was produced. The production conditions and quality are shown in the column of Invention Example 3 in Tables 5 and 6.

得られた焼結鉱は、SiO2含有量が4.0mass%、CaO含有量が7.0%であり、SIが91、RIが67、RDIが33と,高強度で被還元性、耐還元粉化性が良好な焼結鉱であった。 The obtained sintered ore has a SiO 2 content of 4.0 mass%, a CaO content of 7.0%, SI of 91, RI of 67 and RDI of 33, high strength, reducibility, resistance It was a sintered ore with good reduced powdering properties.

(本発明例4)
予備造粒物の炭材の含有量が3mass%となるように予備造粒し、被覆予備造粒物を得たこと以外は実施例1と同様にして焼結鉱を製造した。製造条件と品質を表5、表6の本発明例4の欄に示す。
(Invention Example 4)
Sintered ore was produced in the same manner as in Example 1 except that the pre-granulated material was pre-granulated so that the carbonaceous material content in the pre-granulated material was 3 mass%, and a coated pre-granulated material was obtained. The production conditions and quality are shown in the column of Invention Example 4 in Tables 5 and 6.

得られた焼結鉱は、SiO2含有量が4.0mass%、CaO含有量が7.0mass%であり、SIが91、RIが67、RDIが32と,高強度で被還元性、耐還元粉化性が良好な焼結鉱であった。 The obtained sintered ore has a SiO 2 content of 4.0 mass%, a CaO content of 7.0 mass%, SI of 91, RI of 67, and RDI of 32, high strength, reducibility, resistance It was a sintered ore with good reduced powdering properties.

(本発明例5)
成品焼結鉱のSiO2含有量が5.0mass%となるように珪石を、成品焼結鉱のCaO含有量が9.0%massとなるように石灰石を配合した以外は、実施例1と同様にして焼結鉱を製造した。製造条件と品質を表5、表6の本発明例5の欄に示す。
(Invention Example 5)
Example 1 except that silica stone is mixed so that the SiO 2 content of the product sintered ore is 5.0 mass%, and limestone is mixed so that the CaO content of the product sintered ore is 9.0% mass. A sintered ore was produced in the same manner. Production conditions and quality are shown in Tables 5 and 6 in the column of Example 5 of the present invention.

得られた焼結鉱は、SiO2含有量が5.0mass%、CaO含有量が9.0mass%であり、SIが94、RIが66、RDIが31と,高強度で被還元性、耐還元粉化性が良好な焼結鉱であった。 The obtained sintered ore has a SiO 2 content of 5.0 mass%, a CaO content of 9.0 mass%, SI of 94, RI of 66, and RDI of 31, high strength, reducibility, resistance It was a sintered ore with good reduced powdering properties.

(比較例1)
鉱石銘柄A〜I全ての粉鉄鉱石に、成品焼結鉱のSiO2含有量が4.0%massとなるように珪石を、成品焼結鉱のCaO含有量が7.0%massとなるように石灰石を配合した。また、返鉱は、新原料(粉鉄鉱石原料)と副原料の和に対し20mass%となるように配合した。
(Comparative Example 1)
Ore brands A to I all of the fine iron ores are made of silica so that the SiO 2 content of the product sintered ore becomes 4.0% mass, and the CaO content of the product sintered ore becomes 7.0% mass. Limestone was formulated as follows. In addition, the return ore was blended so as to be 20 mass% with respect to the sum of the new raw material (fine iron ore raw material) and the auxiliary raw material.

すべての配合原料をドラムミキサーに投入し、水分を添加しながら混合、造粒し、単層の擬似粒子を得た。配合した全炭材量は、新原料と副原料の合計量に対し4.5mass%とした。これらの製造条件を整理して表7の比較例1の欄に示す。   All the raw materials were put into a drum mixer and mixed and granulated while adding water to obtain single layer pseudo particles. The total amount of coal blended was 4.5 mass% with respect to the total amount of new raw materials and auxiliary raw materials. These manufacturing conditions are organized and shown in the column of Comparative Example 1 in Table 7.

Figure 2007291455
Figure 2007291455

上記の擬似粒子を焼結機に装入し、焼結後に得られた焼結鉱の品質を表8の比較例1の欄に示す。   The quality of the sintered ore obtained after the above pseudo particles are charged into a sintering machine and sintered is shown in the column of Comparative Example 1 in Table 8.

Figure 2007291455
Figure 2007291455

比較例1で得られた焼結鉱は、SiO2含有量が4.0mass%、CaO含有量が7.0mass%であり、SIが85、RIが73、RDIが45と、落下強度が低く、RI、RDIが劣っていた。 The sintered ore obtained in Comparative Example 1 has a SiO 2 content of 4.0 mass%, a CaO content of 7.0 mass%, an SI of 85, an RI of 73, and an RDI of 45, resulting in low drop strength. RI and RDI were inferior.

(比較例2)
予め鉱石銘柄A、B、D、Gの粉鉄鉱石に対し炭材の含有量が1mass%となるように炭材のみを添加・混合した後予備造粒し、CaO含有量が10.0mass%となるように、石灰石を予備造粒物の表面に外装化し、被覆予備造粒物を得たこと以外は本発明例1と同様にして焼結鉱を製造した。製造条件と品質を表7、表8の比較例2の欄に示す。
(Comparative Example 2)
Pre-granulation after adding and mixing only the carbonaceous material so that the content of the carbonaceous material is 1 mass% with respect to the ore brand A, B, D, G powder iron ore in advance, the CaO content is 10.0 mass% As described above, sintered ore was produced in the same manner as in Example 1 of the present invention except that limestone was externally coated on the surface of the preliminary granulated material to obtain a coated preliminary granulated material. Manufacturing conditions and quality are shown in the column of Comparative Example 2 in Tables 7 and 8.

得られた焼結鉱は、SiO2含有量が4.0mass%、CaO含有量が7.0%であり、SIが79、RIが74、RDIが46と、落下強度が低く、RI、RDIが劣っていた。 The obtained sintered ore has a SiO 2 content of 4.0 mass%, a CaO content of 7.0%, SI of 79, RI of 74, RDI of 46, low drop strength, RI, RDI Was inferior.

(比較例3)
成品焼結鉱のSiO2含有量が5.0mass%となるように珪石を、成品焼結鉱のCaO含有量が9.0%massとなるように石灰石を配合した以外は、比較例1と同様にして製造した。製造条件と品質を表7、表8の比較例3の欄に示す。
(Comparative Example 3)
Comparative Example 1 except that silica stone was mixed so that the SiO 2 content of the product sintered ore was 5.0 mass%, and limestone was blended so that the CaO content of the product sintered ore was 9.0% mass. Produced in the same manner. Manufacturing conditions and quality are shown in the column of Comparative Example 3 in Tables 7 and 8.

得られた焼結鉱は、SiO2含有量が5.0mass%であり、CaO含有量が9.0mass%であり、SIが86、RIが66、RDIが40と、落下強度が低く、RDIが劣っていた。 The obtained sintered ore has a SiO 2 content of 5.0 mass%, a CaO content of 9.0 mass%, SI of 86, RI of 66, RDI of 40, low drop strength, RDI Was inferior.

本発明に係る焼結鉱の製造方法の一実施形態を説明するフロー図である。It is a flowchart explaining one Embodiment of the manufacturing method of the sintered ore concerning this invention.

Claims (4)

少なくとも粉鉄鉱石を含有する鉄源原料と、副原料と、炭材とからなる配合原料を混合し、水分を添加して造粒した後に焼結機へ供給し、前記炭材を燃焼させて溶融、冷却し、SiO2:4.0〜5.0mass%、CaO:7〜9mass%を含有する焼結鉱を製造するに際して、まず、前記粉鉄鉱石の一部と、前記炭材の一部と、前記副原料のうちMgOを含有する副原料の少なくとも一部とを予め混合、造粒して予備造粒物を形成し、該予備造粒物の外周に前記副原料のうちCaOを含有する副原料の一部を被覆することにより被覆予備造粒物を形成し、引き続き、該被覆予備造粒物と前記配合原料の残部とを混合、造粒してから焼結機へ供給することを特徴とする焼結鉱の製造方法。 Mix the blended raw material consisting of iron source raw material containing at least fine iron ore, auxiliary raw material, and carbonaceous material, add water and granulate, then supply to the sintering machine, burn the carbonaceous material When a sintered ore containing SiO 2 : 4.0 to 5.0 mass% and CaO: 7 to 9 mass% is manufactured by melting and cooling, first, a part of the fine iron ore and one of the carbon materials Part and at least a part of the auxiliary raw material containing MgO among the auxiliary raw materials are premixed and granulated to form a preliminary granulated product, and CaO of the auxiliary raw material is added to the outer periphery of the preliminary granulated product. A coated pre-granulated material is formed by coating a part of the contained auxiliary material, and then the coated pre-granulated material and the remainder of the blended material are mixed and granulated before being supplied to the sintering machine. The manufacturing method of the sintered ore characterized by the above-mentioned. SiO2含有量が3.6mass%以下の粉鉄鉱石を用いて予備造粒物を形成することを特徴とする請求項1に記載の焼結鉱の製造方法。 The method for producing a sintered ore according to claim 1, wherein the pre-granulated material is formed using fine iron ore having a SiO 2 content of 3.6 mass% or less. CaO含有量が1mass%以上、9mass%以下の被覆予備造粒物を形成することを特徴とする請求項1または請求項2に記載の焼結鉱の製造方法。   The method for producing a sintered ore according to claim 1 or 2, wherein a coated pre-granulated product having a CaO content of 1 mass% or more and 9 mass% or less is formed. 予備造粒物の炭材含有量を1mass%以上とすることを特徴とする請求項1ないし請求項3のいずれかに記載の焼結鉱の製造方法。   The method for producing a sintered ore according to any one of claims 1 to 3, wherein the carbonaceous material content of the pre-granulated product is 1 mass% or more.
JP2006121506A 2006-04-26 2006-04-26 Method for manufacturing sintered ore Pending JP2007291455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006121506A JP2007291455A (en) 2006-04-26 2006-04-26 Method for manufacturing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006121506A JP2007291455A (en) 2006-04-26 2006-04-26 Method for manufacturing sintered ore

Publications (1)

Publication Number Publication Date
JP2007291455A true JP2007291455A (en) 2007-11-08

Family

ID=38762352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006121506A Pending JP2007291455A (en) 2006-04-26 2006-04-26 Method for manufacturing sintered ore

Country Status (1)

Country Link
JP (1) JP2007291455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015929A (en) * 2018-07-23 2020-01-30 日本製鉄株式会社 Manufacturing method of sintered ore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015929A (en) * 2018-07-23 2020-01-30 日本製鉄株式会社 Manufacturing method of sintered ore
JP7073959B2 (en) 2018-07-23 2022-05-24 日本製鉄株式会社 Sintered ore manufacturing method

Similar Documents

Publication Publication Date Title
CN105308194A (en) Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore
CA2799548A1 (en) Process for producing granular metal
WO2011021577A1 (en) Unfired carbon-containing agglomerate for blast furnaces and production method therefor
JP2006265569A (en) Method for producing sintered ore and pseudo-grain for producing sintered ore
JP6288462B2 (en) Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore
JP2014214334A (en) Method for manufacturing sintered ore
JP4781807B2 (en) Manufacturing method of dephosphorizing agent for steel making using sintering machine
JP2007327096A (en) Method for manufacturing sintered ore using brucite
JP4972761B2 (en) Method for producing sintered ore and pseudo particles for producing sintered ore
JP3900721B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JP2009019224A (en) Method for manufacturing sintered ore
JP6477167B2 (en) Method for producing sintered ore
JP2003096521A (en) Sintered ore blended with high alumina iron ore, and production method therefor
JP2008088533A (en) Method for manufacturing sintered ore
JP2001348623A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP4725230B2 (en) Method for producing sintered ore
JP2007291455A (en) Method for manufacturing sintered ore
JP4816119B2 (en) Method for producing sintered ore
JP2008196027A (en) Method for manufacturing sintered ore
JP2001294945A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP4415690B2 (en) Method for producing sintered ore
JP4462008B2 (en) Method for producing sintered ore and pseudo particles for producing sintered ore containing reduced iron
JP2003313614A (en) Method for manufacturing sintered ore with little slag
JP6004191B2 (en) Sintering raw material manufacturing method
JP5995004B2 (en) Sintering raw material manufacturing method