JP5598399B2 - Method for producing reduced iron - Google Patents
Method for producing reduced iron Download PDFInfo
- Publication number
- JP5598399B2 JP5598399B2 JP2011071553A JP2011071553A JP5598399B2 JP 5598399 B2 JP5598399 B2 JP 5598399B2 JP 2011071553 A JP2011071553 A JP 2011071553A JP 2011071553 A JP2011071553 A JP 2011071553A JP 5598399 B2 JP5598399 B2 JP 5598399B2
- Authority
- JP
- Japan
- Prior art keywords
- iron
- mass
- sio
- slag
- agglomerated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Iron (AREA)
Description
本発明は、還元鉄の製造方法に関するものであり、特に高強度且つ高金属化率の還元鉄を効率良く得ることができる製造方法に関する。 The present invention relates to a method for producing reduced iron, and more particularly to a production method capable of efficiently obtaining reduced iron having a high strength and a high metalization rate.
近年、製銑・製鋼工程で発生する酸化鉄を含む粉鉄鉱石類やダスト類等の粉状の酸化鉄原料を利用して還元鉄を製造する方法は広く用いられている。
このような還元鉄の製造方法としては、例えば特許文献1に示すように、製鉄ダストや鉄鉱石と還元材である炭素質の還元材とを混合した後に塊成化処理を施して、ペレット又はブリケット状の塊成化物とし、この塊成化物を連続的に炉床が移動する回転炉床炉等の還元炉で加熱還元する方法が知られている。
In recent years, methods for producing reduced iron using powdered iron oxide raw materials such as powdered iron ores and dusts containing iron oxide generated in the ironmaking and steelmaking processes have been widely used.
As a method for producing such reduced iron, for example, as shown in Patent Document 1, an agglomeration treatment is performed after mixing iron-making dust or iron ore with a carbonaceous reducing material as a reducing material, and pellets or A method is known in which a briquette agglomerate is produced, and the agglomerate is heated and reduced in a reduction furnace such as a rotary hearth furnace in which the hearth moves continuously.
ところで、最近では、資源の枯渇や環境に対する懸念から、製鉄所や製錬所等においてはゼロエミッション化を図る傾向にある。そのため、粉状酸化鉄原料に、若干の鉄分を含み、且つCaO、SiO2、MgO、Al2O3、MnOを主成分とするスラグ成分を多く含有する、非鉄製錬のプロセスで発生したスラグ等や、電気炉ダストを脱亜鉛処理した残渣等、従来においては埋立処理に供されていた含鉄の副生物や残渣を加え、還元処理することが検討されている。上記副生物や残渣としては、銅製錬時の副産物である銅スラグや鉄精鉱等、亜鉛製錬時の副産物である亜鉛スラグ等、鉛製錬時の副生物である鉛スラグ等、電気炉ダストの脱亜鉛処理残渣である還元鉄クリンカ等が考えられる。 Recently, due to resource depletion and environmental concerns, steelworks and smelters tend to achieve zero emissions. Therefore, slag generated in a non-ferrous smelting process that contains a small amount of iron in the powdered iron oxide raw material and contains many slag components mainly composed of CaO, SiO 2 , MgO, Al 2 O 3 , and MnO. Etc., and iron-containing by-products and residues conventionally used for landfill treatment, such as residues obtained by dezincing electric furnace dust, are being studied for reduction treatment. Electric furnaces such as copper slag and iron concentrate, which are by-products during copper smelting, zinc slag, which is a by-product during zinc smelting, lead slag, which is a by-product during lead smelting, A reduced iron clinker or the like that is a residue of dezincing treatment of dust can be considered.
しかしながら、上記副生物や残渣を酸化鉄原料に加えて塊成化物を成型し、その塊成化物を還元炉に装入して還元鉄を製造した場合、加熱・還元の過程において、塊成化物中のスラグ成分が液化して大量の融液が発生し、結果として塊成化物全体が溶融した状態となってしまう。そして、溶融した塊成化物は、還元炉の炉床に融着、固化し、炉床表面上に強固な融着物を生成、成長させるため、連続操業を阻害する要因となる。 However, when the above by-products and residues are added to the iron oxide raw material to form an agglomerated material, and the agglomerated material is charged into a reduction furnace to produce reduced iron, the agglomerated material is heated and reduced during the process. The slag component inside is liquefied and a large amount of melt is generated, and as a result, the entire agglomerated material is melted. The melted agglomerated material is fused and solidified on the hearth of the reduction furnace to produce and grow a strong melted material on the surface of the hearth, which becomes a factor that hinders continuous operation.
また、還元炉における還元処理された塊成化物は、高炉や転炉への搬送過程において、設備機器や他の塊成化物との接触によって破壊されず、また、高炉での使用に耐えうるよう、高炉の炉頂から落下させた場合や炉内装入物の荷重による圧力が作用した場合でも容易に破壊されない程度の圧壊強度を備えていることが必要である。
しかしながら、上述のように、スラグ成分が液化して融液として塊成化物から流出すると、塊成化物に空隙部分が多くなり、全体として脆くなるという現象が生じることから、このような塊成化物は、搬送や高炉での使用に耐えられない可能性が高い。
In addition, the agglomerates reduced in the reduction furnace are not destroyed by contact with equipment and other agglomerates in the process of transporting to the blast furnace or converter, and can withstand use in the blast furnace. It is necessary to have a crushing strength that is not easily destroyed even when dropped from the top of the blast furnace or when pressure is applied due to the load in the furnace interior.
However, as described above, when the slag component is liquefied and flows out from the agglomerated material as a melt, the agglomerated material has a phenomenon that the voids increase and the whole becomes brittle. May not be able to withstand transport and use in a blast furnace.
さらに、塊成化物中に含まれるCaO、SiO2、MgO、Al2O3、MnO等スラグ成分、特にSiO2が酸化鉄と反応し、被還元性を低下させる酸化鉄系化合物(例えばFayalite(=2FeO・SiO2))を生成することが知られている。上述の非鉄製錬等の副産物や残渣は、その成分中にSiO2を非常に多く含んでいることから、上記酸化鉄系化合物を生成しやすく、これにより塊成化物における還元反応が阻害され、金属化率が低い還元鉄が製造される可能性がきわめて高いと考えられる。 Furthermore, slag components such as CaO, SiO 2 , MgO, Al 2 O 3 , and MnO contained in the agglomerated material, particularly SiO 2 reacts with iron oxide to reduce the reducibility, such as iron oxide compounds (for example, Fayalite ( = 2FeO.SiO 2 )). By-products and residues such as the above-mentioned non-ferrous smelting contain a very large amount of SiO 2 in the components, so that the iron oxide-based compound is easily generated, thereby inhibiting the reduction reaction in the agglomerated product, It is very likely that reduced iron with a low metallization rate is produced.
本発明の技術的課題は、非鉄製錬のプロセスで発生した副生物や、電気炉ダストを脱亜鉛処理した残渣に含まれる含鉄の副生物・残渣を利用して、酸化鉄原料の還元を阻害することなく、高強度且つ高金属化率の還元鉄を効率良く製造することが可能な還元鉄の製造方法を提供することにある。 The technical problem of the present invention is to inhibit the reduction of the iron oxide raw material by using by-products generated in the non-ferrous smelting process and iron-containing by-products / residues contained in the dezincification residue of the electric furnace dust. An object of the present invention is to provide a method for producing reduced iron, which can efficiently produce reduced iron having high strength and high metallization rate.
上記課題を解決するため、本発明の還元鉄の製造方法は、酸化鉄原料と炭素質還元材とを含む塊成化物を還元炉に装入して還元し、金属鉄分とスラグ成分との混合物からなる還元鉄を製造する方法において、上記塊成化物を成型するに際して、上記酸化鉄原料に、銅製錬副生物、亜鉛製錬副生物、鉛製錬副産物、電気炉ダストの脱亜鉛処理残渣のうちの少なくとも1つの副生物又は残渣を含むCaO、SiO2、MgO、Al2O3、MnOを含有する含鉄添加材を添加し、上記塊成化物中の上記スラグ成分の含有量を26.0〜57.8質量%とし、かつ、上記スラグ成分のスラグ塩基度:(CaO質量%+MgO質量%)/SiO2質量%を、0.9超4.03以下の範囲に制御し、且つ、塊成化物中におけるSiO2とトータル鉄T.Feとの含有率の関係:SiO2質量%/T.Fe質量%を0.35超、0.6未満の範囲に制御することを特徴とする。 In order to solve the above-mentioned problems, the method for producing reduced iron according to the present invention reduces the agglomerate containing an iron oxide raw material and a carbonaceous reducing material by charging into a reduction furnace, and a mixture of metallic iron and slag components. In the method for producing reduced iron comprising, when the agglomerate is formed, the iron oxide raw material includes a copper smelting by-product, a zinc smelting by-product, a lead smelting by-product, and a dezincification residue of electric furnace dust. An iron-containing additive containing CaO, SiO 2 , MgO, Al 2 O 3 and MnO containing at least one by-product or residue is added, and the content of the slag component in the agglomerated product is 26.0. The slag basicity of the slag component : (CaO mass% + MgO mass%) / SiO 2 mass% is controlled in the range of more than 0.9 and 4.03 or less , and SiO 2 and the total in the formed product T. Relation of content ratio with Fe: SiO 2 mass% / T. Fe mass% is controlled in the range of more than 0.35 and less than 0.6.
本発明によれば、酸化鉄原料にCaO、SiO2、MgO、Al2O3、MnOを含有する含鉄添加材を添加して、スラグ塩基度:(CaO質量%+MgO質量%)/SiO2質量%と、SiO2質量%/T.Fe質量%とをそれぞれ適切な範囲に制御したことにより、被還元性を低下させる酸化鉄系化合物の生成を抑制すると共に、塊成化物が全体として溶融することが防止されるため、高強度且つ高金属化率の還元鉄を効率良く製造することができる。
また、上記含鉄添加材として、非鉄製錬のプロセスで発生した副生物や、電気炉ダストを脱亜鉛処理した残渣を用いることができるため、これらの副生物や残渣を有効に利用することができる。
According to the present invention, an iron-containing additive containing CaO, SiO 2 , MgO, Al 2 O 3 and MnO is added to the iron oxide raw material, and slag basicity: (CaO mass% + MgO mass%) / SiO 2 mass %, SiO 2 mass% / T. By controlling the Fe mass% to an appropriate range, it is possible to suppress the formation of iron oxide compounds that reduce the reducibility and to prevent the agglomerated material from melting as a whole. Reduced iron with a high metalization rate can be produced efficiently.
Further, as the iron-containing additive, by-products generated in the non-ferrous smelting process and residues obtained by dezincing electric furnace dust can be used, so that these by-products and residues can be used effectively. .
以下、本発明に係る還元鉄の製造方法について詳細に説明する。
本発明に係る還元鉄の製造の基本的な流れとしては、まず、原料となる粉状の酸化鉄原料と、還元材である炭材と、CaO、SiO2、MgO、Al2O3、MnOを含有する含鉄添加材とをそれぞれ別々のサイロ等に貯蔵しておく。そして、これら酸化鉄原料と炭材に含鉄添加材を添加、混入させた上で、これらを破砕混合する破砕混合工程を行う。この破砕混合工程の後、該破砕混合工程で生成された混合物に水分含有率調整を行って混練する混練工程を行い、該混練工程後、その混合物を塊成化して塊成化物を成型する塊成化工程を行う。
その後、成型された塊成化物をさらに乾燥させる乾燥工程を経て、この乾燥した塊成化物を、回転炉床炉等の還元炉に投入して還元し還元鉄とする還元処理工程を行うことにより、還元鉄が製造される。
Hereinafter, the manufacturing method of reduced iron concerning the present invention is explained in detail.
As a basic flow of manufacturing reduced iron according to the present invention, first, a powdered iron oxide raw material that is a raw material, a carbon material that is a reducing material, CaO, SiO 2 , MgO, Al 2 O 3 , MnO Are stored in separate silos or the like. And after adding an iron-containing additive to these iron oxide raw materials and carbonaceous materials and mixing them, a crushing and mixing step of crushing and mixing them is performed. After this crushing and mixing step, a kneading step is performed in which the mixture produced in the crushing and mixing step is kneaded by adjusting the moisture content, and after the kneading step, the mixture is agglomerated to form an agglomerated product. Perform the formation process.
Thereafter, through a drying process for further drying the formed agglomerated material, the dried agglomerated material is put into a reduction furnace such as a rotary hearth furnace to reduce it to reduce iron, thereby performing a reduction treatment process. Reduced iron is produced.
この還元鉄の製造方法で使用される酸化鉄原料としては、転炉ダストや電気炉ダスト、溶解炉ダスト、高炉ダスト等のダスト類や粉鉄鉱石類等の粉状の酸化鉄が主に使用される。
また、酸化鉄原料の還元に必要となる還元材としては、石炭や樹脂を主体とする使用済み製品を乾留して得られる炭素主体の粒子等の炭素質のものが使用される。
As the iron oxide raw material used in this reduced iron manufacturing method, dust such as converter dust, electric furnace dust, melting furnace dust, blast furnace dust, and powdered iron oxide such as fine iron ore are mainly used. Is done.
Moreover, as a reducing material required for the reduction | restoration of an iron oxide raw material, carbonaceous things, such as a carbon-based particle | grains obtained by dry-distilling the used product mainly having coal and resin, are used.
一方、上記含鉄添加材は、鉄分を含み、CaO、SiO2、MgO、Al2O3、MnOのスラグ成分を含有する、非鉄製錬のプロセスで発生したスラグ等の副産物や、電気炉ダストを脱亜鉛処理した残渣等(以下、「非鉄製錬副産物等」という。)を含むものである。
具体的に、この含鉄添加材としては、銅製錬副産物である銅スラグや鉄精鉱等、亜鉛製錬副産物である亜鉛スラグ等、鉛製錬副産物である鉛スラグ等、電気炉ダストの脱亜鉛処理後の残渣である還元鉄クリンカ等を用いることができる。
On the other hand, the iron-containing additive contains iron and contains by-products such as slag generated in a non-ferrous smelting process containing CaO, SiO 2 , MgO, Al 2 O 3 and MnO slag components, and electric furnace dust. It contains dezincified residues (hereinafter referred to as “non-ferrous smelting by-products”).
Specifically, the iron-containing additives include copper slag and iron concentrate, which are copper smelting byproducts, zinc slag, which is a zinc smelting byproduct, lead slag, which is a lead smelting byproduct, dezincification of electric furnace dust, etc. A reduced iron clinker or the like that is a residue after the treatment can be used.
上記含鉄添加材を添加、混入させるに際しては、上記塊成化物中の上記スラグ成分のスラグ塩基度:(CaO質量%+MgO質量%)/SiO2質量%を0.9超の範囲に制御し、且つ、塊成化物中におけるSiO2とトータル鉄T.Feとの含有率の関係:SiO2質量%/T.Fe質量%を0.35超、0.6未満の範囲に制御する。
これについて、具体的に説明する。
Adding the ferrous additive, when is mixed, the slag basicity of the slag component in the agglomerate: (CaO mass% + MgO mass%) / SiO 2 mass% were controlled in the range of greater than 0.9, In addition, SiO 2 and total iron T. Relation of content ratio with Fe: SiO 2 mass% / T. The Fe mass% is controlled to be in the range of more than 0.35 and less than 0.6.
This will be specifically described.
既に述べたように、このような非鉄製錬副産物等を酸化鉄原料に添加して塊成化物を成型し、その塊成化物を還元炉に装入して還元鉄を製造すると、何も対策を施さなかった場合には、加熱・還元の過程において種々の問題が発生する。
即ち、還元反応中に塊成化物中のスラグ成分が液化して大量の融液が発生し、結果として塊成化物全体が溶融した状態となってしまう。これにより、溶融した塊成化物が、還元炉の炉床に融着・固化し、炉床表面上に強固な融着物を生成して成長させるため、連続操業を阻害する。さらに、スラグ成分を含む上記融液が塊成化物から流出すると、塊成化物に空隙部分が多くなり全体として脆くなるため、圧壊強度が著しく低下して搬送や高炉での使用に耐えられない。
その一方で、塊成化物中に含まれるスラグ成分が酸化鉄と反応して、ファイアライト等の被還元性を低下させる酸化鉄系化合物を生成するが、上述の非鉄製錬副産物等は、スラグ成分を多く含んでいることから、この酸化鉄系化合物を生成しやすい。これにより、塊成化物における還元反応が阻害され、金属化率が高い還元鉄を製造することが難しくなる。
As already mentioned, adding such non-ferrous smelting by-products to the iron oxide raw material to form agglomerates and charging the agglomerates into a reduction furnace to produce reduced iron will take no countermeasures. If no treatment is performed, various problems occur in the heating / reduction process.
That is, during the reduction reaction, the slag component in the agglomerated material is liquefied to generate a large amount of melt, and as a result, the entire agglomerated material is melted. As a result, the molten agglomerated material is fused and solidified on the hearth of the reduction furnace to produce and grow a strong melted material on the hearth surface, thus hindering continuous operation. Furthermore, if the melt containing the slag component flows out of the agglomerated material, the agglomerated material has a large number of voids and becomes brittle as a whole, so that the crushing strength is remarkably lowered and cannot be used in transportation or blast furnaces.
On the other hand, the slag component contained in the agglomerated product reacts with iron oxide to produce an iron oxide-based compound that reduces the reducibility of firelight and the like. Since it contains many components, it is easy to produce this iron oxide compound. Thereby, the reduction reaction in the agglomerated material is inhibited, and it becomes difficult to produce reduced iron having a high metalization rate.
これらの問題点に鑑み、本発明者らは、ダスト類等の酸化鉄原料と炭素質還元材、さらに非鉄製錬副産物等を含む含鉄添加物とを含む塊成化物によって還元鉄を製造するに際して、加熱・還元過程における塊成化物の溶融、及び金属化率、並びに還元処理後の塊成化物の圧壊強度の各観点から考察し、上述の問題を解消するべく鋭意研究を重ねた。
この結果、次のような知見を得るに至った。
In view of these problems, the present inventors have produced reduced iron using an agglomerate containing an iron oxide raw material such as dust, a carbonaceous reducing material, and an iron-containing additive containing non-ferrous smelting by-products. From the viewpoints of melting of the agglomerates in the heating / reduction process, the metallization rate, and the crushing strength of the agglomerates after the reduction treatment, the inventors have intensively studied to solve the above problems.
As a result, the following knowledge was obtained.
まず、加熱・還元過程における塊成化物の溶融に関して述べる。
還元反応中の塊成化物の溶融は、塊成化物中のスラグ成分であるCaO、SiO2、MgO、Al2O3、MnOの融点が低い場合に起こり易く、一般的にスラグ中のSiO2の比率が大きくなるとスラグの融点は低下する傾向にあることがわかっている。
一方で、塊成化物中の鉄分に比してスラグ成分の含有量が多いと、塊成化物の溶融現象も顕著になることがわかった。
そのため、還元反応中の塊成化物の溶融現象は(1)式で表わされる、塊成化物中に含まれるSiO2とトータルFe(T.Fe)との関係式からなるパラメータAとして整理できるとの知見を得た。
A=SiO2質量%/T.Fe質量% ・・・(1)
First, the melting of the agglomerates during the heating / reduction process will be described.
The melting of the agglomerated product during the reduction reaction is likely to occur when the melting points of CaO, SiO 2 , MgO, Al 2 O 3 , and MnO, which are slag components in the agglomerated material, are low, and generally SiO 2 in the slag. It has been found that the melting point of slag tends to decrease as the ratio increases.
On the other hand, it was found that when the content of the slag component is larger than the iron content in the agglomerated material, the melting phenomenon of the agglomerated material becomes remarkable.
Therefore, the melting phenomenon of the agglomerate during the reduction reaction can be arranged as parameter A consisting of the relational expression between SiO 2 contained in the agglomerate and total Fe (T.Fe) represented by the equation (1). I got the knowledge.
A = SiO 2 mass% / T. Fe mass% (1)
本発明者らは、上記含鉄添加物を含む塊成化物において、還元反応中の該塊成化物の溶融を回避できる上記パラメータAの範囲を特定すべく、ラボ実験を行った。
実験に際しては、上述した方法に基づき、含鉄添加物を種々の割合で添加したタブレット状の塊成化物を成型し、還元処理を行った。なお、塊成化物の成型に際して使用される酸化鉄原料及び還元材は同じ成分のものを同量だけ使用し、還元処理は、いずれの塊成化物に対しても、N2雰囲気下、1250℃で15分行った。
この結果を図1に示す。
The present inventors conducted a laboratory experiment in order to identify the range of the parameter A that can avoid melting of the agglomerated product during the reduction reaction in the agglomerated product containing the iron-containing additive.
In the experiment, based on the method described above, tablet-like agglomerates to which iron-containing additives were added at various ratios were molded and subjected to reduction treatment. The iron oxide raw material and the reducing material used for molding the agglomerated material are the same components in the same amount, and the reduction treatment is performed at 1250 ° C. under N 2 atmosphere for any agglomerated material. For 15 minutes.
The result is shown in FIG.
この結果、パラメータAの値は0.6未満に制御すれば、還元反応中における塊成化物全体としての溶融を抑止することができることがわかった。
このパラメータAの値が0.6未満であると、塊成化物のスラグ成分が多少液化して融液が生じたとしても、大量の融液が発生、流出することはなかった。
一方、パラメータAの値が0.6以上であると、塊成化物中のスラグ成分が液化して大量の融液が発生し、塊成化物から流出した。そして、スラグ成分が流出した分、塊成化物の体積が還元処理前よりも数割小さくなると共に、塊成化物の空隙率が著しく大きくなり脆くなった。
As a result, it has been found that if the value of parameter A is controlled to be less than 0.6, melting of the agglomerated product as a whole during the reduction reaction can be suppressed.
When the value of this parameter A is less than 0.6, even if the slag component of the agglomerated material is slightly liquefied and a melt is produced, a large amount of melt is not generated and does not flow out.
On the other hand, when the value of the parameter A is 0.6 or more, the slag component in the agglomerated material is liquefied to generate a large amount of melt and flows out from the agglomerated material. And since the volume of the agglomerate became several ten percent smaller than before the reduction treatment, the porosity of the agglomerated material was significantly increased and became brittle as the slag component flowed out.
ここで、本発明において「還元反応中に塊成化物が溶融する」とは、塊成化物を通常の重力環境下である水平面に静置して還元した際に、パラメータX=(還元後の塊成化物の水平方向投影長さ)/(還元前の塊成化物の水平方向投影長さ)、パラメータY=(還元後の塊成化物の鉛直方向投影長さ)/(還元前の塊成化物の鉛直方向投影長さ)としたとき、これらのX,Yが、Y<X×0.7の関係を満たす場合と定義する。これは、溶融により塊成化物全体の形状が崩れて自己の形態を保持できなくなり、塊成化物が鉛直方向にのみ圧縮されている状態を表している。 Here, in the present invention, “the agglomerated material melts during the reduction reaction” means that when the agglomerated material is reduced by standing on a horizontal plane under a normal gravity environment, the parameter X = (after reduction) Horizontal projection length of agglomerate) / (horizontal projection length of agglomerate before reduction), parameter Y = (vertical projection length of agglomerate after reduction) / (agglomeration before reduction) It is defined that these X and Y satisfy the relationship of Y <X × 0.7. This represents a state in which the shape of the entire agglomerated material collapses due to melting and the shape of the agglomerated material cannot be maintained, and the agglomerated material is compressed only in the vertical direction.
次に、金属化率に関して述べる。
塊成化物中に含まれるSiO2が多く含まれていると、還元反応中にこのSiO2と酸化鉄(FeO)とが反応してファイアライトを生成し、FeOの還元反応が阻害されることが知られている。一方で、CaOやMgOといった塩基性成分が存在するとFeOがより活性な状態となり、被還元性が向上することがわかっている。
そのため、ダスト類等の酸化鉄原料から還元鉄を製造するに際して、酸化鉄原料が含有している原料由来のスラグ成分(この場合は、CaO、SiO2、MgO、Al2O3)を制御するために、CaOやMgOの改質剤を塊成化物に添加し、スラグ成分のスラグ塩基度:(CaO質量%+MgO質量%)/SiO2質量%を所定の範囲に制御することにより、高金属化率の還元鉄を安定的に得る技術が開発されている(例えば、国際公開番号WO2009/123115)。
Next, the metalization rate will be described.
If a large amount of SiO 2 contained in the agglomerated material is contained, this SiO 2 reacts with iron oxide (FeO) during the reduction reaction to generate firelite, which inhibits the reduction reaction of FeO. It has been known. On the other hand, it is known that when basic components such as CaO and MgO are present, FeO becomes more active and reducibility is improved.
Therefore, when producing reduced iron from iron oxide raw material such as dust types, slag components (in this case, CaO, SiO 2, MgO, Al 2 O 3) from the raw materials iron oxide raw material contains controls the Therefore, by adding a modifier of CaO or MgO to the agglomerated material and controlling the slag basicity of the slag component: (CaO mass% + MgO mass%) / SiO 2 mass% to a predetermined range, high metal A technique for stably obtaining reduced iron having a high conversion rate has been developed (for example, International Publication No. WO2009 / 123115).
そこで、本発明者らは、酸化鉄原料が含有している原料由来のスラグ成分とその量、及び非鉄製錬副産物等が含有しているスラグ成分とその量に着目し、上記酸化鉄材料に非鉄製錬副産物等を含有する含鉄添加材を添加・混入して塊成化物を成型する場合におけるスラグ成分のスラグ塩基度:(CaO質量%+MgO質量%)/SiO2質量%を制御すべきパラメータBとし、最も適切なパラメータBを特定すべく、ラボ実験を行った。
実験に際しては、上述した方法に基づき、含鉄添加物を種々の割合で添加したタブレット状の塊成化物を成型し、還元処理を行った。なお、塊成化物の成型に際して使用される酸化鉄原料及び還元材は同じ成分のものを同量だけ使用し、還元処理は、いずれの塊成化物に対しても、N2雰囲気下、1250℃で15分行った。
この結果を図2に示す。
Therefore, the present inventors pay attention to the slag component derived from the raw material contained in the iron oxide raw material and the amount thereof, and the slag component contained in the non-ferrous smelting by-product and the amount thereof, and to the iron oxide material. Parameters for controlling slag basicity of slag component when adding agglomerated material containing non-ferrous smelting by-products, etc. and molding agglomerates: (CaO mass% + MgO mass%) / SiO 2 mass% A laboratory experiment was conducted to identify the most appropriate parameter B.
In the experiment, based on the method described above, tablet-like agglomerates to which iron-containing additives were added at various ratios were molded and subjected to reduction treatment. The iron oxide raw material and the reducing material used for molding the agglomerated material are the same components in the same amount, and the reduction treatment is performed at 1250 ° C. under N 2 atmosphere for any agglomerated material. For 15 minutes.
The result is shown in FIG.
この結果、パラメータBの値をB>0.9に制御すれば、少なくとも金属化率85%以上の高金属化率を還元鉄を製造することができることがわかり、その後の溶解工程において溶鉄等を得るに際して良好な溶解効率を期待することができる。
一方、このパラメータBの値が0.9以下であると金属化率が85%を下回っていた。
As a result, it can be seen that if the value of parameter B is controlled to B> 0.9, reduced iron can be produced with a high metallization rate of at least 85% or more. When obtained, good dissolution efficiency can be expected.
On the other hand, when the value of this parameter B was 0.9 or less, the metallization rate was less than 85%.
さらに、還元処理後の塊成化物の圧壊強度に関して述べる。
上述のように、スラグ塩基度であるパラメータBの値をB>0.9に制御することで、塊成化物中の酸化鉄の還元性を向上させることができるが、塊成化物の成型時に上記含鉄添加材を多く添加した場合、特にCaOやMgOの添加が過剰となった場合には、還元処理後の塊成化物の圧壊強度が急激に低下する現象が見られた。
この現象について、本発明者らが解析を進めたところ、本発明において使用する上記含鉄添加材は、原料が非鉄製錬副産物等であるためスラグ成分を多く含んでおり、上記パラメータBの制御を目的としたCaOやMgOを添加するために上記含鉄添加材の添加を行った結果、塊成化物中のスラグ成分が著しく多くなったためであることがわかった。
Furthermore, the crushing strength of the agglomerated material after the reduction treatment will be described.
As described above, by controlling the value of parameter B, which is the slag basicity, to B> 0.9, it is possible to improve the reducibility of iron oxide in the agglomerated material, but at the time of molding the agglomerated material When a large amount of the iron-containing additive was added, particularly when the addition of CaO or MgO was excessive, a phenomenon was observed in which the crushing strength of the agglomerated material after the reduction treatment rapidly decreased.
As a result of the analysis by the present inventors, the iron-containing additive used in the present invention contains a lot of slag components because the raw material is a non-ferrous smelting by-product or the like. As a result of adding the iron-containing additive in order to add the intended CaO or MgO, it was found that the slag component in the agglomerated material was remarkably increased.
一方で、上記パラメータBの値がB<0.7のものについて、JIS Z−8841に準じて還元処理後の塊成化物の強度試験を行った結果、2942.1N(300kgf)超となり、本発明のような非鉄製錬副産物等を含む含鉄添加材を使用しない、通常の還元鉄の製造方法により製造した場合において、安全率を考慮した一般的な強度(約980.7N(100kgf))を大幅に上回ることがわかった。
この現象についても発明者らが解析を進めた結果、塊成化物中のスラグ成分の融点が溶融現象を発現しない範囲で適度に低温になった一方で、非鉄製錬副産物等を含む含鉄添加物を使用しているために塊成化物中にスラグ成分が多く含まれ、その多量のスラグ成分が塊成化物内部である程度融液化することでバインダーのような役割を果たしたためであることがわかった。
On the other hand, as a result of carrying out the strength test of the agglomerated material after the reduction treatment according to JIS Z-8841, the value of the parameter B is B <0.7, which is over 2942.1N (300 kgf). When manufactured by a normal method for producing reduced iron without using iron-containing additives including non-ferrous smelting by-products as in the invention, a general strength (about 980.7 N (100 kgf)) considering the safety factor is obtained. It was found to be significantly higher.
As a result of the inventors' analysis on this phenomenon, the iron-containing additive containing non-ferrous smelting by-products etc., while the melting point of the slag component in the agglomerated material became a moderately low temperature in the range where the melting phenomenon does not occur It was found that the agglomerate contained a large amount of slag component, and that a large amount of the slag component melted to some extent inside the agglomerate and played a role like a binder. .
これにより、本発明者らは、塊成化物の原料として非鉄製錬副産物を含む含鉄添加材を使用する場合、塊成化物中のスラグ組成を適切に制御し、還元反応中における塊成化物の溶融を制御することで、還元処理後の塊成化物の圧壊強度を大幅に向上できるとの知見を得た。
そして、この知見に基づき、本発明者らはさらに検討を行った結果、塊成化物の圧壊強度を制御するパラメータとして、上述した加熱・還元過程における塊成化物の溶融の際に使用したパラメータAの(1)式と同じ式を利用することができることを見出した。
さらに、塊成化物の圧壊強度を確保するための(1)式の適切な範囲を求めるラボ実験を行った。
Thereby, when using the iron-containing additive containing a non-ferrous smelting by-product as a raw material of the agglomerated material, the present inventors appropriately control the slag composition in the agglomerated material and reduce the agglomerated material during the reduction reaction. The knowledge that the crushing strength of the agglomerated material after the reduction treatment can be greatly improved by controlling the melting was obtained.
Based on this finding, the present inventors have further studied, and as a parameter for controlling the crushing strength of the agglomerated material, the parameter A used when melting the agglomerated material in the heating / reduction process described above. It has been found that the same formula as the formula (1) can be used.
Furthermore, a laboratory experiment was conducted to obtain an appropriate range of the formula (1) for ensuring the crushing strength of the agglomerated material.
実験に際しては、上述した方法に基づき、含鉄添加物を種々の割合で添加したタブレット状の塊成化物を成型し、還元処理を行った。なお、塊成化物の成型に際して使用される酸化鉄原料及び還元材は同じ成分のものを同量だけ使用し、還元処理は、いずれの塊成化物に対しても、N2雰囲気下、1250℃で15分行った。
そして、還元処理後の各条件の塊成化物について、JIS Z−8841に準じた強度試験を行った。
なお、この実験は、上記パラメータB、即ちスラグ塩基度がB>0.9を満たすものについてのみ行った。
この結果を図3に示す。
In the experiment, based on the method described above, tablet-like agglomerates to which iron-containing additives were added at various ratios were molded and subjected to reduction treatment. The iron oxide raw material and the reducing material used for molding the agglomerated material are the same components in the same amount, and the reduction treatment is performed at 1250 ° C. under N 2 atmosphere for any agglomerated material. For 15 minutes.
And the intensity | strength test according to JISZ-8841 was done about the agglomerate of each condition after a reduction process.
This experiment was performed only for the parameter B, that is, the slag basicity satisfying B> 0.9.
The result is shown in FIG.
この結果、パラメータAの値、つまり、SiO2質量%/T.Fe質量%の値が0.35超の場合に、還元処理後の塊成化物の圧壊強度が概ね約980.7N(100kgf)以上となることがわかった。なお、この場合においては、通常は塊成化物を成型する際にバインダーを混入するところ、このようなバインダーを使用しなくても十分な保形性、強度が確保できることもわかった。
逆に、パラメータAの値が0.35以下の場合は、980.7N(100kgf)以上の圧縮強度を確保することができなかった。
As a result, the value of parameter A, that is, SiO 2 mass% / T. It was found that the crushing strength of the agglomerated material after the reduction treatment is approximately 980.7 N (100 kgf) or more when the value of Fe mass% is more than 0.35. In this case, normally, when agglomerated material is molded, a binder is mixed, and it has also been found that sufficient shape retention and strength can be secured without using such a binder.
Conversely, when the value of parameter A is 0.35 or less, a compressive strength of 980.7 N (100 kgf) or more could not be ensured.
したがって、非鉄製錬副産物等を含む含鉄添加材を酸化鉄原料に添加して塊成化物を成型し、その塊成化物を還元炉に装入して還元鉄を製造する場合においては、パラメータAの範囲、即ち、塊成化物中におけるSiO2とトータル鉄T.Feとの含有率の関係:SiO2質量%/T.Fe質量%を0.35〜0.6の範囲で制御することにより、加熱・還元過程における塊成化物の溶融を抑止することができ、且つ還元処理後の塊成化物の適切な圧壊強度の確保を図ることができる。
さらに、パラメータBの範囲、即ち、上記塊成化物中の上記スラグ成分のスラグ塩基度:(CaO質量%+MgO質量%)/SiO2質量%を、0.9超の範囲に制御することにより、高金属化率の還元鉄を得ることができる。なお、このスラグ塩基度(CaO質量%+MgO質量%)/SiO2質量%については、電気炉ダストのスラグ塩基度が通常2.0〜3.0程度であることに鑑み、電気炉スラグを含鉄添加材として使用して塊成化物のスラグ塩基度を4.0程度まであげても、85%以上の高金属化率の還元鉄を得ることができることがわかっている。
Therefore, when the iron-containing additive containing non-ferrous smelting by-products and the like is added to the iron oxide raw material to form an agglomerate, and the agglomerate is charged into a reduction furnace to produce reduced iron, the parameter A Range, that is, SiO 2 and total iron T. in the agglomerated material. Relation of content ratio with Fe: SiO 2 mass% / T. By controlling the Fe mass% in the range of 0.35 to 0.6, melting of the agglomerated product in the heating / reducing process can be suppressed, and the appropriate crushing strength of the agglomerated product after the reduction treatment can be reduced. It can be secured.
Furthermore, by controlling the range of parameter B, that is, the slag basicity of the slag component in the agglomerated material: (CaO mass% + MgO mass%) / SiO 2 mass% to a range exceeding 0.9, Reduced iron with a high metallization rate can be obtained. In addition, about this slag basicity (CaO mass% + MgO mass%) / SiO 2 mass%, considering that the slag basicity of the electric furnace dust is usually about 2.0 to 3.0, the electric furnace slag is iron-containing. It has been found that even when the slag basicity of the agglomerated product is increased to about 4.0 by using it as an additive, reduced iron having a high metallization rate of 85% or more can be obtained.
ところで、上記含鉄添加材は、スラグ成分であるCaO、SiO2、MgO、Al2O3、MnOの含有量の合計が20質量%以上である、銅製錬副生物、亜鉛製錬副生物、鉛製錬副産物、電気炉ダストの脱亜鉛処理残渣のうちの少なくとも1つの副生物又は残渣を含んでいるものとすることが好ましい。
なお、使用する含鉄添加材は、必要に応じて、CaO、SiO2、MgO、Al2O3、MnOの各成分を加えて、これらの含有量の合計20質量%以上になるように調整してもよい。
By the way, the iron-containing additive is a copper smelting by-product, zinc smelting by-product, lead having a total content of CaO, SiO 2 , MgO, Al 2 O 3 and MnO as slag components of 20% by mass or more. It is preferable that at least one by-product or residue of the dezincification residue of the smelting by-product and electric furnace dust is included.
In addition, the iron-containing additive to be used is adjusted so that the total content thereof is 20% by mass or more by adding each component of CaO, SiO 2 , MgO, Al 2 O 3 and MnO as necessary. May be.
以上、本発明の還元鉄の製造方法について述べたが、上述の還元鉄の製造方法によれば、酸化鉄原料にCaO、SiO2、MgO、Al2O3、MnOを含有する含鉄添加材を添加して、スラグ塩基度:(CaO質量%+MgO質量%)/SiO2質量%と、SiO2質量%/T.Fe質量%とをそれぞれ適切な範囲に制御したことにより、被還元性を低下させる酸化鉄系化合物の生成を抑制すると共に、塊成化物が全体として溶融を抑止し、且つ還元処理後の塊成化物として十分な圧壊強度を確保することができるため、高強度且つ高金属化率の還元鉄を効率良く製造することができる。
また、上記含鉄添加材として、非鉄製錬のプロセスで発生した副生物や、電気炉ダストを脱亜鉛処理した残渣を用いることができるため、これらの副生物や残渣を有効に利用することができ、ゼロエミッション化、資源の有効利用化を図ることができる。
Having described the method for producing reduced iron of the present invention, according to the production method of reduced iron described above, CaO iron oxide raw material, the SiO 2, MgO, ferrous additive material containing Al 2 O 3, MnO And slag basicity: (CaO mass% + MgO mass%) / SiO 2 mass%, SiO 2 mass% / T. By controlling the Fe mass% to an appropriate range, the formation of iron oxide compounds that reduce the reducibility is suppressed, and the agglomerated product is prevented from melting as a whole, and the agglomeration after the reduction treatment is performed. Since sufficient crushing strength can be ensured as a compound, reduced iron with high strength and high metalization rate can be efficiently produced.
Further, as the iron-containing additive, by-products generated in the process of non-ferrous smelting and residues obtained by dezincing electric furnace dust can be used, so these by-products and residues can be used effectively. , Zero emission, and effective use of resources.
本発明の効果を確認するため、SiO2質量%/T.Fe質量%とスラグ塩基度とを種々の値に制御した塊成化物を成型し、それぞれについて還元処理を行う実験を行った。
実験に際して、各塊成化物の成型を上述の実施の形態と同様の工程で行い、含鉄添加物を種々の割合で添加したタブレット状の塊成化物を成型した。塊成化物の成型に際して使用される酸化鉄原料及び還元材は同じ成分のものを同量だけ使用した。
還元処理に際しては、いずれの塊成化物に対しても、N2雰囲気下、炉温1250℃の回転炉床炉で15分行った。
なお、還元処理後の各条件の塊成化物についての強度試験は、JIS Z−8841に準じて行った。
次表に、各塊成化物のスラグ成分の含有量、SiO2質量%/T.Fe質量%、スラグ塩基度の値を示すと共に、還元処理後の金属化率、圧壊強度、本発明において規定する溶融の条件を満たしているか否かを評価した結果を示す。
In order to confirm the effect of the present invention, SiO 2 % by mass / T. An agglomerated product in which Fe mass% and slag basicity were controlled to various values was molded, and an experiment was conducted in which each was subjected to a reduction treatment.
During the experiment, each agglomerated material was molded in the same process as in the above-described embodiment, and tablet-like agglomerated materials to which iron-containing additives were added at various ratios were molded. The iron oxide raw material and the reducing material used at the time of molding the agglomerated material were the same components and used in the same amount.
In the reduction treatment, each agglomerate was subjected to a rotary hearth furnace at a furnace temperature of 1250 ° C. for 15 minutes in an N 2 atmosphere.
In addition, the strength test about the agglomerate of each condition after a reduction process was done according to JIS Z-8841.
The following table shows the slag component content of each agglomerated material, SiO 2 mass% / T. In addition to showing the values of Fe mass% and slag basicity, the metallization rate after reduction treatment, the crushing strength, and the results of evaluating whether or not the melting conditions specified in the present invention are satisfied are shown.
表1に示すように、本発明の範囲、即ち、SiO2質量%/T.Fe質量%の範囲が0.35〜0.6の範囲であり、且つスラグ塩基度が0.9超の範囲に制御された試料No.8については、還元処理後の金属化率が85%以上、圧壊強度が980.7N(100kgf)以上となり、また、本発明において規定する溶融に該当せず、融液の大量発生・流出は見られなかった(試料No.6,11〜13)。
一方、塊成化物のSiO2質量%/T.Fe質量%、スラグ塩基度が本発明の範囲外であるものについては、本発明の範囲のものに比べ、金属化率が低く、また圧壊強度も約980.1N(100kgf)に至らなかった。さらには、本発明において規定する溶融の状態となり、融液の大量発生し回転炉床炉の炉床に流出していた。
したがって、本発明の還元鉄の製造方法を実施することによって、被還元性を低下させる酸化鉄系化合物の生成を抑制すると共に、塊成化物が全体として溶融することが防止されるため、高強度且つ高金属化率の還元鉄を効率良く製造することができることが実証された。
As shown in Table 1, the scope of the present invention, that is, SiO 2 % by mass / T. In the sample No. 5 in which the Fe mass% range was 0.35 to 0.6 and the slag basicity was controlled to a range exceeding 0.9. For No. 8, the metallization rate after the reduction treatment is 85% or more, and the crushing strength is 980.7 N (100 kgf) or more. (Sample Nos. 6, 11 to 13).
On the other hand, SiO 2 mass% / T. In the case where the Fe mass% and the slag basicity were outside the range of the present invention, the metallization rate was lower than that of the range of the present invention, and the crushing strength did not reach about 980.1 N (100 kgf). Furthermore, the molten state specified in the present invention was reached, and a large amount of melt was generated and flowed out to the hearth of the rotary hearth furnace.
Therefore, by carrying out the method for producing reduced iron of the present invention, it is possible to suppress the formation of iron oxide compounds that reduce the reducibility and to prevent the agglomerates from melting as a whole. In addition, it has been demonstrated that reduced iron having a high metallization rate can be produced efficiently.
Claims (1)
上記塊成化物を成型するに際して、上記酸化鉄原料に、銅製錬副生物、亜鉛製錬副生物、鉛製錬副産物、電気炉ダストの脱亜鉛処理残渣のうちの少なくとも1つの副生物又は残渣を含むCaO、SiO2、MgO、Al2O3、MnOを含有する含鉄添加材を添加し、
上記塊成化物中の上記スラグ成分の含有量を26.0〜57.8質量%とし、かつ、上記スラグ成分のスラグ塩基度:(CaO質量%+MgO質量%)/SiO2質量%を、0.9超4.03以下の範囲に制御し、
且つ、塊成化物中におけるSiO2とトータル鉄T.Feとの含有率の関係:SiO2質量%/T.Fe質量%を0.35超、0.6未満の範囲に制御することを特徴とする還元鉄の製造方法。 In the method for producing reduced iron comprising a mixture of metallic iron and slag components, agglomerates containing an iron oxide raw material and a carbonaceous reducing material are charged into a reduction furnace and reduced.
When molding the agglomerated material, at least one by-product or residue of copper smelting by-product, zinc smelting by-product, lead smelting by-product, and electric furnace dust dezincification residue is added to the iron oxide raw material. Add an iron-containing additive containing CaO, SiO 2 , MgO, Al 2 O 3 , MnO,
The content of the slag component in the agglomerated product is 26.0 to 57.8% by mass, and the slag basicity of the slag component : (CaO mass% + MgO mass%) / SiO 2 mass% is 0 .9 to 4.03 or less ,
In addition, SiO 2 and total iron T. Relation of content ratio with Fe: SiO 2 mass% / T. A method for producing reduced iron, wherein the Fe mass% is controlled to be in a range of more than 0.35 and less than 0.6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011071553A JP5598399B2 (en) | 2011-03-29 | 2011-03-29 | Method for producing reduced iron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011071553A JP5598399B2 (en) | 2011-03-29 | 2011-03-29 | Method for producing reduced iron |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012207241A JP2012207241A (en) | 2012-10-25 |
JP5598399B2 true JP5598399B2 (en) | 2014-10-01 |
Family
ID=47187239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011071553A Active JP5598399B2 (en) | 2011-03-29 | 2011-03-29 | Method for producing reduced iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5598399B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9994928B2 (en) | 2013-03-26 | 2018-06-12 | Posco | Method for recycling iron-containing by-products discharged from coal-based molten ironmaking process, system therefor, and reduced iron agglomeration system |
JP6235439B2 (en) * | 2014-09-10 | 2017-11-22 | 株式会社神戸製鋼所 | Manufacturing method of granular metallic iron |
CN107082652B (en) * | 2017-05-25 | 2020-06-23 | 山东大学 | Manganese oxide-silicon oxide-aluminum oxide series activator metallization layer and preparation process thereof |
JP7280497B2 (en) * | 2019-04-22 | 2023-05-24 | 日本製鉄株式会社 | Method for producing reduced iron |
CN113736940B (en) * | 2021-07-26 | 2022-11-25 | 赛能杰高新技术股份有限公司 | Method for treating copper slag by rotary hearth furnace |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5047468B2 (en) * | 2005-03-31 | 2012-10-10 | 新日本製鐵株式会社 | Method for producing reduced iron |
CN101981209B (en) * | 2008-03-31 | 2013-06-26 | 新日铁住金株式会社 | Process for production of reduced iron |
JP5494071B2 (en) * | 2009-03-27 | 2014-05-14 | 新日鐵住金株式会社 | Method for producing reduced iron |
-
2011
- 2011-03-29 JP JP2011071553A patent/JP5598399B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012207241A (en) | 2012-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4669189B2 (en) | Production of granular metallic iron | |
RU2447164C2 (en) | Method of producing pellets from recovered iron and method of producing cast iron | |
JP4167101B2 (en) | Production of granular metallic iron | |
JP5397021B2 (en) | Reduced iron production method | |
EP2189546A1 (en) | Process for manufacturing molded products of direct-reduced iron and process for manufacturing pig iron | |
JP5598399B2 (en) | Method for producing reduced iron | |
JP4603626B2 (en) | Method for producing reduced iron | |
CA2801606A1 (en) | Process for producing molten steel using granular metallic iron | |
WO2011118738A1 (en) | Carbon-material-containing iron oxide briquette composition, method for producing same, and method for producing reduced iron using same | |
JP5334240B2 (en) | Method for producing reduced iron agglomerates for steelmaking | |
JP5303727B2 (en) | Method for producing reduced iron agglomerates for steelmaking | |
JP2011252226A (en) | Manufacturing method of metal iron | |
JP5428534B2 (en) | Pig iron production method using high zinc content iron ore | |
JP5466590B2 (en) | Reduced iron manufacturing method using carbonized material agglomerates | |
JP6288462B2 (en) | Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore | |
JP2009041107A (en) | Method for manufacturing granular metal | |
JP2006265569A (en) | Method for producing sintered ore and pseudo-grain for producing sintered ore | |
JP4972761B2 (en) | Method for producing sintered ore and pseudo particles for producing sintered ore | |
JP4462008B2 (en) | Method for producing sintered ore and pseudo particles for producing sintered ore containing reduced iron | |
JP2008196027A (en) | Method for manufacturing sintered ore | |
JP5397020B2 (en) | Reduced iron production method | |
JP5503364B2 (en) | Carbonaceous material agglomerated material, method for producing the same, and method for producing reduced iron using the same | |
JP2011179090A (en) | Method for producing granulated iron | |
JP2007169707A (en) | Method for producing dephosphorizing agent for steelmaking using sintering machine | |
JP4415690B2 (en) | Method for producing sintered ore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130212 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20130228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140415 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140715 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140728 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5598399 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |