JP7280497B2 - Method for producing reduced iron - Google Patents

Method for producing reduced iron Download PDF

Info

Publication number
JP7280497B2
JP7280497B2 JP2019081265A JP2019081265A JP7280497B2 JP 7280497 B2 JP7280497 B2 JP 7280497B2 JP 2019081265 A JP2019081265 A JP 2019081265A JP 2019081265 A JP2019081265 A JP 2019081265A JP 7280497 B2 JP7280497 B2 JP 7280497B2
Authority
JP
Japan
Prior art keywords
oxide
based modifier
reduced iron
fly ash
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019081265A
Other languages
Japanese (ja)
Other versions
JP2020176322A (en
Inventor
広樹 折橋
亮司 眞壁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019081265A priority Critical patent/JP7280497B2/en
Publication of JP2020176322A publication Critical patent/JP2020176322A/en
Application granted granted Critical
Publication of JP7280497B2 publication Critical patent/JP7280497B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は還元鉄の製造方法に関する。 The present invention relates to a method for producing reduced iron.

製銑および製鋼工程で発生する酸化鉄を多量に含有するダスト粉を原料として、還元鉄を製造する技術が知られている。具体的には、上記のダスト粉に、還元材としての炭材および水分を添加、混合して、ペレットまたはブリケット状に成型した後、その成型体を乾燥し、次いで、還元炉で加熱・還元することにより還元鉄を製造する。 BACKGROUND ART Techniques for producing reduced iron from dust powder containing a large amount of iron oxide generated in ironmaking and steelmaking processes are known. Specifically, a carbonaceous material and water as a reducing agent are added to the dust powder, mixed, and molded into pellets or briquettes. The molded body is dried, then heated and reduced in a reducing furnace. to produce reduced iron.

そして、還元鉄の強度を確保することを目的として、原料にさらにSiOを含有する酸化物系改質材を添加する方法が用いられている(例えば、特許文献1を参照)。 For the purpose of ensuring the strength of the reduced iron, a method of adding an oxide-based modifier containing SiO 2 to the raw material is used (see, for example, Patent Document 1).

特開2006-283136号公報Japanese Patent Application Laid-Open No. 2006-283136

ところで、酸化物系改質材を原料中に添加することにより、還元鉄の強度を高めることが可能になる反面、過剰な添加はコストの増加を招く結果となる。そのため、酸化物系改質材の添加量を最適化することは重要な課題といえる。 By the way, by adding an oxide-based modifier to the raw material, it is possible to increase the strength of the reduced iron, but excessive addition results in an increase in cost. Therefore, it can be said that optimizing the addition amount of the oxide-based modifier is an important issue.

酸化物系改質材として、様々な組成を有する材料およびそれらの混合材料が用いられ得るため、材料の種類に応じた最適な添加量を経験的に求めることは、極めて効率が悪く現実的とはいえない。 Since materials having various compositions and mixed materials thereof can be used as the oxide modifier, it is extremely inefficient and impractical to empirically determine the optimum amount to be added according to the type of material. I can't.

そのため、酸化物系改質材の組成に応じて、当該酸化物系改質材の最適な添加量を決定することが可能な方法の開発が求められている。 Therefore, development of a method capable of determining the optimum addition amount of the oxide-based modifier according to the composition of the oxide-based modifier is required.

本発明は、還元鉄を製造する際に用いられる酸化物系改質材の添加量を事前に最適化することが可能な還元鉄の製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing reduced iron capable of optimizing in advance the addition amount of an oxide-based modifier used when producing reduced iron.

本発明は、上記の課題を解決するためになされたものであり、下記の還元鉄の製造方法を要旨とする。 The present invention has been made to solve the above problems, and the gist thereof is the following method for producing reduced iron.

(1)酸化鉄を主体とし炭材を含む原料に、SiOおよび未燃炭素を含有する酸化物系改質材を添加し、成型、乾燥した後、還元炉に装入し、所定環境下で加熱することで、前記酸化鉄を還元して還元鉄を製造する方法であって、
前記酸化物系改質材中の前記未燃炭素の含有量に基づき、前記酸化物系改質材の前記所定環境下における液相率を推定する工程と、
前記液相率に基づき、前記酸化物系改質材の添加量を決定する工程と、を備える、
還元鉄の製造方法。
(1) An oxide-based modifier containing SiO 2 and unburned carbon is added to a raw material mainly composed of iron oxide and containing a carbonaceous material, and after molding and drying, it is charged into a reducing furnace and placed under a predetermined environment. A method for producing reduced iron by reducing the iron oxide by heating with
a step of estimating the liquid phase ratio of the oxide-based modifier under the predetermined environment based on the content of the unburned carbon in the oxide-based modifier;
determining the addition amount of the oxide-based modifier based on the liquid phase ratio;
A method for producing reduced iron.

(2)前記酸化物系改質材が、フライアッシュを含む、
上記(1)に記載の還元鉄の製造方法。
(2) the oxide-based modifier contains fly ash;
The method for producing reduced iron according to (1) above.

(3)前記フライアッシュに含まれる未燃炭素量が2%以上である、
上記(2)に記載の還元鉄の製造方法。
(3) The amount of unburned carbon contained in the fly ash is 2% or more,
The method for producing reduced iron according to (2) above.

(4)前記酸化物系改質材が、さらにベントナイトを含む、
上記(2)または(3)に記載の還元鉄の製造方法。
(4) the oxide-based modifier further contains bentonite;
The method for producing reduced iron according to (2) or (3) above.

本発明によれば、還元鉄を製造する際に用いられる酸化物系改質材の添加量を事前に最適化することができ、高効率で還元鉄を製造することが可能になる。 ADVANTAGE OF THE INVENTION According to this invention, the addition amount of the oxide-type modifier used when manufacturing reduced iron can be optimized in advance, and it becomes possible to manufacture reduced iron with high efficiency.

ベントナイトおよびフライアッシュの、温度(℃)と計算される液相率(%)との関係を示すグラフである。1 is a graph showing the relationship between bentonite and fly ash temperature (° C.) and calculated liquid fraction (%). 未燃炭素の含有量と、FeOおよびFeの合計含有量に対するFeOの含有量の比率との関係を表すグラフである。4 is a graph showing the relationship between the content of unburned carbon and the ratio of the content of FeO to the total content of FeO and Fe 2 O 3 . 未燃炭素の含有量とフライアッシュの添加比との関係を示すグラフである。4 is a graph showing the relationship between the content of unburned carbon and the addition ratio of fly ash.

本発明者らは、酸化物系改質材の最適な添加量を事前に決定する方法について鋭意検討を行い、以下の知見を得るに至った。 The present inventors have conducted intensive studies on a method for determining in advance the optimum addition amount of the oxide-based modifier, and have obtained the following findings.

還元鉄の構造を詳細に観察した結果、酸化物系改質材は、高温環境下において一部が液化し、還元鉄の空隙を埋め緻密な構造とすることにより、還元鉄の強度を向上させていることが分かった。すなわち、酸化物系改質材の最適な添加量を求めるに際しては、当該酸化物系改質材の高温環境下における液相率が重要な指標になると考えられる。 As a result of detailed observation of the structure of reduced iron, the oxide-based modifier partially liquefies in a high-temperature environment, fills the voids in the reduced iron and creates a dense structure, thereby improving the strength of the reduced iron. I found out that In other words, it is considered that the liquid phase ratio of the oxide-based modifier in a high-temperature environment is an important index when determining the optimum addition amount of the oxide-based modifier.

そこで、本発明者らはまず、表1に示す成分を有するベントナイトおよびフライアッシュを酸化物系改質材としてそれぞれ用いて、その添加量と得られた還元鉄の強度との関係を調査した。 Therefore, the present inventors first used bentonite and fly ash having the components shown in Table 1 as oxide modifiers, respectively, and investigated the relationship between the amount added and the strength of the resulting reduced iron.

Figure 0007280497000001
Figure 0007280497000001

図1は、上記成分を有するベントナイトおよびフライアッシュの、温度(℃)と計算される液相率(%)との関係を示すグラフである。図1から、還元鉄の製造時の温度に近い1000℃におけるベイナイトおよびフライアッシュの液相率は、それぞれ20%および7%であることが分かる。すなわち、化学成分から計算される液相率に基づいた場合、還元鉄の強度を同等とするためには、ベントナイトに対して2.9倍の量のフライアッシュを添加する必要があると推定される。 FIG. 1 is a graph showing the relationship between the temperature (° C.) and the calculated liquid fraction (%) of bentonite and fly ash having the above components. From FIG. 1, it can be seen that the liquid phase ratios of bainite and fly ash at 1000° C., which is close to the temperature at which reduced iron is produced, are 20% and 7%, respectively. That is, based on the liquid phase ratio calculated from the chemical composition, it is estimated that fly ash must be added in an amount 2.9 times that of bentonite in order to equalize the strength of reduced iron. be.

しかしながら、実際にそれぞれの酸化物系改質材を用いて還元鉄を製造した結果、ベントナイトに対して1.1倍の量のフライアッシュを添加するだけで同等の強度が得られることが分かった。 However, as a result of actually producing reduced iron using each oxide-based modifier, it was found that equivalent strength can be obtained by adding fly ash in an amount 1.1 times that of bentonite. .

そこで、本発明者らは、このような差を示す理由について、さらに調査を行った。その結果、還元炉内の還元的な環境において、フライアッシュ中に含まれる未燃炭素が還元剤としての役割を果たし、FeがFeOへと還元されることにより、液相率が大幅に増加したことを見出すに至った。ここで、「未燃炭素」とは、石炭燃焼ボイラーで使用する石炭が完全に燃焼されず燃え残ったものを指す。 Therefore, the present inventors further investigated the reason for such a difference. As a result, in the reducing environment in the reduction furnace, the unburned carbon contained in the fly ash acts as a reducing agent, reducing Fe 2 O 3 to FeO, thereby significantly increasing the liquid phase ratio. and found that it increased to Here, the term "unburned carbon" refers to carbon that remains after the coal used in the coal-fired boiler is not completely burned.

本発明は上記の知見に基づいてなされたものである。以下に、本発明の一実施形態に係る還元鉄の製造方法について説明する。 The present invention has been made based on the above findings. A method for producing reduced iron according to an embodiment of the present invention will be described below.

本発明においては、酸化鉄を主体とし炭材を含む原料に、酸化物系改質材を添加し、成型、乾燥した後、還元炉に装入し、所定環境下で加熱することで、酸化鉄を還元することにより、還元鉄を製造する。そして、本発明に用いられる酸化物系改質材は、SiOおよび未燃炭素を含有する。酸化物系改質材の成分については特に制限は設けないが、通常、酸化物系改質材に含有されるSiOの量は、40~70質量%、未燃炭素の量は、2~20質量%である。 In the present invention, an oxide modifier is added to a raw material mainly composed of iron oxide and containing a carbonaceous material, molded and dried, charged into a reducing furnace, and heated under a predetermined environment to oxidize the raw material. Reduced iron is produced by reducing iron. And the oxide-based modifier used in the present invention contains SiO 2 and unburned carbon. Although there are no particular restrictions on the components of the oxide-based modifier, the amount of SiO 2 contained in the oxide-based modifier is usually 40 to 70% by mass, and the amount of unburned carbon is 2 to 70% by mass. 20% by mass.

なお、上記の所定環境には、還元炉内での加熱温度および加熱時間等の雰囲気条件が含まれる。通常、加熱温度は1000~1450℃、加熱時間は15~25分である。 The predetermined environment includes atmospheric conditions such as heating temperature and heating time in the reducing furnace. Usually, the heating temperature is 1000-1450° C. and the heating time is 15-25 minutes.

酸化物系改質材の種類については特に制限は設けない。酸化物系改質材としては、例えば、フライアッシュ、ベントナイト、パーライトまたは珪藻土等が挙げられる。なかでも、高濃度のSiOを含有し、かつ未燃炭素を含有するフライアッシュを含むことが好ましい。フライアッシュは、製鉄所からの副産物であり、安価で安定的に入手可能なためである。 There are no particular restrictions on the type of oxide-based modifier. Examples of oxide-based modifiers include fly ash, bentonite, perlite, and diatomaceous earth. Among them, it is preferable to contain fly ash containing high concentration of SiO 2 and containing unburned carbon. This is because fly ash is a by-product from steel mills and is inexpensive and stably available.

使用するフライアッシュの組成についても特に制限はないが、液相率を高めるためには、2%以上の未燃炭素を含んでいることが望ましい。 The composition of the fly ash to be used is also not particularly limited, but it preferably contains 2% or more of unburned carbon in order to increase the liquid phase ratio.

また、酸化物系改質材は、フライアッシュに加えて、さらにベントナイトを含んでいてもよい。ベントナイトは、フライアッシュに比べて高価ではあるが、フライアッシュよりも液化を促進するSiO含有量が高く、液化を阻害するFe含有量が低いためである。 Moreover, the oxide-based modifier may further contain bentonite in addition to fly ash. Although bentonite is more expensive than fly ash, it has a higher SiO 2 content that promotes liquefaction and a lower Fe 2 O 3 content that inhibits liquefaction than fly ash.

そして、まず、酸化物系改質材中の未燃炭素の含有量に基づき、酸化物系改質材の還元炉内での所定環境下における液相率を推定する。液相率の推定方法については特に制限は設けないが、未燃炭素の含有量から、所定環境下でのFeOとFeとの比率を求めた後、当該成分系での液相率を、例えば、熱力学計算ソフト(「Factsage」、株式会社計算力学研究センター社製)を用いて算出することができる。 First, based on the content of unburned carbon in the oxide-based reforming material, the liquid phase ratio of the oxide-based reforming material under a predetermined environment in the reducing furnace is estimated. There is no particular limitation on the method for estimating the liquid phase ratio, but after obtaining the ratio of FeO and Fe 2 O 3 under a predetermined environment from the content of unburned carbon, the liquid phase ratio in the component system can be calculated using, for example, thermodynamic calculation software (“Factsage”, manufactured by Computational Mechanics Research Center Co., Ltd.).

なお、FeOとFeとの比率を求めるための推定式は、還元反応について微分方程式を解くことにより導出することができる。具体的には、FeOおよびFeの合計含有量に対するFeOの含有量の比率は、下記(i)式で表わされる推定式を用いて求めることができる。
FeO/(FeO+Fe)=1-exp(-CUB/5.4) ・・・(i)
但し、上記式中のFeOおよびFeは、それぞれ所定環境下で還元された後の酸化物系改質材中に含まれるFeOおよびFeの含有量(質量%)であり、CUBは、所定環境下で還元される前における酸化物系改質材中の未燃炭素の含有量(質量%)である。
An estimation formula for determining the ratio of FeO and Fe 2 O 3 can be derived by solving a differential equation for the reduction reaction. Specifically, the ratio of the content of FeO to the total content of FeO and Fe 2 O 3 can be obtained using the estimation formula represented by the following formula (i).
FeO/(FeO+Fe 2 O 3 )=1−exp(−C UB /5.4) (i)
However, FeO and Fe 2 O 3 in the above formula are the contents (% by mass) of FeO and Fe 2 O 3 contained in the oxide-based modifier after being reduced under a predetermined environment, respectively. CUB is the content (% by mass) of unburned carbon in the oxide-based reforming material before being reduced under a predetermined environment.

図2は、未燃炭素の含有量と、FeOおよびFeの合計含有量に対するFeOの含有量の比率との関係を表すグラフである。グラフ中の曲線は、上記(i)式を表しており、プロットは実験によって実測された値である。図2からも、(i)式で表わされる推定式と実験値がよく一致することが分かる。 FIG. 2 is a graph showing the relationship between the content of unburned carbon and the ratio of the content of FeO to the total content of FeO and Fe 2 O 3 . Curves in the graph represent the above formula (i), and plots are values actually measured by experiments. Also from FIG. 2, it can be seen that the estimation formula represented by the formula (i) and the experimental values are in good agreement.

続いて、得られた液相率に基づき、酸化物系改質材の添加量を決定する。酸化物系改質材の添加量を決定する方法についても、特に制限はない。例えば、予め液相率と最適な添加量との関係が経験的に求められている材料との液相率の比較により、添加量を求めることができる。 Subsequently, the amount of the oxide-based modifier to be added is determined based on the obtained liquid phase ratio. There is also no particular limitation on the method for determining the amount of the oxide-based modifier to be added. For example, the amount to be added can be obtained by comparing the liquid phase ratio with a material for which the relationship between the liquid phase ratio and the optimum amount to be added is empirically obtained in advance.

なお、上述のように、酸化物系改質材としては、フライアッシュ、ベントナイト等の様々な組成を有する材料およびそれらの混合材料が用いられる。酸化物系改質材の添加量の決定には、1種の材料または混合材料の組成に応じた最適な添加量の決定に加えて、それぞれの組成を有する複数の材料の最適な混合比率の決定も含まれるものとする。 As described above, materials having various compositions, such as fly ash and bentonite, and mixed materials thereof are used as oxide-based modifiers. In determining the addition amount of the oxide modifier, in addition to determining the optimum addition amount according to the composition of one material or mixed material, the optimum mixing ratio of multiple materials having each composition It shall also include decisions.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.

まず、表2に示す成分を有する、ベントナイトおよび3種類のフライアッシュ(リオティント炭、リデル炭およびスプリングクリーク炭)について、還元前の未燃炭素の含有量から、上記(i)式で表わされる推定式を用いて、還元後におけるFeOおよびFeの合計含有量に対するFeOの含有量の比率を算出した。さらに、還元前のFeOおよびFeの含有量と、上記比率から還元後のFeOおよびFeの含有量を算出した。その値を表2に併せて示す。 First, for bentonite and three types of fly ash (Rio Tinto coal, Liddell coal, and Spring Creek coal) having the components shown in Table 2, from the content of unburned carbon before reduction, the estimation represented by the above formula (i) The formula was used to calculate the ratio of the content of FeO to the total content of FeO and Fe 2 O 3 after reduction. Furthermore, the content of FeO and Fe 2 O 3 before reduction and the content of FeO and Fe 2 O 3 after reduction were calculated from the above ratio. The values are also shown in Table 2.

Figure 0007280497000002
Figure 0007280497000002

その後、還元後のFeOおよびFeの含有量の推定値から、株式会社計算力学研究センター社製の熱力学計算ソフト「Factsage」を用いて、1000℃の環境下での液相率をそれぞれ算出した。そして、得られた液相率に基づき、3種類のフライアッシュの、ベントナイトの必要添加量に対する比(添加比)を求めた。それらの結果を表2にまとめて示す。 After that, from the estimated content of FeO and Fe 2 O 3 after reduction, using the thermodynamic calculation software "Factsage" manufactured by Computational Mechanics Research Center Co., Ltd., the liquid phase ratio in an environment of 1000 ° C. calculated respectively. Then, based on the obtained liquid phase ratio, the ratio (addition ratio) of the three types of fly ash to the necessary amount of bentonite to be added was determined. These results are summarized in Table 2.

さらに、それぞれのフライアッシュに含まれる未燃炭素の含有量に応じた上記添加比を計算により求めた。その結果を図3に示す。図3は、未燃炭素の含有量とフライアッシュの添加比との関係を示すグラフである。 Furthermore, the addition ratio according to the content of unburned carbon contained in each fly ash was obtained by calculation. The results are shown in FIG. FIG. 3 is a graph showing the relationship between the content of unburned carbon and the addition ratio of fly ash.

また、図3には、リオティント炭およびリデル炭を用いた場合における、実績値を併せて示している。図3から分かるように、本発明によって決定されたフライアッシュの添加比の計算値と、従来の操業により経験的に求められた実績値とがよく一致していることが分かる。 In addition, FIG. 3 also shows actual values in the case of using Rio Tinto coal and Liddell coal. As can be seen from FIG. 3, the calculated value of the fly ash addition ratio determined by the present invention and the actual value obtained empirically by the conventional operation are in good agreement.

以上のように、本発明の方法を採用することで、新たな種類の酸化物系改質材を用いる場合であっても、その成分から、最適な添加量を決定することが可能である。 As described above, by adopting the method of the present invention, it is possible to determine the optimum addition amount from the components even when using a new kind of oxide-based modifier.

本発明によれば、還元鉄を製造する際に用いられる酸化物系改質材の添加量を事前に最適化することができ、高効率で還元鉄を製造することが可能になる。 ADVANTAGE OF THE INVENTION According to this invention, the addition amount of the oxide-type modifier used when manufacturing reduced iron can be optimized in advance, and it becomes possible to manufacture reduced iron with high efficiency.

Claims (3)

酸化鉄を主体とし炭材を含む原料に、SiOおよび未燃炭素を含有する酸化物系改質材を添加し、成型、乾燥した後、還元炉に装入し、所定環境下で加熱することで、前記酸化鉄を還元して還元鉄を製造する方法であって、
前記酸化物系改質材が、フライアッシュを含み、
前記未燃炭素は前記フライアッシュに含有されるものであり、
前記酸化物系改質材中の前記未燃炭素の含有量に基づき、前記酸化物系改質材中に含まれる鉄の、前記所定環境下でのFeOとFe との比率を推定し、
前記酸化物系改質材の化学成分、および推定されたFeOとFe との前記比率から、前記所定環境下での前記酸化物系改質材の化学成分を求め、
求められた前記所定環境下での前記酸化物系改質材の化学成分に基づき、熱力学計算ソフトを用いて、前記酸化物系改質材の前記所定環境下における液相率を算出する工程と、
前記酸化物系改質材の前記所定環境下における前記液相率と、予め液相率と最適な添加量との関係が経験的に求められている材料の液相率との比較により、前記酸化物系改質材の添加量を決定する工程と、を備える、
還元鉄の製造方法。
An oxide-based modifier containing SiO 2 and unburned carbon is added to a raw material mainly composed of iron oxide and containing carbonaceous material, molded, dried, charged into a reducing furnace, and heated under a predetermined environment. A method for producing reduced iron by reducing the iron oxide,
The oxide-based modifier contains fly ash,
The unburned carbon is contained in the fly ash,
Based on the content of the unburned carbon in the oxide-based modifier, the ratio of FeO and Fe 2 O 3 in the iron contained in the oxide-based modifier under the predetermined environment is estimated. death,
Obtaining the chemical composition of the oxide-based modifier under the predetermined environment from the chemical composition of the oxide-based modifier and the estimated ratio of FeO and Fe 2 O 3 ,
A step of calculating the liquid phase ratio of the oxide-based modifier under the predetermined environment using thermodynamic calculation software based on the determined chemical composition of the oxide-based modifier under the predetermined environment. and,
By comparing the liquid phase ratio of the oxide-based modifier under the predetermined environment with the liquid phase ratio of the material for which the relationship between the liquid phase ratio and the optimum addition amount is empirically obtained in advance, the above A step of determining the amount of the oxide-based modifier to be added,
A method for producing reduced iron.
前記フライアッシュに含まれる未燃炭素量が2%以上である、
請求項に記載の還元鉄の製造方法。
The amount of unburned carbon contained in the fly ash is 2% or more,
The method for producing reduced iron according to claim 1 .
前記酸化物系改質材が、さらにベントナイトを含む、
請求項または請求項に記載の還元鉄の製造方法。
The oxide-based modifier further contains bentonite,
The method for producing reduced iron according to claim 1 or 2 .
JP2019081265A 2019-04-22 2019-04-22 Method for producing reduced iron Active JP7280497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019081265A JP7280497B2 (en) 2019-04-22 2019-04-22 Method for producing reduced iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019081265A JP7280497B2 (en) 2019-04-22 2019-04-22 Method for producing reduced iron

Publications (2)

Publication Number Publication Date
JP2020176322A JP2020176322A (en) 2020-10-29
JP7280497B2 true JP7280497B2 (en) 2023-05-24

Family

ID=72937547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019081265A Active JP7280497B2 (en) 2019-04-22 2019-04-22 Method for producing reduced iron

Country Status (1)

Country Link
JP (1) JP7280497B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279489A (en) 2004-03-30 2005-10-13 Chugoku Electric Power Co Inc:The Crushing and classifying method for unburnt carbon in fly ash and its crushing and classifying device
JP2006283136A (en) 2005-03-31 2006-10-19 Nippon Steel Corp Method for producing reduced iron
JP2010030885A (en) 2008-06-30 2010-02-12 Mitsubishi Materials Corp Method for reducing unburnt carbon content in coal ash
JP2012207241A (en) 2011-03-29 2012-10-25 Nippon Steel Corp Method for producing reduced iron
JP2015074809A (en) 2013-10-09 2015-04-20 株式会社神戸製鋼所 Method for producing granular metal iron
JP2017148790A (en) 2016-02-23 2017-08-31 グローバル・マテリアルリサーチ株式会社 Reduction method of unburnt carbon in coal ash

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239530A (en) * 1979-01-10 1980-12-16 Board Of Control Of Michigan Technological University Process for producing metallized iron pellets

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279489A (en) 2004-03-30 2005-10-13 Chugoku Electric Power Co Inc:The Crushing and classifying method for unburnt carbon in fly ash and its crushing and classifying device
JP2006283136A (en) 2005-03-31 2006-10-19 Nippon Steel Corp Method for producing reduced iron
JP2010030885A (en) 2008-06-30 2010-02-12 Mitsubishi Materials Corp Method for reducing unburnt carbon content in coal ash
JP2012207241A (en) 2011-03-29 2012-10-25 Nippon Steel Corp Method for producing reduced iron
JP2015074809A (en) 2013-10-09 2015-04-20 株式会社神戸製鋼所 Method for producing granular metal iron
JP2017148790A (en) 2016-02-23 2017-08-31 グローバル・マテリアルリサーチ株式会社 Reduction method of unburnt carbon in coal ash

Also Published As

Publication number Publication date
JP2020176322A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
Bernasowski Theoretical study of the hydrogen influence on iron oxides reduction at the blast furnace process
KR102063369B1 (en) Process for the improvement of reducibility of iron ore pellets
CN104471078A (en) Method for preparing blast furnace blow-in coal
JP7280497B2 (en) Method for producing reduced iron
JP5466590B2 (en) Reduced iron manufacturing method using carbonized material agglomerates
Wang et al. Combustion characteristics and kinetics of anthracite with added chlorine
Kim et al. A mass and energy estimation for the hydrogen utilization in the iron-making process
AU2013297837B2 (en) Blast-furnace-blow-in charcoal and method for producing same
JP2018119178A (en) Method for producing agglomerate for steel making
CN108754064A (en) A kind of method and device of converter wet electric dust-removing
JP6273891B2 (en) Method and apparatus for reducing metal oxide by moving hearth furnace
Legemza et al. Thermodynamic study of utilization of charcoal in the iron-ore sintering process
JP5967649B2 (en) Method for producing carbonized coal, method for operating a blast furnace, and method for operating a boiler
KR102163821B1 (en) A method for reducing metallic oxide by using biomass containg volatile material
KR102122009B1 (en) A recarburizing agent for steel manufacture and method for msteelmaking
JP5079280B2 (en) Heat resistant cast steel for grate
Legemza et al. Thermodynamic study of utilization of sawdust from pine-wood in the iron-ore sintering process
JP2018024941A (en) Blast furnace operation method
CN104619866B (en) The preparation method of pulverized coal injection into blast furna
CN108396086A (en) A kind of method of blast furnace process large scale blowing bituminous coal
RU2644892C1 (en) Extraction method of metals at the gasification of solid fuel in a polyfuel gas generator
US20170058372A1 (en) Method for preparing coal to be injected into blast furnace, coal to be injected into blast furnace, and usage of same
JP5546965B2 (en) Steel desulfurization method
CN117557026A (en) Method for determining blast furnace desulfurization waste ash injection quantity
JP6551471B2 (en) Blast furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R151 Written notification of patent or utility model registration

Ref document number: 7280497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151