JPH0885829A - Production of sintered ore - Google Patents

Production of sintered ore

Info

Publication number
JPH0885829A
JPH0885829A JP24883294A JP24883294A JPH0885829A JP H0885829 A JPH0885829 A JP H0885829A JP 24883294 A JP24883294 A JP 24883294A JP 24883294 A JP24883294 A JP 24883294A JP H0885829 A JPH0885829 A JP H0885829A
Authority
JP
Japan
Prior art keywords
raw material
sintering
sintered ore
blast furnace
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24883294A
Other languages
Japanese (ja)
Inventor
Tetsuzo Haga
徹三 芳我
Shunji Kasama
俊次 笠間
Takuma Kozono
琢磨 小園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24883294A priority Critical patent/JPH0885829A/en
Publication of JPH0885829A publication Critical patent/JPH0885829A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: To improve the reducibility and strength of a sintered ore and the fluidity of a blast-furnace slag at the time of producing the sintered ore for a blast furnace by specifying the grain size of the auxiliary material contg. the SiO2 and MgO in the raw material and the loading position of the sintered ore on a sintering pallet. CONSTITUTION: The main material such as an iron ore as the raw material for the sintered ore for a blast furnace, a reducing agent such as coke, a slag making agent such as limestone and further serpentine contg. SiO2 and MgO for improving the sinterability of the sintered ore and adjusting the basicity and fluidity of a blast-furnace slag are used, the grain size is controlled so that the serpentine having 10-50mm grain diameter is adjusted to 1.5-6wt.% of the entire sintering material, and the serpentine is placed on a orehearth on a raw material holding mobile pallet as the lowermost layer below the other materials. A sintered ore good in sinterability, capable of excellently reducing the iron oxide in the sintered ore, which is not powdered in a blast furnace and with the fluidity of the blast-furnace slag improved due to the contained SinO2 and MgO is obtained and contributes to the stabilized operation of the blast furnace.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高炉工程でのスラグ塩基
度を調整し、かつ、スラグの流動性を調整することので
きる焼結鉱の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sinter capable of adjusting slag basicity in a blast furnace process and adjusting slag fluidity.

【0002】[0002]

【従来の技術】高炉操業においては、高炉内のスラグの
塩基度を調整すること、及びスラグの流動性を確保する
ことが高炉内反応を円滑に推進する上で極めて重要であ
る。この高炉でのスラグ生成に係る焼結鉱は、鉄鉱石原
料を主体とする主原料と、蛇紋岩等のSiO2 、MgO
を含む副原料、石灰石及びコークス等を混合造粒した焼
結原料を焼結させて製造される。そして、前記のSiO
2 、MgOを含有する蛇紋岩等は高炉中でのスラグ供給
源となる他、スラグの流動性を高め、かつ焼結鉱の焼結
性を調整するために配合するもので、このようなSiO
2 、MgOを含む焼結鉱用の原料としては蛇紋岩の他
に、珪石、かんらん岩、ニッケルスラグ等がある。ま
た、SiO2 、MgOを含む原料は従来、以下に示すよ
うな方法で高炉内に装入されていた。 焼結鉱用の原料として、平均粒径2〜3mmに粉砕し
たSiO2 、MgOを含有する粉状副原料(粉蛇紋岩、
粉珪石、粉ニッケルスラグ等)を鉄鉱石と共に、混合し
焼結させて使用する方法。 粒径が1〜10mmの粗粒を50Wt%以上有するMg
O源用副原料を鉄鉱石と混合して焼結する方法。(特開
昭63−282216号公報) 高炉塊鉱槽中から、塊状の副原料(塊蛇紋岩、塊珪石
等)を直接、高炉内に装入する方法。
2. Description of the Related Art In the operation of a blast furnace, adjusting the basicity of the slag in the blast furnace and ensuring the fluidity of the slag are extremely important for smoothly promoting the reaction in the blast furnace. The sintered ore for slag generation in this blast furnace is composed of a main raw material mainly composed of iron ore raw material, and SiO 2 , MgO such as serpentine.
It is produced by sintering a sintering raw material obtained by mixing and granulating an auxiliary raw material containing limestone, coke and the like. And the above-mentioned SiO
2. Serpentine rock containing MgO serves as a slag supply source in the blast furnace, and is added to enhance the fluidity of the slag and adjust the sinterability of the sinter.
2. Raw materials for sinter containing MgO include serpentine, silica stone, peridotite, nickel slag and the like. Further, a raw material containing SiO 2 and MgO has conventionally been charged into the blast furnace by the method described below. As a raw material for sinter, a powdery auxiliary raw material (powder serpentine, containing SiO 2 and MgO crushed to an average particle diameter of 2 to 3 mm)
Powdered silica stone, powdered nickel slag, etc.) is mixed with iron ore and sintered before use. Mg having coarse particles with a particle size of 1 to 10 mm of 50 Wt% or more
A method of mixing an O source auxiliary material with iron ore and sintering. (Japanese Patent Laid-Open No. 63-228216) A method of directly charging a lump-like auxiliary material (lump serpentine, lump silica stone, etc.) into a blast furnace from a blast furnace lump ore tank.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記のSiO
2 、MgOを含む蛇紋岩等の副原料は、高炉内での塩基
度の調整及びスラグの流動性確保のために必須のもので
はあるが、前記の焼結鉱原料として使用する場合に
は、焼結鉱組織中の非晶質スラグ相(ガラス相)の増加
をまねき、焼結鉱の機械的強度(落下強度SI)を低下
させる。さらに、MgOを含む副原料は比表面積の大き
い粉状のMgO成分が、焼結原料中の鉄成分との焼結反
応に関与するため、被還元性の低いマグネタイトを生成
して、焼結品の被還元性を悪化させる。又、の特開昭
63−282216号公報の方法にはMgO源用副原料
の粗粒化により、マグネタイト生成量を低下させ、被還
元性の悪化を防止する方法が開示されている。しかし、
これは焼結鉱の機械的強度の悪化を招く。従って、Mg
O源用副原料を、その他の焼結原料の粒度範囲内(10
mm以下)で使用する場合は、その粒度調整によって、
被還元性、機械的強度の両者を同時に改善することは極
めて困難であった。
However, the above-mentioned SiO
2 , auxiliary materials such as serpentine containing MgO are indispensable for adjusting the basicity in the blast furnace and ensuring the fluidity of the slag, but when used as the above-mentioned sintered ore raw material, It leads to an increase in the amorphous slag phase (glass phase) in the sinter structure and reduces the mechanical strength (falling strength SI) of the sinter. Furthermore, since the powdery MgO component having a large specific surface area is involved in the sintering reaction with the iron component in the sintering raw material, the auxiliary raw material containing MgO produces magnetite with low reducibility, and the sintered product Deteriorates the reducibility of. Further, JP-A-63-228216 discloses a method of reducing the amount of magnetite produced by coarsening the auxiliary raw material for the MgO source to prevent deterioration of the reducibility. But,
This causes deterioration of the mechanical strength of the sinter. Therefore, Mg
The auxiliary raw material for the O source was mixed within the particle size range of other sintering raw materials (10
mm or less), by adjusting the particle size,
It was extremely difficult to improve both reducibility and mechanical strength at the same time.

【0004】また、前記の方法によって高炉内へ直接
塊状のまま装入する場合には、前記、焼結反応に影響を
与えることなく高炉内スラグの塩基度、流動性の調整が
可能となる利点はあるが、塊状の副原料をそのまま用い
るために、原料中の付着水分及び結晶水が高炉中に取り
込まれて、高炉操業時の炉頂温度を低下させてダストの
排出量が低減し、さらに炉況を悪化させる等の欠点があ
った。
Further, when the lump is directly charged into the blast furnace in the form of lumps by the above method, the basicity and fluidity of the slag in the blast furnace can be adjusted without affecting the sintering reaction. However, since the massive auxiliary material is used as it is, the adhering moisture and crystallization water in the material are taken into the blast furnace, which lowers the furnace top temperature during blast furnace operation and reduces the amount of dust emission. There were drawbacks such as deterioration of the furnace condition.

【0005】本発明は、このような事情に鑑みてなされ
たもので、焼結鉱の被還元性及び機械的強度を悪化させ
ることなく、高炉のスラグ成分の調整に必要なSiO2
及び/又はMgO源を確保して、しかも、高炉の炉頂温
度を低下させずに高炉操業を円滑に維持することのでき
る焼結鉱の製造法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and SiO 2 necessary for adjusting the slag component of the blast furnace without deteriorating the reducibility and mechanical strength of the sintered ore.
It is an object of the present invention to provide a method for producing a sinter that can secure a MgO source and / or maintain a blast furnace operation smoothly without lowering the furnace top temperature of the blast furnace.

【0006】[0006]

【課題を解決するための手段】前記目的に沿う請求項1
記載の焼結鉱の製造方法は、SiO2 及び/又はMgO
を含む副原料、鉄主原料、石灰石及びコークスを含有す
る焼結原料を焼結して焼結鉱を製造する方法において、
粒子径が10〜50mmの前記SiO2 及び/又はMg
Oを含む副原料を前記焼結原料の1.5〜6Wt%とし
て、焼結パレット上の前記焼結原料の最下層部に装入す
るように構成されている。ここで、SiO2 及び/又は
MgOを含有する副原料としては、珪石、蛇紋岩、かん
らん岩、ニッケルスラグ等の造滓用の原料が使用でき
る。また、前記SiO2 及び/又はMgOを含有する副
原料以外の焼結原料としては、鉄鉱石を主体とする鉄主
原料、返鉱、コークス、石灰石及び生石灰等が含まれ
る。焼結パレット上の焼結原料の最下層部とは、焼結パ
レット上に焼結原料層を保持するために敷かれる床敷鉱
の直上部である焼結原料層の下層部分をいう。
A method according to the above-mentioned object.
The sinter production process described is based on SiO 2 and / or MgO.
In a method of producing a sintered ore by sintering a sintering raw material containing an auxiliary raw material containing, iron main raw material, limestone and coke,
SiO 2 and / or Mg having a particle diameter of 10 to 50 mm
The auxiliary raw material containing O is set to 1.5 to 6 Wt% of the sintering raw material and is charged into the lowermost layer portion of the sintering raw material on the sintering pallet. Here, as the auxiliary raw material containing SiO 2 and / or MgO, raw materials for slag such as silica stone, serpentine, peridotite, and nickel slag can be used. The sintering raw materials other than the auxiliary raw material containing SiO 2 and / or MgO include iron main raw materials mainly composed of iron ore, returned ore, coke, limestone and quick lime. The lowermost layer portion of the sintering raw material layer on the sintering pallet refers to a lower layer portion of the sintering raw material layer which is immediately above the floor ore laid to hold the sintering raw material layer on the sintering pallet.

【0007】[0007]

【作用】請求項1記載の焼結鉱の製造方法は、このSi
2 及び/又はMgOを含有する副原料を10〜50m
mに整粒した配合で焼結パレット上の焼結原料の最下層
部に配置して用いる。即ち、粒径が10〜50mmの塊
状の副原料を用いて副原料自体の反応性を低下させて、
かつ、副原料を焼結パレットの最下層部に配置して他の
焼結原料から分離させて、焼結させることによって、両
者の反応を抑制することができる。そのため、鉄鉱石−
石灰石系の基本的な焼結反応が効率的に進行して、還元
性の良好なカルシウムフェライト組織が多量に生成し、
更に非晶質スラグ相(ガラス相)が減少するために焼結
鉱の被還元性、歩留、機械的強度が向上するという効果
を奏するものである。この際、SiO2 及び/又はMg
Oを含む副原料の粒度が10mmより小さいと、他の焼
結原料と同程度の粒度範囲内(10mm以下)であるこ
とから該原料は焼結パレット上に装入された後、他の焼
結原料と混合しやすい状態となって、焼結反応後も結合
相としての脆弱な非晶質スラグ相(ガラス相)を生成し
やすく、焼結鉱の機械的な強度を低下させる。このよう
な強度低下を改善するためには、高温焼成が必要とな
り、その結果、マグネタイトの生成量が増加し被還元性
が低下する。そのため10mm以下の粒度範囲内での副
原料の粗粒化では強度低下に対しての根本的な解決策と
はなり得ない。
The method for producing a sintered ore according to claim 1 is
Auxiliary raw material containing O 2 and / or MgO is 10 to 50 m
It is used by arranging it in the lowermost layer portion of the sintering raw material on the sintering pallet with the composition adjusted to m. That is, the reactivity of the auxiliary raw material itself is lowered by using a massive auxiliary raw material having a particle size of 10 to 50 mm,
Moreover, by arranging the auxiliary raw material in the lowermost layer portion of the sintering pallet, separating it from the other sintering raw materials, and sintering it, the reaction between the two can be suppressed. Therefore, iron ore-
The basic sintering reaction of the limestone system proceeds efficiently, and a large amount of calcium ferrite structure with good reducing properties is generated,
Furthermore, since the amorphous slag phase (glass phase) is reduced, the effect of improving the reducibility, yield, and mechanical strength of the sintered ore is exerted. At this time, SiO 2 and / or Mg
If the particle size of the auxiliary material containing O is smaller than 10 mm, the particle size is within the same particle size range (10 mm or less) as that of the other sintering materials. It becomes easy to mix with the binder material and easily forms a brittle amorphous slag phase (glass phase) as a binder phase even after the sintering reaction, thereby lowering the mechanical strength of the sintered ore. In order to improve such a decrease in strength, high temperature firing is necessary, and as a result, the amount of magnetite produced increases and the reducibility decreases. Therefore, coarsening the auxiliary raw material within the grain size range of 10 mm or less cannot be a fundamental solution to the strength reduction.

【0008】また、SiO2 及び/又はMgOを含む副
原料の粒径が50mmをこえると焼結鉱の強度、歩留、
被還元性はさらに向上して好ましいが、高炉装入時にお
いて、炉内への均一分散装入が困難となるため、粒径5
0mmをもって上限とする。前記SiO2 及び/又はM
gOを含む副原料の量が焼結鉱原料全体の1.5Wt%未
満であると、高炉内でのスラグ生成量が少なすぎてスラ
グ量調整の効果が少ない。また、6Wt%を越えて増量し
ても増量の効果が現れず、原料コストが割高となって経
済的でない。また、請求項1記載の焼結鉱の製造方法で
得られる焼結鉱を使用した場合には、予め副原料中の付
着水分及び結晶水が焼結過程で除かれているために、こ
れを高炉内に装入しても炉頂温度を低下させることがな
く、安定した高炉操業を維持することができる。
If the particle size of the auxiliary material containing SiO 2 and / or MgO exceeds 50 mm, the strength, yield, and
The reducibility is further improved, which is preferable, but it is difficult to uniformly disperse the particles in the furnace at the time of charging the blast furnace.
The upper limit is 0 mm. Said SiO 2 and / or M
If the amount of the auxiliary raw material containing gO is less than 1.5 Wt% of the entire raw material of the sintered ore, the amount of slag produced in the blast furnace is too small and the effect of adjusting the slag amount is small. Further, even if the amount exceeds 6 Wt%, the effect of the increase does not appear, and the raw material cost is relatively high, which is not economical. When the sinter ore obtained by the method for producing a sinter according to claim 1 is used, the adhering water and crystal water in the auxiliary raw material are removed in advance during the sintering process. Even when charged into the blast furnace, the furnace top temperature is not lowered, and stable blast furnace operation can be maintained.

【0009】つまり、本発明はSiO2 及び/又はMg
Oを含む副原料と他の焼結原料との反応を効率的に抑制
することによって被還元性を改善し、さらに、非晶質ス
ラグ相の生成を抑制することが出来ることから、上記特
開昭63−282216号公報の如きMgO源用副原料
の粗粒化(粒径1〜10mmの粒子の比率を50Wt%以
上とする。)で問題となる機械的強度(SI)の悪化を
惹起することがない。
That is, the present invention relates to SiO 2 and / or Mg
Since the reducibility can be improved and the generation of the amorphous slag phase can be suppressed by efficiently suppressing the reaction between the auxiliary raw material containing O and the other sintering raw material, the above-mentioned JP-A The coarsening of the auxiliary raw material for the MgO source (the ratio of the particles having a particle size of 1 to 10 mm is 50 Wt% or more) as in Japanese Patent Laid-Open No. 63-228216 causes deterioration of the mechanical strength (SI), which is a problem. Never.

【0010】[0010]

【実施例】続いて、添付した図面を参照しつつ、本発明
を具体化した実施例を説明し、本発明の理解に供する。
表1は、本発明の実施例及び従来例(粉蛇紋岩及び粉珪
石を使用した焼結鉱)の製造方法を適用する蛇紋岩の粒
度分布を示す表である。また、図1は炉頂温度と高炉内
持ち込み水分増加代との関係を示す図である。ここに表
1に示すように、粉蛇紋岩の平均粒度は、1.87mm
であり、10mm以下の粒子の全体に占める割合は10
0Wt%であるが、本実施例においては、粒径10〜50
mmの粒子の割合が全蛇紋岩の90Wt%以上に調整され
た平均粒径17.0mmの塊蛇紋岩を用いる。珪石につ
いてもほぼ同様の粒度構成であり、粉珪石は平均粒径
1.91mm、塊珪石は平均粒径17.5mmのものを
用いる。また、焼結原料中のSiO2 、MgOを含む副
原料中の配合比率及び塩基度(C/S)を表2に示し
た。
Embodiments of the present invention will now be described with reference to the accompanying drawings to provide an understanding of the present invention.
Table 1 is a table showing the particle size distribution of serpentine to which the manufacturing method of the example of the present invention and the conventional example (sintered ore using powder serpentine and silica powder) is applied. Further, FIG. 1 is a diagram showing the relationship between the furnace top temperature and the amount of increase in water content brought into the blast furnace. As shown in Table 1, the average particle size of the powder serpentine is 1.87 mm.
And the ratio of particles of 10 mm or less to the whole is 10
Although it is 0 Wt%, in this embodiment, the particle size is 10 to 50.
A lump serpentine with an average particle size of 17.0 mm in which the proportion of mm particles is adjusted to 90 Wt% or more of all serpentine is used. The silica stones have almost the same grain size composition, and the powder silica stones have an average particle diameter of 1.91 mm and the agglomerate silica stones have an average particle diameter of 17.5 mm. Table 2 shows the mixing ratio and basicity (C / S) of the auxiliary raw material containing SiO 2 and MgO in the sintering raw material.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】本実施例及び従来例においては、表1に示
す粒度の細かい粉蛇紋岩と、粒径が10〜50mmであ
る塊蛇紋岩との混合比率及び、同様な粒度構成をもつ粉
珪石と塊珪石の混合比率等を表2に示すように変化させ
て、焼結鉱の被還元率(RI)、歩留、機械的強度(S
I)、及び還元粉化率(RDI)を測定した。以下表2
について詳述する。焼結パレット上の焼結原料全体の原
料構成をAに示し、焼結パレットの上面に層状に配置し
た粒子径が10〜50mmのSiO2及び/又はMgO
を含有する副原料の平均粒径及び配合割合をBに、残部
の前記副原料の上層部に装入される残部原料の構成をC
に示している。ここで、B、Cにおける各原料の配合割
合は焼結パレット上の焼結原料全体Aを100Wt%とし
て表示した値である。実施例1においては、焼結原料を
保持するための床敷鉱が配置された焼結パレット上に、
表1に示した粒度分布の塊蛇紋岩を、装入する全焼結原
料の1.88Wt%となるようにベルトフィーダー等によ
り敷きつめ最下層部(B)として、更にその上部に表2
の実施例1に示す原料構成の最下層部より上層部となる
焼結原料(C)を配置して、有効機長120m、焼結パ
レット幅5mのDL式焼結機を用い、焼結原料装入層厚
500mm、焼成温度約1360℃、パレット速度3.
4〜3.6m/分の焼結条件で前記焼結原料(A)を処
理した。このようにして得られた焼結鉱の被還元性は7
5.9%、還元粉化性は35.0%、機械的強度は8
7.0%であり、歩留は82.93%であった。ここで
機械的強度(SI)は、所定粒径の焼結鉱を所定高さか
ら鉄板上に自由落下させたときに、破壊しないで残る粒
子の割合で表示し、また、被還元性(RI)は、得られ
た焼結鉱を所定の還元雰囲気中で加熱処理して、還元さ
れる焼結鉱の比率で表示した。また、還元粉化性(RD
I)は、得られた焼結鉱を所定条件で還元処理して、該
焼結鉱の粉化の割合によって示している。
In the present example and the conventional example, a fine quartz powder having a fine grain size shown in Table 1 and a massive serpentine having a grain size of 10 to 50 mm, and a silica powder having a similar grain size composition were used. By changing the mixing ratio of the agglomerated silica as shown in Table 2, the reduction rate (RI), yield, mechanical strength (S) of the sintered ore
I) and the reduction dusting rate (RDI) were measured. Table 2 below
Will be described in detail. The raw material composition of the entire sintering raw material on the sintering pallet is shown in A, and SiO 2 and / or MgO having a particle diameter of 10 to 50 mm arranged in layers on the upper surface of the sintering pallet.
B is the average particle size and blending ratio of the auxiliary raw material containing C, and C is the composition of the residual raw material charged in the upper layer of the residual auxiliary raw material.
Is shown in. Here, the blending ratio of each raw material in B and C is a value expressed as 100 Wt% of the whole sintering raw material A on the sintering pallet. In Example 1, on the sintering pallet on which the bed ore for holding the sintering raw material is arranged,
The agglomerate serpentinite having the particle size distribution shown in Table 1 was laid with a belt feeder or the like so as to be 1.88 Wt% of the total sintering raw material to be charged, and as a lowermost layer (B), further on top of that, Table 2
The sintering raw material (C), which is the uppermost layer than the lowermost layer of the raw material composition shown in Example 1 above, is placed, and the sintering raw material is loaded using a DL type sintering machine having an effective machine length of 120 m and a sintering pallet width of 5 m. 2. Layer thickness 500 mm, firing temperature about 1360 ° C, pallet speed 3.
The sintering raw material (A) was processed under a sintering condition of 4 to 3.6 m / min. The reducibility of the sinter thus obtained is 7
5.9%, reduction powderability 35.0%, mechanical strength 8
The yield was 7.0% and the yield was 82.93%. Here, the mechanical strength (SI) is expressed as a ratio of particles that remain without being broken when a sinter having a predetermined particle size is dropped freely from a predetermined height onto an iron plate. ) Indicates the ratio of the sinter reduced by heating the obtained sinter in a predetermined reducing atmosphere. In addition, reduction powderability (RD
In I), the obtained sinter is subjected to reduction treatment under predetermined conditions, and the sinter ore is pulverized.

【0014】続く実施例2においては、同じく床敷鉱が
配置された焼結パレット上に、表1に示した粒度分布の
塊蛇紋岩と平均粒径19.4mmの塊珪石を、装入する
全焼結原料に対しそれぞれ2.60Wt%、0.34Wt%
となるように、ベルトフィーダー等により敷きつめ最下
層部(B)として、更にその上部に表2の実施例2に示
す原料構成の最下層部より上層部となる焼結原料(C)
を配置し、実施例1と同様の焼結条件で焼結原料(A)
を処理した。このようにして得られた焼結鉱の被還元性
は78.2%、還元粉化性は34.6%、機械的強度は
88.20%であり、歩留は84.10%であった。実
施例3においては、同じく床敷鉱が配置された焼結パレ
ット上に、平均粒径23.0mmの塊蛇紋岩を、装入す
る全焼結原料に対し4.8Wt%となるようにベルトフィ
ーダーにより敷きつめ最下層部(B)として、更にその
上部に表2の実施例3に示す原料構成の最下層部より上
層部となる焼結原料(C)を配置し、実施例1と同様の
焼結条件で焼結原料(A)を処理した。このようにして
得られた焼結鉱の被還元性は78.6%、還元粉化性は
34.7%、機械的強度は88.3%であり、歩留は8
4.3%であった。表2に示す従来例においては、塊蛇
紋岩、塊珪石を含まない原料構成のものを使用して、実
施例1〜3と同様の焼結条件で処理した。この得られた
焼結鉱について、被還元性は71.9%、還元粉化性は
35.7%、機械的強度は85.58%、歩留は79.
89%であり、いずれの数値も実施例1〜3の方が勝っ
ていることが分かる。本実施例において、74Wt%以上
の被還元率を達成することができ、還元粉化性(RD
I)にも何ら問題を生じないことが分かる。なお上記の
実施例及び従来例においては、塩基度(C/S)をいず
れも一定の1.75として処理を行った結果を示してい
る。
In the following Example 2, sinter pallets in which the bed ore is also placed are charged with the agglomerate serpentine having the particle size distribution shown in Table 1 and the agglomerate silica having an average particle size of 19.4 mm. 2.60 Wt% and 0.34 Wt% for all sintering materials
As a result, a sintering raw material (C), which is a lowermost layer portion (B) laid by a belt feeder or the like, is formed on the uppermost portion of the raw material constitution shown in Example 2 of Table 2 above.
And the sintering raw material (A) under the same sintering conditions as in Example 1.
Was processed. The sinter obtained in this manner had a reducibility of 78.2%, a reduction pulverizability of 34.6%, a mechanical strength of 88.20%, and a yield of 84.10%. It was In Example 3, a belt feeder was also used so that lump serpentine with an average particle diameter of 23.0 mm was 4.8 wt% with respect to all the sintering raw materials to be charged on the sintering pallet on which the bedding ore was placed. As a result, the sintering raw material (C), which is the uppermost layer than the lowermost layer portion of the raw material composition shown in Example 3 of Table 2, is arranged as the bottommost layer portion (B) of the flooring, and the same firing as in Example 1 is performed. The sintering raw material (A) was processed under the binding conditions. The sinter thus obtained had a reducibility of 78.6%, a reduction pulverization property of 34.7%, a mechanical strength of 88.3% and a yield of 8%.
It was 4.3%. In the conventional example shown in Table 2, the raw material having no lump serpentine and lump silica was used and treated under the same sintering conditions as in Examples 1 to 3. With respect to the obtained sinter, the reducibility is 71.9%, the reduction pulverization property is 35.7%, the mechanical strength is 85.58%, and the yield is 79.
It is 89%, and it can be understood that Examples 1 to 3 are superior in any numerical value. In the present embodiment, a reducible rate of 74 Wt% or more can be achieved, and the reduction powderability (RD
It can be seen that I) does not cause any problems. In addition, in the above-mentioned Example and the prior art example, the result of performing the processing with the basicity (C / S) being constant at 1.75 is shown.

【0015】図1は、炉頂温度と高炉内持ち込み水分増
加代との関係を示す図である。ここで、縦軸の炉頂温度
は通常操業等で適当に定めたベース温度を基点として表
示し、横軸に炉内持ち込み水分増加代を示している。同
図により、チャージ当たりの水分量が1トン増す毎に炉
頂温度が約11.8℃低下することを示している。蛇紋
岩は化学式(3MgO・2SiO2 ・2H2 O)に示さ
れるように、結晶水を13Wt%含んでおり、また、塊状
原料の付着水分を約2Wt%とした場合には、全水分量は
約15Wt%となって、このような蛇紋岩を2トン/ch
の割合で使用するものとすれば、高炉内持ち込み水分は
0.3トン/chと計算されるから、図1より炉頂部で
の温度低下は約3.5℃となる。この温度低下により高
炉より排出されるダスト(ガス灰)量が低下して高炉内
にダストが蓄積し、高炉操業上支障がでる。しかし、前
記結晶水及び付着水分を焼結パレット上で、予め放出す
ることにより、前記した高炉中への水分を削減し、炉頂
温度を上昇させて高炉内ダスト蓄積に起因する通気阻害
等のトラブル要因を除いて高炉操業条件を大幅に改善す
ることができる。また、前記実施例においては、SiO
2 、MgOを含む副原料として蛇紋岩及び珪石の例を示
したが、この他にかんらん岩、ニッケルスラグ等の原料
も10〜50mmの塊状として焼結鉱中に1.5〜6Wt
%以上を配合することにより、上述の効果を発揮するこ
とができる。
FIG. 1 is a diagram showing the relationship between the furnace top temperature and the amount of increase in water content brought into the blast furnace. Here, the furnace top temperature on the vertical axis is displayed with the base temperature appropriately determined in normal operation or the like as the base point, and the horizontal axis shows the increase in water content brought into the furnace. The figure shows that the furnace top temperature decreases by about 11.8 ° C. each time the amount of water per charge increases by 1 ton. As shown in the chemical formula (3MgO · 2SiO 2 · 2H 2 O), serpentine contains 13 Wt% of water of crystallization, and when the attached water content of the lumpy material is about 2 Wt%, the total water content is About 15 Wt%, 2 ton / ch of such serpentine
Assuming that the water content is used at a rate of 0.3 ton / ch, the temperature drop at the top of the furnace is about 3.5 ° C. from FIG. Due to this temperature decrease, the amount of dust (gas ash) discharged from the blast furnace is reduced and the dust is accumulated in the blast furnace, which hinders the operation of the blast furnace. However, by releasing the water of crystallization and the attached water on the sinter pallet in advance, the water content in the blast furnace is reduced and the furnace top temperature is increased to prevent aeration of air due to dust accumulation in the blast furnace. Blast furnace operating conditions can be greatly improved by eliminating trouble factors. Further, in the above embodiment, SiO
2 , examples of serpentine and silica stone were shown as auxiliary raw materials containing MgO, but other raw materials such as peridotite and nickel slag are also made into a lump of 10 to 50 mm and 1.5 to 6 Wt in the sintered ore.
The above-mentioned effect can be exhibited by blending at least%.

【0016】[0016]

【発明の効果】請求項1記載の焼結鉱の製造方法におい
ては、粒子径が10〜50mmのSiO2 及び/又はM
gOを含む副原料を焼結原料中に1.5〜6Wt%として
配合し、それを焼結パレット上の最下層部に配置させて
焼結させているために、他の焼結原料との反応を抑制し
て焼結鉱の被還元性が向上でき歩留、強度が向上する。
また、高炉のスラグ成分の調整に必要な量のSiO2
MgOを確保して、しかも、高炉の炉頂温度を低下させ
ずに高炉操業を円滑に維持することができる。さらに、
他の焼結原料との反応を抑制するために、鉄鉱石−石灰
石系の基本的な焼結反応が効率的に実現されるという優
れた効果を奏することができる。
According to the method for producing a sintered ore according to claim 1, SiO 2 and / or M having a particle diameter of 10 to 50 mm.
The auxiliary raw material containing gO is mixed in the sintering raw material as 1.5 to 6 Wt%, and it is placed in the lowermost layer portion on the sintering pallet and sintered, so that it is different from other sintering raw materials. By suppressing the reaction, the reducibility of the sinter can be improved and the yield and strength are improved.
In addition, the amount of SiO 2 necessary for adjusting the slag component of the blast furnace,
It is possible to secure MgO and to smoothly maintain the operation of the blast furnace without lowering the furnace top temperature of the blast furnace. further,
In order to suppress the reaction with other sintering raw materials, the excellent effect that the basic sintering reaction of the iron ore-limestone system is efficiently realized can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】炉頂温度と高炉内持ち込み水分増加代との関係
を示す図である。
FIG. 1 is a diagram showing a relationship between a furnace top temperature and an increase amount of water introduced into a blast furnace.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 SiO2 及び/又はMgOを含む副原
料、鉄主原料、石灰石及びコークスを含有する焼結原料
を焼結して焼結鉱を製造する方法において、粒子径が1
0〜50mmの前記SiO2 及び/又はMgOを含む副
原料を前記焼結原料の1.5〜6Wt%として、焼結パレ
ット上の前記焼結原料の最下層部に装入することを特徴
とする焼結鉱の製造方法。
1. A method for producing a sintered ore by sintering a sintering raw material containing an auxiliary raw material containing SiO 2 and / or MgO, a main iron raw material, limestone and coke, and having a particle diameter of 1
The auxiliary raw material containing 0 to 50 mm of SiO 2 and / or MgO is charged to the lowermost layer portion of the sintering raw material on the sintering pallet as 1.5 to 6 wt% of the sintering raw material. Method for producing sintered ore.
JP24883294A 1994-09-16 1994-09-16 Production of sintered ore Withdrawn JPH0885829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24883294A JPH0885829A (en) 1994-09-16 1994-09-16 Production of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24883294A JPH0885829A (en) 1994-09-16 1994-09-16 Production of sintered ore

Publications (1)

Publication Number Publication Date
JPH0885829A true JPH0885829A (en) 1996-04-02

Family

ID=17184094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24883294A Withdrawn JPH0885829A (en) 1994-09-16 1994-09-16 Production of sintered ore

Country Status (1)

Country Link
JP (1) JPH0885829A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433253B1 (en) * 1999-12-30 2004-05-27 주식회사 포스코 Method for manufacturing sintered core by controlling the quantity of the MgO
JP2012031450A (en) * 2010-07-29 2012-02-16 Jfe Steel Corp METHOD FOR MANUFACTURING SINTERED ORE INCLUDING MgO LUMP
JP2014214370A (en) * 2013-04-30 2014-11-17 日新製鋼株式会社 Manufacturing method of sintered ore

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433253B1 (en) * 1999-12-30 2004-05-27 주식회사 포스코 Method for manufacturing sintered core by controlling the quantity of the MgO
JP2012031450A (en) * 2010-07-29 2012-02-16 Jfe Steel Corp METHOD FOR MANUFACTURING SINTERED ORE INCLUDING MgO LUMP
JP2014214370A (en) * 2013-04-30 2014-11-17 日新製鋼株式会社 Manufacturing method of sintered ore

Similar Documents

Publication Publication Date Title
JP5168802B2 (en) Method for producing sintered ore
JP4781807B2 (en) Manufacturing method of dephosphorizing agent for steel making using sintering machine
JP3863052B2 (en) Blast furnace raw material charging method
JP2006274440A (en) Semi-reduced sintered ore and method for production thereof
JPH0885829A (en) Production of sintered ore
JP4268419B2 (en) Method for producing low slag sintered ore
WO2005111248A1 (en) Semi-reduced sintered ore and method for production thereof
JP2007119841A (en) Method for manufacturing half-reduced and sintered ore
JP2012046828A (en) Method for producing sintered ore
JP3797184B2 (en) Method for producing sintered ore
JPH08269584A (en) Production of sintered ore
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP4661077B2 (en) Method for producing sintered ore
JP2007031818A (en) Method for manufacturing sintered ore
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JPH05339654A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JPH09272925A (en) Production of sintered ore excellent in property at high temperature and cold strength
JP4501656B2 (en) Method for producing sintered ore
JPH03111521A (en) Production of sintered ore
JP2003277839A (en) Method for producing calcium-ferrite for refining molten iron
JP6885164B2 (en) Sintered ore manufacturing method
JPH0827525A (en) Production of sintered ore formed by using ore of high crystallization water as raw material
JP2009114485A (en) Method for manufacturing sintered ore
JPH0881717A (en) Production of sintered ore

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011120