KR100433253B1 - Method for manufacturing sintered core by controlling the quantity of the MgO - Google Patents

Method for manufacturing sintered core by controlling the quantity of the MgO Download PDF

Info

Publication number
KR100433253B1
KR100433253B1 KR10-1999-0067098A KR19990067098A KR100433253B1 KR 100433253 B1 KR100433253 B1 KR 100433253B1 KR 19990067098 A KR19990067098 A KR 19990067098A KR 100433253 B1 KR100433253 B1 KR 100433253B1
Authority
KR
South Korea
Prior art keywords
sintered ore
ore
mgo
sintered
serpentine
Prior art date
Application number
KR10-1999-0067098A
Other languages
Korean (ko)
Other versions
KR20010059580A (en
Inventor
김종련
김국진
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1999-0067098A priority Critical patent/KR100433253B1/en
Publication of KR20010059580A publication Critical patent/KR20010059580A/en
Application granted granted Critical
Publication of KR100433253B1 publication Critical patent/KR100433253B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 철광석 및 부원료와 연료를 혼합후 DL(dwight lloyd)식 소결기를 사용하여 소결광을 제조시 MgO 성분을 조정하기 위해 사용하는 사문암의 첨가비를 조정하여 소결광을 제조하는 조업 방법에 관한 것으로, 철광석과, 규사 및 사문암을 포함하는 부원료와, 연료가 혼합된 배합원료를 소결처리하여 소결광을 제조하는 방법은 상기 소결광의 성분 중 MgO의 함량을 1.21~1.36중량%로 유지하고 상기 사문암의 배합비를 1.00~1.32%로 유지하는 것을 특징으로 한다.The present invention relates to an operation method for manufacturing a sintered ore by adjusting the addition ratio of serpentine used to adjust the MgO component in the manufacture of the sintered ore using a DL (dwight lloyd) type sintering machine after mixing iron ore, secondary raw materials and fuel, The method of manufacturing a sintered ore by sintering iron ore, a subsidiary material including silica sand and serpentine, and a fuel mixed compound is prepared by maintaining the MgO content in the sintered ore component at 1.21 to 1.36 wt% It is characterized by maintaining at 1.00 ~ 1.32%.

Description

산화마그네슘 성분조정에 의한 소결광 제조방법{Method for manufacturing sintered core by controlling the quantity of the MgO}Method for manufacturing sintered ore by adjusting the magnesium oxide composition {Method for manufacturing sintered core by controlling the quantity of the MgO}

본 발명은 철광석 및 부원료와 연료를 혼합후 DL(dwight lloyd)식 소결기를 사용하여 소결광을 제조시 MgO 성분을 조정하기 위해 사용하는 사문암의 첨가비를 조정하여 소결광을 제조하는 조업 방법에 관한 것으로, 특히 MgO 성분 변화시 소결광 광물 상의 변화를 이용하여 소결광의 강도를 증대시키는 소결광 제조 방법에 관한 것이다.The present invention relates to an operation method for manufacturing a sintered ore by adjusting the addition ratio of serpentine used to adjust the MgO component in the manufacture of the sintered ore using a DL (dwight lloyd) type sintering machine after mixing iron ore, secondary raw materials and fuel, In particular, the present invention relates to a sintered ore manufacturing method for increasing the strength of the sintered ore using a change in the sintered ore mineral phase when the MgO component changes.

도 1에 도시된 바와 같이, 일반적으로, DL식 소결공정에서 미립의 철광석을 고로에 적합한 크기의 괴상의 소결광을 제조하기 위해 주원료인 철광석과, CaO 원으로 석회석, MgO 원으로 사문암, SiO2원으로 규사 등의 부원료와, 코크스 또는 무연탄 등의 연료를 원료 저장조 하부의 정량불출장치(CFW)에서 일정 비율로 배출하여 혼합기(mixer)에서 혼합하고 물을 첨가하여 조립한 후 장입장치를 통해 소결기 파레트상에 장입된다.As shown in FIG. 1, in general, iron ore, the main raw material, a limestone as a CaO source, a serpentine rock as an MgO source, and a SiO 2 source in order to produce a bulk sintered ore of a size suitable for blast furnaces for fine iron ore in a DL type sintering process. As a result, subsidiary materials such as silica sand and fuels such as coke or anthracite coal are discharged at a constant rate from the CFW in the lower part of the raw material storage tank, mixed in a mixer, assembled by adding water, and then sintered through a charging device. It is loaded on the pallet.

이 후에, 점화로에서 파레트 상부의 배합연료를 착화한 후 하부에서 계속 흡인하는 상태에서 파레트가 진행시 배합원료중의 코크스나 무연탄이 연소하면서 계속 화염이 아래로 진행시 발생된 열에 의해 원료와 부원료가 상호 반응하여 새로운 융액이 생성된다.Subsequently, the raw material and the sub-raw materials are heated by the heat generated when the flame proceeds downward while the coke or anthracite in the blended raw material is burned while the pallet is advancing while the mixed fuel of the upper part of the pallet is ignited in the ignition furnace. React with each other to form a new melt.

이러한 융액은 미분철광석을 결합시킨다. 결합된 광석을 소결광이라 하는데 후공정인 고로(용공로)에서 소결광을 사용하여 쇳물을 만들시 고로 내부의 통기성을 향상시키기 위해 충격에 강한 고강도의 소결광을 요구한다.This melt binds fine iron ores. The combined ore is called sintered ore, and when the sintered ore is used in the blast furnace (blast furnace) to make water, the sintered ore with high impact resistance is required to improve the air permeability inside the blast furnace.

소결기 파레트에서 제조된 소결광은 냉각 및 파쇄, 선별과정을 거쳐 일정 입도 이상의 소결광(통상 5~50mm 입도)을 고로에 보내나 이송과정에서 슈트를 거치면서 일부가 파쇄되어 고로에서는 다시 선별과정을 거쳐 사용하고 5mm 이하 입도 소결광은 소결공정으로 보내 소결원료로 리사이크링 된다.The sintered ore manufactured in the sintering machine pallet sends the sintered ore (normally 5 ~ 50mm particle size) of a certain particle size to the blast furnace through cooling, crushing, and sorting process, but part is crushed while passing through the chute during the transfer process, and then used again after the sorting process. The sintered ore with a particle size of 5mm or less is sent to the sintering process to be recyclized to the sintered raw material.

이러한 과정에서 소결광의 강도가 낮을 경우 소결공정에서 입도가 작은 소결광 발생량이 증가하고 또한 고로에서 되돌려지는 반광량이 증가하여 소결회수율 저하에 의한 제조원가의 상승 및 고로 공정에서도 통기성의 약화를 초래하여 안정조업을 저해한다.In this process, when the strength of sintered ore is low, the amount of sintered ore with small particle size in the sintering process increases, and the amount of semi-mineral returned from the blast furnace increases, which leads to an increase in manufacturing cost due to a decrease in sinter recovery rate and weakening of breathability in the blast furnace process. Inhibits.

소결광의 강도를 증가시키는 종래의 방법으로는 다음의 몇가지 방법이 있다.Conventional methods for increasing the strength of sintered ores include the following several methods.

첫째, 소결광의 강도는 철광석의 결합을 증대시키기 위해 슬래그 성분을 증대시키는 방법, 즉 CaO, SiO2, MgO 성분의 증대에 의해 광석 입자간의 결합 역할을 하는 슬래그 성분 증가에 의한 강도를 개선시키는 방법이다.First, the strength of the sintered ore is a method of increasing the slag component to increase the binding of iron ore, that is, a method of improving the strength by increasing the slag component that acts as a bond between the ore particles by increasing the CaO, SiO 2 , MgO component. .

둘째, 투입열량을 증대시키는 방법, 소결광 제조를 위한 열원인 코크스의 투입량 증대를 통해 슬래그의 용액생성량의 증대를 통한 결합력 증대로 강도를 개선시키는 방법이다.Second, it is a method of increasing the amount of heat input, the method of improving the strength by increasing the binding force through the increase in the amount of solution production of slag through the increase of the input amount of coke, the heat source for the production of sintered ore.

셋째, 생산스피드 저감하에서 층후를 증대시키는 방법등이 있다.Third, there is a method of increasing the layer thickness under reduced production speed.

그러나, 상기의 방법들은 다음과 같은 문제점이 있다.However, the above methods have the following problems.

첫 번째의 방법의 문제점은 소결광의 강도를 증대하기 위해 결합제의 역할을 하는 부원료의 투입을 증가시키므로 소결광 제조 원가를 상승시킨다.The problem with the first method is to increase the input of subsidiary materials that act as binders to increase the strength of the sintered ore, thus increasing the cost of producing the sintered ore.

두 번째의 방법은 소결공정에서 투입열량은 분코크스인데 분코크스의 투입증대는 소결광의 제조원가가 상승하고 다량의 황을 함유하는 분코크스가 증가하므로 황산화물 및 질소산화물을 대기로 방출하여 환경공해를 증대시킨다.In the second method, the input calories in the sintering process is powdered coke, but the increased input of powdered coke increases the production cost of sintered ore and increases the amount of powdered coke that contains a large amount of sulfur. Increase

세 번째의 방법은 생산스피드를 저감하면서 층후를 올려 조업을 하는데 있어서 층후를 올림으로써 소결기 베드의 통기성을 악화시키므로 실제 조업에 적용하기 어렵다.The third method is difficult to apply to actual operation because deterioration of air permeability of the sinter bed by raising the layer after raising the layer after operation while reducing the production speed.

본 발명은, 상기된 바와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로, 부원료인 사문암의 사용을 조절함에 의해 소결광중의 MgO 성분을 조정함으로써 소결광중의 광물조직 생성비를 변화시켜 소결광의 강도를 개선시켜 소결광의 제조원가를 저감하면서 동시에 소결광의 강도를 개선시킬 수 있는 소결광 제조방법을 제공하는 데 그 목적이 있다.The present invention has been made to solve the conventional problems as described above, by adjusting the MgO component in the sintered ore by controlling the use of the serpentine as an auxiliary material to change the mineral structure generation ratio in the sintered ore to increase the intensity of the sintered ore It is an object of the present invention to provide a sintered ore manufacturing method capable of improving the strength of the sintered ore while improving the production cost of the sintered ore.

본 발명의 실시예에 따르면, 상기 목적을 달성하기 위하여, 철광석과, 규사 및 사문암을 포함하는 부원료와, 연료가 혼합된 배합원료를 소결처리하여 소결광을 제조하는 방법은 상기 소결광의 성분 중 MgO의 함량을 1.21~1.36중량%로 유지하도록 상기 사문암의 배합비를 1.00~1.32%로 유지하는 것을 특징으로 한다.According to an embodiment of the present invention, in order to achieve the above object, a method of manufacturing a sintered ore by sintering the iron ore, the subsidiary materials including silica sand and serpentine, and the blended material mixed with the fuel is a method of MgO The content of the serpentine is maintained at 1.00 to 1.32% to maintain the content at 1.21 to 1.36% by weight.

도 1은 일반적인 DL식 소결기의 소결광 제조공정의 흐름을 나타낸 도면.1 is a view showing the flow of a sintered ore manufacturing process of a general DL type sintering machine.

도 2는 소결광포트 시험기를 개략적으로 도시한 도면.2 is a view schematically showing a sintered optical port tester.

도 3은 MgO 성분 변화에 따른 소결광 광물조직의 분포변화를 나타낸 막대그래프.3 is a bar graph showing a distribution change of the sintered ore mineral structure according to the MgO component change.

< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>

A : 후드A: Hood

B : 풍속계B: anemometer

C : 소결포트C: Sintering Pot

D : 생광석D: raw ore

E : 노상층E: roadbed

F : 윈드박스F: Windbox

G : 서머커플G: Thermocouple

H : 그레이트바H: Great Bar

I : 압력계I: pressure gauge

J : 기압계J: Barometer

K : 댐퍼밸브K: Damper Valve

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.

소결조업에서 부원료로 사용되는 사문암의 화학조성은 표 1에 나타낸 바와 같은 성분과 기타 불순물로 이루어지고, 이때 주성분은 MgO와 SiO2성분으로 구성되어 있다.The chemical composition of serpentine rock used as an auxiliary material in the sintering industry is composed of components and other impurities as shown in Table 1, where the main components are composed of MgO and SiO 2 components.

표 1Table 1

이러한 사문암은 열을 받으면 다음과 같이 열분해를 한다.When serpentine is heated, it undergoes pyrolysis as follows.

3MgO.2SiO2.2H2O3MgO.2SiO 2 .2H 2 O

↓ (570~760℃, 흡열반응)↓ (570 ~ 760 ℃, endothermic reaction)

3MgO.SiO2+SiO2+2H2O3MgO.SiO 2 + SiO 2 + 2H 2 O

↓ (800~840℃, 발열반응)↓ (800 ~ 840 ℃, exothermic reaction)

2MgO.SiO2+ MgO.SiO2 2MgO.SiO 2 + MgO.SiO 2

(forsterite)(enstatite)(forsterite) (enstatite)

즉, 사문암은 570~760℃에서 결정수의 탈수 현상에 따른 유리 SiO2가 생성되고 800~840℃에서는 탈수에 의해 구조적으로 안정한 포스테라이트와 엔스테타이트를 형성한다. 또한, 소결시 고온영역에서 MgO 는 융점이 높고 융액의 점성을 감소시켜 유동성을 개선시키므로 냉각과정 중 고온유지 시간이 짧고 마그네타이트를 안정화시키는 역할을 수행한다.In other words, the serpentine rock forms free SiO 2 according to the dehydration phenomenon of the crystal water at 570 to 760 ° C., and forms a structurally stable forsterite and ensectite at 800 to 840 ° C. by dehydration. In addition, MgO has a high melting point in the high-temperature region during sintering and improves fluidity by reducing the viscosity of the melt, thereby shortening the high temperature holding time during the cooling process and stabilizing the magnetite.

본 발명은 소결광을 제조하는 실공정 적용을 위해 먼저 소결포트 시험을 실시하였다.In the present invention, a sintering pot test was first performed for a practical process of manufacturing a sintered ore.

원료의 배합조건을 표 2에 나타낸 바와 같으며 분사문암의 배합비를 1.76에서 0%까지 저하함에 따라 소결광중 MgO 의 저하를 유도하였다.The mixing conditions of the raw materials are shown in Table 2, and the mixing ratio of the jet rock was reduced from 1.76 to 0%, leading to a decrease of MgO in the sintered ore.

표 2TABLE 2

소결포트시험은 상기 표 2의 배합비로 원료를 혼합한후 소형 드럼믹서에 장입하고 3단계로 나누어 혼합 및 조립을 하였으며 배합원료의 수분함량은 7.0 중량%로 일정하게 첨가하여 소결포트에 장입후 105℃로 예열된 점화로에 의해 착화와 동시에 배풍기를 가동시켜 부압을 1500mmAq로 유지시켜 소결을 진행하였다.In the sintering pot test, the raw materials were mixed in the mixing ratio of Table 2, and then charged into a small drum mixer, and divided into three stages for mixing and granulation. The moisture content of the blended raw materials was constantly added at 7.0% by weight and charged in the sintering pot. At the same time as the ignition furnace preheated to 0 ° C., the blower was operated to maintain the negative pressure at 1500 mmAq to proceed with sintering.

소결포트의 개략도 및 조업조건을 도 2 및 하기 표 3에 나타내었다.The schematic and operating conditions of the sintering pot are shown in Figure 2 and Table 3 below.

표 3TABLE 3

사문암 배합비 변화에 따른 소결광중의 화학성분 변화를 하기 표 4에 나타내었다.The chemical composition of the sintered ore according to the serpentine compounding ratio is shown in Table 4 below.

표 4Table 4

사문암의 소결배합비를 1.76중량%에서 0중량%로 저하시킨 결과 소결광중의 MgO 함량은 1.49중량%에서 0.85중량%로 감소하여 전체 소결광중의 슬래그 성분, 즉 CaO+SiO2+MgO는 17.15중량%에서 16.32중량%로 저하하였다.As a result of reducing the sintered blend ratio of serpentine rock from 1.76 wt% to 0 wt%, the MgO content in the sintered ore decreased from 1.49 wt% to 0.85 wt%, and the slag component of the sintered ore, that is, CaO + SiO 2 + MgO, was 17.15 wt% At 16.32% by weight.

또한, 소결포트의 조업결과를 하기 표 5에 나타내었다.In addition, the operation results of the sintering pot is shown in Table 5 below.

표 5Table 5

상기 표 5에서 알수 있듯이 분사문암의 배합비 저하에 따른 소결광의 품질변화로 강도는 76.4중량%에서 79.2중량%로 증가하였으며 이로 인해 회수율도 대폭 개선된 68.5중량%에서 71.0중량%로 증가하였다.As can be seen in Table 5, the strength was increased from 76.4% by weight to 79.2% by weight as the quality of the sintered ore decreased with the decrease of the mixing ratio of the jet rock, and the recovery was also increased from 68.5% by weight to 71.0% by weight.

이는 사문암 배합비 감소시 소결층 내 융액생성온도의 저하로 인해 동일 열량조건하에서 융체생성량이 증가하고 소결광의 주요광물상인 칼슘페라이트의 생성량이 증가하였기 때문이다.This is because, when the ratio of serpentine is decreased, the melt production rate is increased under the same caloric condition and the calcium ferrite, which is the main mineral phase of the sintered ore, is increased due to the decrease in the melt generation temperature in the sintered bed.

소결광의 환원성도 대폭 개선이 이루어 졌는데 이는 난환성 광물상인 마그네타이트의 생성량이 감소하고 환원성이 양호한 칼슘페라이트의 생성량이 증가하였기 때문이다.The reducibility of sintered ore was also greatly improved because the amount of magnetite, which is a hard-ring mineral phase, was reduced and the amount of calcium ferrite with good reducibility was increased.

소결생산성도 회수율의 상승에 의해 개선되는 효과를 나타내고 있다.Sintering productivity also has the effect of being improved by the increase of a recovery rate.

제조된 소결광의 광물조직 분포비를 측정하기 위해 이미지어날나이져를 이용하여 소결광중의 각 광물상의 분포상태 및 형상을 측정하였다. 그 결과 광물조직 분포비를 도 3에 나타내었다.In order to measure the distribution ratio of the mineral structure of the prepared sintered ore, the distribution state and shape of each mineral phase in the sintered ore were measured using an image analyzer. As a result, the mineral structure distribution ratio is shown in FIG. 3.

소결광중 MgO 성분을 1.76중량%에서 1.16중량%로 저하시킨 결과 헤마타이트 및 2차 헤마타이트는 증가하는 경향을 나타냈으며 이는 잔류원광 헤마타이트의 분포비는 감소하였음을 의미한다. 또한, 피환원성 및 강도에 악영향을 미치는 마그네타이트는 감소하고, 환원성 및 강도가 양호한 칼슘페라이트는 증가하는 경향을 나타내고 있다.When the MgO component in the sintered ore was reduced from 1.76 wt% to 1.16 wt%, hematite and secondary hematite tended to increase, indicating that the distribution ratio of residual ore hematite was decreased. In addition, the magnetite which adversely affects the reducing property and strength decreases, and calcium ferrite having good reducing and strength tends to increase.

따라서, 본 발명에 따르면, 소결광의 품질중 강도를 증대시키는데 있어서 연료의 증가 및 부원료의 사용량 증가 없이 소결배합연료중 부원료인 사문암의 사용을 조절함에 따라 소결광의 MgO 성분을 저하시킴에 의해 소결광의 광물조직 변경으로 소결광의 강도를 증대시킴으로서 소결광 제조원가 절감에 효과적이다.Therefore, according to the present invention, the minerals of sintered ores are lowered by lowering the MgO component of the sintered ores by controlling the use of serpentine, which is a subsidiary material, in the sintered blended fuel without increasing fuel and increasing the amount of subsidiary materials. It is effective to reduce sintered ore manufacturing cost by increasing the strength of sintered ore by changing the structure.

이상, 상기 내용은 본 발명의 바람직한 실시예를 단지 예시한 것으로 본 발명이 속하는 분야의 당업자는 첨부된 청구범위에 기재된 본 발명의 요지 및 사상으로부터 벗어나지 않고 본 발명에 대한 수정 및 변경을 가할 수 있다는 것을 인식하여야 한다.The foregoing is merely illustrative of preferred embodiments of the present invention and those skilled in the art to which the present invention pertains may make modifications and changes to the present invention without departing from the spirit and spirit of the invention as set forth in the appended claims. It should be recognized.

Claims (3)

철광석과, 규사 및 사문암을 포함하는 부원료와, 연료가 혼합된 배합원료를 소결처리하여 소결광을 제조하는 방법에 있어서,In the method for producing a sintered ore by sintering the iron ore, the subsidiary material including silica sand and serpentine, and the blended material mixed with fuel, 상기 소결광의 성분 중 MgO의 함량을 1.21~1.36중량%로 유지하도록 상기 사문암의 배합비를 1.00~1.36%로 유지하는 것을 특징으로 하는 소결광 제조방법.Sintered ore manufacturing method characterized in that the compounding ratio of the serpentine is maintained at 1.00 ~ 1.36% to maintain the content of MgO in the components of the sintered ore to 1.21 ~ 1.36% by weight. 삭제delete 삭제delete
KR10-1999-0067098A 1999-12-30 1999-12-30 Method for manufacturing sintered core by controlling the quantity of the MgO KR100433253B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0067098A KR100433253B1 (en) 1999-12-30 1999-12-30 Method for manufacturing sintered core by controlling the quantity of the MgO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0067098A KR100433253B1 (en) 1999-12-30 1999-12-30 Method for manufacturing sintered core by controlling the quantity of the MgO

Publications (2)

Publication Number Publication Date
KR20010059580A KR20010059580A (en) 2001-07-06
KR100433253B1 true KR100433253B1 (en) 2004-05-27

Family

ID=19634217

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0067098A KR100433253B1 (en) 1999-12-30 1999-12-30 Method for manufacturing sintered core by controlling the quantity of the MgO

Country Status (1)

Country Link
KR (1) KR100433253B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466499B1 (en) * 2000-12-26 2005-01-13 주식회사 포스코 Method for manufacturing the sintering ore having excellent anti-reduction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101464362B1 (en) * 2012-12-28 2014-11-24 재단법인 포항산업과학연구원 METHOD FOR REDUCING OF MgO IN MAGNESIUM SMELT SLAG

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890010246A (en) * 1987-12-28 1989-08-07 정명식 Sintered Ore Manufacturing Method
JPH0885829A (en) * 1994-09-16 1996-04-02 Nippon Steel Corp Production of sintered ore
KR970043195A (en) * 1995-12-26 1997-07-26 김종진 Sintered ore manufacturing method with excellent high temperature load lead and dropping characteristics
KR19980021487A (en) * 1996-09-17 1998-06-25 김종진 Method for manufacturing sintered ore with improved reducing ability and blast furnace charging method
JPH11131151A (en) * 1997-10-31 1999-05-18 Nippon Steel Corp Production of sintered ore and operation of blast furnace in injecting a large quantity of pulverized fine coal.
JP2000178659A (en) * 1998-12-11 2000-06-27 Nkk Corp PRODUCTION OF HIGH QUALITY LOW SiO2 SINTERED ORE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890010246A (en) * 1987-12-28 1989-08-07 정명식 Sintered Ore Manufacturing Method
JPH0885829A (en) * 1994-09-16 1996-04-02 Nippon Steel Corp Production of sintered ore
KR970043195A (en) * 1995-12-26 1997-07-26 김종진 Sintered ore manufacturing method with excellent high temperature load lead and dropping characteristics
KR19980021487A (en) * 1996-09-17 1998-06-25 김종진 Method for manufacturing sintered ore with improved reducing ability and blast furnace charging method
KR100302393B1 (en) * 1996-09-17 2001-11-22 이구택 Method for manufacturing reducibility improved sintered ore and method for charging sintered ore manufactured by the same into blast furnace
JPH11131151A (en) * 1997-10-31 1999-05-18 Nippon Steel Corp Production of sintered ore and operation of blast furnace in injecting a large quantity of pulverized fine coal.
JP2000178659A (en) * 1998-12-11 2000-06-27 Nkk Corp PRODUCTION OF HIGH QUALITY LOW SiO2 SINTERED ORE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466499B1 (en) * 2000-12-26 2005-01-13 주식회사 포스코 Method for manufacturing the sintering ore having excellent anti-reduction

Also Published As

Publication number Publication date
KR20010059580A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
KR101475130B1 (en) Method for producing sintered ore
JP4935133B2 (en) Ferro-coke and method for producing sintered ore
KR100433253B1 (en) Method for manufacturing sintered core by controlling the quantity of the MgO
JP4114626B2 (en) Blast furnace operation method
KR20140002218A (en) Method for manufacturing pellet for blast firnace
Sikora et al. The anthracite as sinter fuels
JP4725230B2 (en) Method for producing sintered ore
KR101552145B1 (en) Manufacturing method of sintered ore
JP2002129247A (en) High grade sintered agglomerate for iron manufacturing and method for manufacturing the same
JP4392302B2 (en) Method for producing sintered ore
Kim et al. Ways to improve texture technology reflective chromite ore of Kazakhstan
JP3746842B2 (en) Blast furnace operation method when a large amount of pulverized coal is injected
KR100383271B1 (en) Sintered ore manufacturing method with improved recovery
KR102524475B1 (en) Method for controlling slag composition for hydrogen-based reduction ironmaking process by controlling the mixing ratio of low-reduced iron, sintered ore and coke, and slag compostion thereof
WO2024070135A1 (en) Iron ore pellet production method
JPH0819486B2 (en) Manufacturing method of sinter for blast furnace using high goethite ore as raw material
JP2007119601A (en) Method for producing ferrocoke
CN114317948A (en) Production method for improving drum strength of sinter
JP5074043B2 (en) Method for producing sintered ore
JP4759977B2 (en) Blast furnace operation method
CN114959255A (en) Lump ore pretreatment method based on preparation of sinter ore
JP2021025112A (en) Method for manufacturing sintered ore
US1906748A (en) Method of producing aggregates from earth substances
JP2548647B2 (en) Manufacturing method of sintered ore for iron making from high goethite iron ore
KR900001093B1 (en) Making process of sintered ore

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080515

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee