JP2007302956A - Nonfired agglomerated ore for iron manufacture - Google Patents
Nonfired agglomerated ore for iron manufacture Download PDFInfo
- Publication number
- JP2007302956A JP2007302956A JP2006133256A JP2006133256A JP2007302956A JP 2007302956 A JP2007302956 A JP 2007302956A JP 2006133256 A JP2006133256 A JP 2006133256A JP 2006133256 A JP2006133256 A JP 2006133256A JP 2007302956 A JP2007302956 A JP 2007302956A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- raw material
- particle size
- ore
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、高炉などの製鉄炉で鉄原料として用いられる製鉄用非焼成塊成鉱に関する。 The present invention relates to an unfired agglomerated ore for iron making used as an iron raw material in an iron making furnace such as a blast furnace.
高炉などの堅型製鉄炉(以下、高炉を例に説明する)を用いて行われる銑鉄製造プロセスでは、炉内の原料充填層内に還元ガスを流通させるために、原料充填層内の空隙率を一定値以上に保つことが重要である。このため鉄原料などの炉内装入物は粒度分布が大きいことが望ましく、装入後に粉化するおそれがある装入物は、その強度を高めて粉化を抑制する必要がある。このため、特に大型高炉においては、粉鉱石を炭材の燃焼熱により焼き固めた焼結鉱や、粉鉱石をペレタイザーなどで球状に成形した後、1000℃以上で高温加熱硬化させた焼成ペレットなどが広く用いられている。 In a pig iron manufacturing process performed using a solid iron furnace such as a blast furnace (hereinafter described as an example of a blast furnace), the porosity in the raw material packed bed is used to distribute the reducing gas in the raw material packed bed in the furnace. It is important to keep the above a certain value. For this reason, it is desirable that the furnace interior inclusions such as iron raw materials have a large particle size distribution, and it is necessary to increase the strength of the charges that may be pulverized after charging to suppress pulverization. For this reason, especially in large blast furnaces, sintered ore obtained by baking powdered ore with the heat of combustion of carbonaceous materials, or fired pellets obtained by forming powdered ore into a spherical shape with a pelletizer and then heat-hardening at 1000 ° C or higher Is widely used.
一方において、特に省エネルギーを目的として、高温加熱処理しない非焼成塊成鉱に関する検討も進められてきた。この非焼成塊成鉱は、高炉への搬送中及び高炉内での衝撃に耐え得る強度が必要であり、従来はセメントなどをバインダーとして加えることで強度を発現させている。すなわち、この種の非焼成塊成鉱は、焼結鉱粉や鉄鉱石粉などの酸化鉄原料にセメントなどの水硬性バインダーを加えて塊状に造粒し、これを常温または廃熱などを利用した数百℃以下の比較的低温の条件で一定期間養生することにより製造される。この塊成鉱の造粒方法としては、ペレタイジングやブリケッティングなどの方法がある。 On the other hand, studies on non-fired agglomerated minerals not subjected to high-temperature heat treatment have also been promoted, particularly for the purpose of energy saving. This non-calcined agglomerated mineral is required to have a strength that can withstand an impact in the blast furnace and in the blast furnace. Conventionally, the strength is expressed by adding cement or the like as a binder. That is, this type of non-fired agglomerated mineral is granulated into a lump by adding a hydraulic binder such as cement to an iron oxide raw material such as sintered or iron ore powder, and this is used at room temperature or waste heat. Manufactured by curing for a certain period of time at a relatively low temperature of several hundred degrees C or less. There are methods such as pelletizing and briquetting as granulation methods for this agglomerate.
一方、特許文献1には、鉄鉱石を主体とした粉粒鉱石にバインダーと必要であれば水分を加えて団塊化する非焼成塊成鉱の製造方法に関して、ブリケッティングで問題となる粒内の充填密度の粗密を解消するため、0.3kg/cm2以上の成形圧力を加え、適当な振動を与えつつ成型を行う技術が開示されている。
また、特許文献2には、返鉱及び焼結篩下粉の1種又は2種と、これよりも相対的に細かいダストの混合粉を1〜6mass%の糖蜜又はその希釈液と混練し、室温下で所定時間養生した後、成形機で1mm以上の粒径に塊成化する技術が開示されている。
Moreover, in
しかし、焼結鉱粉や鉄鉱石粉などの酸化鉄原料にセメントなどのバインダーを加えて造粒・養生して得られる従来の非焼成塊成鉱は、少ないバインダー量で所定の強度を確保することが難しく、強度を確保するには多量のバインダーを加える必要がある。このため製造コストが高く、また、高炉のスラグ量が増大するなどの問題があった。
また、特許文献1の方法は、原料を成形ロールでブリケッティングする場合に成形ロールの磨耗が生じるため、製造コストに問題がある。また、特許文献2の方法は、塊成鉱に所定の強度を付与するためには一定量のバインダーを加える必要があり、このため製造コストが高くなり、また、高炉のスラグ量が増大するなどの問題がある。
However, conventional non-fired agglomerated minerals obtained by adding cement or other binders to iron oxide raw materials such as sintered ore or iron ore powders, ensure the required strength with a small amount of binder. However, it is necessary to add a large amount of binder to ensure strength. For this reason, there existed problems, such as high manufacturing cost and the amount of slag of a blast furnace increasing.
Further, the method of
したがって本発明の目的は、このような従来技術の課題を解決し、少ないバインダー添加量で高い強度を有し、且つ特別な成型方法などを用いることなく製造することが可能な製鉄用非焼成塊成鉱を提供することにある。 Accordingly, an object of the present invention is to solve such problems of the prior art, have high strength with a small amount of added binder, and can be produced without using a special molding method or the like. It is to provide the ore.
本発明者らは、製鉄用鉄原料にバインダーを配合した原料をペレタイジングやブリケッティングなどで塊成化できる方法を前提に、上記課題を解決すべく検討を重ねた結果、原料の粒度分布を調整して原料内の空隙率を最適化することにより、原料粒子間に働くバインダーの効率を高め、少ないバインダー量で高い強度を有する製鉄用非焼成塊成鉱が得られることを見出した。
本発明はこのような知見に基づきなされたもので、その要旨は以下のとおりである。
As a result of repeated studies to solve the above problems on the premise that the raw material in which the binder is mixed with the iron raw material for iron making can be agglomerated by pelletizing or briquetting, etc., the inventors have determined the particle size distribution of the raw material. It was found that by adjusting and optimizing the porosity in the raw material, the efficiency of the binder working between the raw material particles is increased, and a non-fired agglomerated ore for iron making having a high strength with a small amount of binder is obtained.
The present invention has been made based on such findings, and the gist thereof is as follows.
[1]製鉄用鉄原料(A)にバインダー(B)を配合した原料を塊状に固化させた非焼成塊成鉱であって、
粒径d(mm)以上の原料の累積体積率P(%)が下記(1)式を満足することを特徴とする製鉄用非焼成塊成鉱。
100×(d/D)0.1≦P≦100×(d/D)0.4 …(1)
但し D:原料粒子中の最大粒子径(mm)
[2]上記[1]の製鉄用非焼成塊成鉱において、dを0.001〜0.2mm、Dを2〜5mmとすることを特徴とする製鉄用非焼成塊成鉱。
[3]上記[1]又は[2]の製鉄用非焼成塊成鉱において、原料中のバインダー(B)の配合量が10mass%以下であることを特徴とする製鉄用非焼成塊成鉱。
[1] An unfired agglomerated mineral obtained by solidifying a raw material in which the binder (B) is blended with the iron raw material (A) for iron making,
A non-fired agglomerated ore for iron making, wherein a cumulative volume fraction P (%) of a raw material having a particle size of d (mm) or more satisfies the following formula (1):
100 × (d / D) 0.1 ≦ P ≦ 100 × (d / D) 0.4 (1)
D: Maximum particle diameter in raw material particles (mm)
[2] The non-fired agglomerate for iron making according to [1], wherein d is 0.001 to 0.2 mm and D is 2 to 5 mm.
[3] The non-fired agglomerate for iron making according to [1] or [2], wherein the blending amount of the binder (B) in the raw material is 10 mass% or less.
[4]上記[1]〜[3]のいずれかの製鉄用非焼成塊成鉱において、塊成鉱が造粒物の固化体、成型物の固化体、固化体の破砕物のいずれかであることを特徴とする製鉄用非焼成塊成鉱。
[5]上記[1]〜[4]のいずれかの製鉄用非焼成塊成鉱において、製鉄用鉄原料(A)が細粒焼結鉱又は/及び細粒鉄鉱石であることを特徴とする製鉄用非焼成塊成鉱。
[6]上記[1]〜[5]のいずれかの製鉄用非焼成塊成鉱において、原料中に、さらに、粒径10μm以下の割合が90mass%以上の酸化鉄含有粉(C)(但し、粉体が酸化鉄のみからなる場合を含む。)を配合したことを特徴とする記載の製鉄用非焼成塊成鉱。
[7]上記[6]の製鉄用非焼成塊成鉱において、原料中の酸化鉄含有粉(C)の配合量が酸化鉄換算量で1〜30mass%であることを特徴とする製鉄用非焼成塊成鉱。
[4] In the unfired agglomerated ore for iron making according to any one of [1] to [3] above, the agglomerated mineral is either a solidified product of a granulated product, a solidified product of a molded product, or a crushed product of a solidified product. A non-fired agglomerated ore for iron making, characterized in that it exists.
[5] The unfired agglomerated ore for iron making according to any one of [1] to [4] above, wherein the iron raw material for iron making (A) is a fine-grained sintered ore and / or fine-grained iron ore. Non-calcined agglomerate for iron making.
[6] In the unfired agglomerated ore for iron making according to any one of [1] to [5] above, the iron oxide-containing powder (C) in which the ratio of the particle size of 10 μm or less is 90 mass% or more is included in the raw material The non-fired agglomerated mineral for iron making according to
[7] The non-calcined agglomerate for iron making of [6] above, wherein the amount of iron oxide-containing powder (C) in the raw material is 1 to 30 mass% in terms of iron oxide, Firing agglomerates.
本発明の製鉄用非焼成塊成鉱は、少ないバインダー添加量で高い強度を有し、しかも、特別な成型方法などを用いることなく、一般のペレタイジングやブリケッティングなどの方法で製造することができる。このため、高炉への搬送中や高炉内での衝撃による粉化を抑えることができるとともに、バインダー添加量が少ないため、従来の非焼成塊成鉱に較べて製造コストが低く、且つ高炉のスラグ量の低減化にも有利である。 The non-fired agglomerated ore for iron making of the present invention has high strength with a small amount of added binder, and can be produced by a method such as general pelletizing or briquetting without using a special molding method. it can. Therefore, pulverization due to impact in the blast furnace or in the blast furnace can be suppressed, and since the amount of binder added is small, the manufacturing cost is low compared to conventional unfired agglomerated minerals, and the slag of the blast furnace It is also advantageous for reducing the amount.
本発明の製鉄用非焼成塊成鉱は、製鉄用鉄原料(A)にバインダー(B)を配合した原料を塊状に固化させた非焼成塊成鉱であって、粒径d(mm)以上の原料の累積体積率P(%)が下記(1)式を満足するものである。
100×(d/D)0.1≦P≦100×(d/D)0.4 …(1)
但し D:原料粒子中の最大粒子径(mm)
前記製鉄用鉄原料(A)としては、細粒焼結鉱、細粒鉄鉱石などが挙げられるが、これに限定されるものではなく、製鉄炉用の鉄原料となり得るものであって、そのままでは竪型製鉄炉(以下、高炉を例に説明する)に装入できない細粒状のものであればよい。
The non-fired agglomerated ore for iron making of the present invention is a non-fired agglomerated mineral obtained by solidifying a raw material in which a binder (B) is blended with an iron raw material for iron making (A), and having a particle size of d (mm) or more. The cumulative volume ratio P (%) of the raw material satisfies the following formula (1).
100 × (d / D) 0.1 ≦ P ≦ 100 × (d / D) 0.4 (1)
D: Maximum particle diameter in raw material particles (mm)
Examples of the iron raw material for iron making (A) include fine-grained sintered ore and fine-grained iron ore, but are not limited thereto, and can be used as an iron raw material for an iron making furnace. Then, it is sufficient if it is a fine granular material that cannot be charged into a vertical iron furnace (hereinafter described as an example of a blast furnace).
前記細粒焼結鉱の代表例は、鉄鉱石の焼結プロセスで返鉱と呼ばれる焼結鉱粉であり、従来の一般的な焼結プロセスでは、この焼結鉱粉は焼結工程に送り返され、焼結原料として使用されている。この焼結鉱粉の大部分は、成品焼結鉱を得る際の粒度選別工程で発生するが、高炉への輸送工程や高炉周辺で発生するものもある。従来の焼結プロセスでは、成品歩留まりは70〜80%程度であり、残りの20〜30%程度が返鉱(焼結鉱粉)として焼結工程に返送されている(すなわち、成品焼結鉱になることなくプロセス内で循環している)。したがって、本発明の非焼成塊成鉱の製鉄用鉄原料(A)として、そのような焼結鉱粉を利用できることにより、焼結鉱を含めた塊成鉱のトータル歩留まりを大きく向上させることができる。
前記細粒鉄鉱石には鉄鉱石粉も含まれる。また、元々粒度の小さい鉄鉱石、整粒工程で生じた粒度の小さい鉄鉱石などのいずれを用いてもよい。
製鉄用鉄原料(A)は、異なる種類のものを2種以上用いてもよい。この製鉄用鉄原料(A)の粒径は、一般には5mm未満である。
A typical example of the fine-grained sintered ore is a sintered ore powder called return ore in the iron ore sintering process. In the conventional general sintering process, this sintered ore powder is sent back to the sintering process. It is used as a sintering raw material. Most of the sintered ore powder is generated in the particle size selection process when obtaining the product sintered ore, but there are also those generated in the transport process to the blast furnace and around the blast furnace. In the conventional sintering process, the product yield is about 70 to 80%, and the remaining 20 to 30% is returned to the sintering process as a return mineral (sintered ore powder) (that is, the product sintered ore). Circulates within the process without becoming). Therefore, by using such sintered ore powder as the iron raw material (A) for non-fired agglomerated minerals of the present invention, the total yield of agglomerated ores including sintered ore can be greatly improved. it can.
The fine-grained iron ore includes iron ore powder. Moreover, any of iron ore having a small particle size and iron ore having a small particle size generated in the sizing process may be used.
Two or more different types of iron raw materials (A) for iron making may be used. The particle size of the iron raw material (A) for iron making is generally less than 5 mm.
前記バインダー(B)は、水和硬化や水の蒸発に伴う水素結合などによって固化し、原料粒子どうしを結合するバインダー機能を発揮できるものであればよい。具体的には、水硬性バインダー、有機系バインダー(有機物)などを用いることができる。水硬性バインダーとしては、例えば、セメント(高炉セメント、ポルトランドセメント、フライアッシュセメント、アルミナセメントなど)、高炉水砕スラグ微粉末、石膏などが挙げられ、また、有機系バインダーとしては、でんぷんなどの多糖類、ポリアクリルアマイドなどのような強い水素結合を持つ水素結合性高分子物質(有機物)などが挙げられる。
バインダー(B)の配合量が多いほど非焼成塊成鉱の強度を高めることができるが、配合量が多くなるほど製造コストが増大するとともに、製鉄用鉄原料(A)の割合が減少して生産性が低下する。一方、バインダー(B)の配合量が少なすぎると冷間での十分な強度が得られず、非焼成塊成鉱の粉化を生じてしまう。本発明は、少ないバインダー配合量で高い強度(冷間高度)を確保すること狙いとしている。
The binder (B) is not particularly limited as long as it can be solidified by hydration hardening or hydrogen bonding accompanying water evaporation, and exhibit a binder function for bonding raw material particles. Specifically, a hydraulic binder, an organic binder (organic substance), or the like can be used. Examples of hydraulic binders include cement (blast furnace cement, Portland cement, fly ash cement, alumina cement, etc.), granulated blast furnace slag, gypsum, and the like, and organic binders include starch. Examples thereof include hydrogen-bonding polymer substances (organic substances) having strong hydrogen bonds such as saccharides and polyacrylamides.
The strength of the non-fired agglomerated mineral can be increased as the blending amount of the binder (B) increases, but the production cost increases as the blending amount increases, and the proportion of the iron raw material (A) for iron making decreases. Sex is reduced. On the other hand, when there are too few compounding quantities of a binder (B), sufficient intensity | strength in cold will not be acquired and the non-baking agglomerated mineral will be pulverized. The present invention aims to ensure high strength (cold altitude) with a small amount of binder.
下記(a)式は、粉粒状の原料の充填度が最も高い状態(原料内の空隙率が最も少ない状態)を表す式として知られている。
P=100×(d0/D)q …(a)
但し P:累積体積率(%)
d0:原料粒子径(mm)
D:原料粒子中の最大粒子径(mm)
q:定数
本発明者らは、この(a)式中のqを種々変化させて塊成鉱の製造試験を行った結果、qが0.1〜0.4の範囲において非焼成塊成鉱の強度が顕著に高まることを見出した。
The following formula (a) is known as a formula representing a state in which the filling degree of the powdery raw material is the highest (a state in which the porosity in the raw material is the smallest).
P = 100 × (d 0 / D) q (a)
Where P: Cumulative volume ratio (%)
d 0 : Raw material particle diameter (mm)
D: Maximum particle diameter (mm) in raw material particles
q: constant As a result of various tests of q in the formula (a) and the production test of the agglomerated minerals, the present inventors found that the uncalcined agglomerated minerals in the range of q of 0.1 to 0.4. It has been found that the strength of is significantly increased.
上記(a)式のqが大きいということは、原料中で粗粒の割合が比較的多いことを意味する。粗粒が多い場合には原料粒子間の空隙が大きくなり、また原料粒子どうしの接触が少なくなって、塊成鉱の強度は低下する。そのため、所定の強度を得るためには原料粒子間のバインダー量を増加させる必要が生じる。
しかし、上記のように(a)式のqが0.1〜0.4の範囲となるように粒度構成を調整することにより、図1に模式的に示すように、粗粒の粒子間の空隙を中間の粒径の粒子が、また中間の粒径の粒子間を細粒の粒子が、さらにその粒子間をさらに細粒の粒子が埋めることによって全体としての空隙が極めて小さくなり、添加するバインダー量が少なくても大きな強度が得られることが判った。
The large q in the above formula (a) means that the proportion of coarse particles in the raw material is relatively large. When there are many coarse particles, the space | gap between raw material particles becomes large, and contact with raw material particles decreases, and the intensity | strength of an agglomerate falls. Therefore, in order to obtain a predetermined strength, it is necessary to increase the amount of binder between the raw material particles.
However, by adjusting the particle size configuration so that q in the formula (a) is in the range of 0.1 to 0.4 as described above, as schematically shown in FIG. By filling the voids with particles of medium particle size, fine particles between the particles of medium particle size and further fine particles between the particles, the voids as a whole become extremely small and added. It was found that high strength can be obtained even with a small amount of binder.
図2は、上記(a)式のqと非焼成塊成鉱の冷間強度との関係を調べた結果を示している。この試験では、粒径4mm未満の鉄鉱石、粒径0.1mm未満の鉄鉱石粉、バインダー(セメント)およびヘマタイト粉を混合した原料に水分を添加し、ペレタイザーにより造粒した後、1日間養生して非焼成塊成鉱を製造した。その際、鉄鉱石および鉄鉱石粉の割合を変えてqを変化させた。バインダーの配合量は5mass%、10mass%の2水準とし、上記(a)式のd0,Dは、それぞれd0=0.01mm,D=5mmとした。 FIG. 2 shows the results of examining the relationship between q in the above formula (a) and the cold strength of the unfired agglomerated ore. In this test, water is added to a raw material in which iron ore having a particle size of less than 4 mm, iron ore powder having a particle size of less than 0.1 mm, binder (cement) and hematite powder is mixed, granulated by a pelletizer, and then cured for one day. An unfired agglomerated mineral was produced. At that time, q was changed by changing the ratio of iron ore and iron ore powder. The blending amount of the binder was set to two levels of 5 mass% and 10 mass%, and d 0 and D in the above formula (a) were d 0 = 0.01 mm and D = 5 mm, respectively.
図2によれば、qが0.1〜0.4の範囲において高い冷間強度が得られていることが判る。このため本発明ではqを0.1〜0.4とし、粒径d(mm)以上の原料の累積体積率P(%)が下記(1)式を満足することを要件とした。
100×(d/D)0.1≦P≦100×(d/D)0.4 …(1)
但し D:原料粒子中の最大粒子径(mm)
According to FIG. 2, it can be seen that high cold strength is obtained when q is in the range of 0.1 to 0.4. For this reason, in the present invention, q is set to 0.1 to 0.4, and the cumulative volume fraction P (%) of the raw material having a particle size of d (mm) or more satisfies the following formula (1).
100 × (d / D) 0.1 ≦ P ≦ 100 × (d / D) 0.4 (1)
D: Maximum particle diameter in raw material particles (mm)
前記(1)式において、dは0.001〜0.2mm程度とすることが望ましい。dが0.001mm以上であることが好ましいのは、0.001mm未満の粒径のものは、原料内の空隙形成にほとんど影響しないためである。また、dをあまり大きくすると、原料内の空隙形成に大きく影響する粒径のものを(1)式の対象から外してしまうことになるため好ましくない。このためdは0.001〜0.2mm程度とすることが望ましい。
また、原料粒子中の最大粒子径Dは、2〜5mm程度とすることが望ましい。Dが2mm未満では粗粒の空隙率が小さすぎ、細粒による強度向上が小さくなる。一方、Dが5mmを超えると粒子が大きくなりすぎて強度が急激に低下する。
In the formula (1), d is preferably about 0.001 to 0.2 mm. The reason why d is 0.001 mm or more is that those having a particle diameter of less than 0.001 mm hardly affect the formation of voids in the raw material. If d is too large, particles having a particle size that greatly affects the formation of voids in the raw material will be excluded from the target of the formula (1), which is not preferable. For this reason, d is preferably about 0.001 to 0.2 mm.
The maximum particle diameter D in the raw material particles is preferably about 2 to 5 mm. When D is less than 2 mm, the porosity of the coarse particles is too small, and the strength improvement due to the fine particles is small. On the other hand, when D exceeds 5 mm, the particles become too large, and the strength rapidly decreases.
非焼成塊成鉱の原料粒度を上記(1)式を満足するように調整するには、例えば、図3に示すような異なる粒度分布を持つ原料の配合割合を適宜調整すればよい。すなわち、粒度分布全体としてqを小さくするには、図3の(a)のような粒度分布を持つ原料の割合を増やし、逆にqを大きくするには図3の(c)のような粒度分布を持つ原料の割合を増やせばよいので、それらの割合を調整することにより、上記(1)式を満足する粒度分布が得られる。
また、目標粒度分布に対して一部の粒度分布を調整したい場合には、過不足のある粒度分布を持つ原料を増減配合すればよい。すなわち、例えば、サブミクロンの粒度を増加したい場合には、図3の(a)のような粒度分布を持つ原料の割合を増やし、或いは数十ミクロンの粒度を減少させたい場合には図3の(c)のような粒度分布を持つ原料の割合を減らせばよい。また、それらの粒度構成の代替として、図3の(b)のような粒度分布を持つ原料を増減させてもよい。
In order to adjust the raw material particle size of the unfired agglomerated mineral so as to satisfy the above formula (1), for example, the mixing ratio of raw materials having different particle size distributions as shown in FIG. That is, in order to reduce q as a whole particle size distribution, the ratio of raw materials having a particle size distribution as shown in FIG. 3 (a) is increased. Conversely, to increase q, the particle size as shown in FIG. Since the proportion of raw materials having a distribution may be increased, a particle size distribution satisfying the above formula (1) can be obtained by adjusting those proportions.
In addition, when it is desired to adjust a part of the particle size distribution with respect to the target particle size distribution, the raw material having an excessive or insufficient particle size distribution may be added or decreased. That is, for example, when it is desired to increase the submicron particle size, the ratio of the raw material having the particle size distribution as shown in FIG. 3A is increased, or when it is desired to decrease the particle size of several tens of microns as shown in FIG. What is necessary is just to reduce the ratio of the raw material which has a particle size distribution like (c). In addition, as an alternative to these particle size configurations, the raw materials having a particle size distribution as shown in FIG.
本発明の目的は、なるべく少ないバインダー配合量で非焼成塊成鉱に所定の強度を付与することにあるが、本発明では、バインダー(B)の種類に関わりなく原料中のバインダーの配合量が10mass%以下でも十分な強度(バインダーの種類の応じた強度)を確保することができる。但し、バインダー配合量が極端に少ないと十分な強度が確保できないため、バインダー配合量の下限は5mass%程度とすることが好ましい。
本発明の非焼成塊成鉱の粒径(常温雰囲気下での球換算粒径)は8〜30mm程度が好ましい。非焼成塊成鉱の粒径が8mm未満では、高炉に装入した際の原料充填層の通気性が悪化するおそれがあり、一方、粒径が30mmを超えると還元性が低下するおそれがある。
The purpose of the present invention is to impart a predetermined strength to the unfired agglomerated mineral with as little binder content as possible, but in the present invention, the amount of binder in the raw material is independent of the type of binder (B). Even if it is 10 mass% or less, sufficient strength (strength corresponding to the type of binder) can be ensured. However, if the binder content is extremely small, sufficient strength cannot be ensured, and therefore the lower limit of the binder content is preferably about 5 mass%.
The particle size of the unfired agglomerated mineral of the present invention (spherical equivalent particle size in a normal temperature atmosphere) is preferably about 8 to 30 mm. If the particle size of the non-fired agglomerated mineral is less than 8 mm, the air permeability of the raw material packed layer when charged in the blast furnace may be deteriorated. On the other hand, if the particle size exceeds 30 mm, the reducibility may be reduced. .
また、本発明の非焼成塊成鉱は、原料として製鉄用鉄原料(A)とバインダー(B)以外のものを配合してもよい。例えば、後述する酸化鉄含有粉(C)のほか、各種分散剤、硬化促進剤、石灰石微粉、フライアッシュ、シリカ微粉、コークス粉その他の還元材などの1種以上を適量配合することもできる。
本発明の非焼成塊成鉱は、高炉に代表される竪型製鉄炉において鉄原料として用いられる。
Moreover, you may mix | blend things other than the iron raw material for iron making (A) and a binder (B) as a raw material for the non-baking agglomerated mineral of this invention. For example, in addition to the iron oxide-containing powder (C) described later, an appropriate amount of one or more of various dispersants, hardening accelerators, limestone fine powder, fly ash, silica fine powder, coke powder, and other reducing materials can be blended.
The unfired agglomerated ore of the present invention is used as an iron raw material in a vertical iron furnace represented by a blast furnace.
本発明の非焼成塊成鉱は、通常、造粒物の固化体、成型物の固化体、固化体(例えば、成型固化体や不定形固化体)の破砕物などとして得られる。
造粒物の固化体の場合には、原料と水を混合・撹拌(混練)した後、造粒を行い、得られた造粒物を一定期間養生させることにより、非焼成塊成鉱の成品を得る。造粒方法は任意であるが、代表的な方法としては、ディスクペレタイザーやドラム型造粒機を用いる転動造粒法(ペレタイジング)、ブリケット成形機を用いる圧縮造粒法(ブリケッティング)などがあり、いずれを用いてもよい。
The non-fired agglomerated ore of the present invention is usually obtained as a solidified product of a granulated product, a solidified product of a molded product, a crushed product of a solidified product (for example, a molded solidified product or an amorphous solidified product), and the like.
In the case of a granulated solidified product, the raw material and water are mixed and stirred (kneaded), then granulated, and the resulting granulated product is cured for a certain period of time, thereby producing a non-fired agglomerated mineral product. Get. The granulation method is arbitrary, but representative methods include a rolling granulation method (pelletizing) using a disk pelletizer or a drum type granulator, a compression granulation method (briquetting) using a briquetting machine, etc. Any of these may be used.
また、成型物の固化体の場合には、原料と水を混合・撹拌(混練)したものを型に流し込んで成型し、その後、一定期間養生させることにより、非焼成塊成鉱の成品を得ることができる。
また、固化体の破砕物の場合には、上記成型物と同じような方法で得られた成型固化体や、原料と水を混合・撹拌したものを湿式吹き付けし、これを一定期間養生させることにより得られた不定形固化体を、適当な破砕手段で破砕して非焼成塊成鉱の成品を得ることができる。
Further, in the case of a solidified product of a molded product, a raw material and water mixed and stirred (kneaded) are poured into a mold, molded, and then cured for a certain period of time to obtain a non-baked agglomerated product. be able to.
Also, in the case of a crushed solidified product, the molded solidified product obtained by the same method as the above molded product or a mixture / stirred mixture of raw material and water is wet sprayed and cured for a certain period of time. The non-fired agglomerated mineral product can be obtained by crushing the amorphous solid body obtained by the above-mentioned method with an appropriate crushing means.
ところで、非焼成塊成鉱のバインダーとしてセメントや有機物などを用いると、炉内高温域においてセメント水和物が熱分解し、或いは有機物が溶融して強度が低下し、高炉中部および下部で粉化を生じるおそれがある。このような問題に対して本発明者らは、炉内高温雰囲気を利用して焼結する物質を非焼成塊成鉱に添加しておけば、炉内高温域において焼結による結合が新たに生じ、高温強度を発現できるのではないという着想の下に、以下のような検討を行った。 By the way, when cement or organic matter is used as a binder for unfired agglomerated minerals, cement hydrate is thermally decomposed at high temperature in the furnace, or the organic matter is melted to lower the strength, and powdered in the middle and lower parts of the blast furnace. May occur. In response to such problems, the present inventors have newly added a bonding by sintering in the high temperature region in the furnace if a material to be sintered using the high temperature atmosphere in the furnace is added to the unfired agglomerated mineral. Based on the idea that the high temperature strength is not generated, the following examination was performed.
焼結反応については、多くの基礎的研究がなされているが、例えば、荒井康夫著,粉体の材料化学,培風館(1987),p143には、下記(2)式及び下記(3)式が提案されている。
x:焼結により生成される接合部の長さ
L:焼結する2粒子の直径の和
ΔL:収縮量
K:定数
D:拡散係数
γ:表面エネルギー
a:イオン間距離
k:ボルツマン定数
T:温度
t:焼結時間
Many basic studies have been made on the sintering reaction. For example, Yasuo Arai, Material chemistry of powders, Baifukan (1987), p143 includes the following formulas (2) and (3): Proposed.
上記(2)式は、焼結により生成される接合部の長さを粒子半径で規格化したものを温度、粒子半径及び焼結時間により定式化したものであり、上記(3)式は、収縮率(ΔL/L)を同様に定式化したものである。ΔL及びLの定義は図9に示した。
上記(2)式より、接合部の成長は拡散係数Dが大きいほど、焼結時間tが長いほど、粒子半径rが小さいほど大きいことが判る。拡散係数Dは物質によっても異なるが、結晶格子の欠陥濃度が少ない(不純物が少ない)ほど大きくなる。同様に上記(3)式より、焼結による収縮率(ΔL/L)は拡散係数Dが大きいほど、焼結時間tが長いほど、粒子半径rが小さいほど大きいことが判る。
The above equation (2) is the one obtained by standardizing the length of the joint produced by sintering with the particle radius, and is formulated with the temperature, the particle radius and the sintering time, and the above equation (3) is The shrinkage rate (ΔL / L) is similarly formulated. The definitions of ΔL and L are shown in FIG.
From the above equation (2), it can be seen that the growth of the joint is larger as the diffusion coefficient D is larger, the sintering time t is longer, and the particle radius r is smaller. Although the diffusion coefficient D varies depending on the material, the diffusion coefficient D increases as the defect concentration of the crystal lattice decreases (there are fewer impurities). Similarly, from the above equation (3), it can be seen that the shrinkage ratio (ΔL / L) by sintering is larger as the diffusion coefficient D is larger, the sintering time t is longer, and the particle radius r is smaller.
以上のことから、高純度で微粒の粒子を添加すれば、この粒子の焼結により高温域での非焼成塊成鉱の強度を高めることができるものと推定し、具体的な材料について実験と検討を重ねた結果、所定の粒径以下の酸化鉄粉を用いることが有効であることが判明した。すなわち、そのような酸化鉄粉を適量添加した非焼成塊成鉱は、セメントなどのバインダーによる結合強度の低下が始まる数百℃から酸化鉄粉が焼結をはじめ、この焼結により十分な熱間強度が確保できることが判った。また、このような鉄系の材料(酸化鉄粉)を用いることができることは、製鉄用塊成鉱としても望ましいことである。
このような本発明の非焼成塊成鉱は、原料中にさらに、粒径10μm以下の割合が90mass%以上の酸化鉄含有粉(C)(但し、粉体が酸化鉄のみからなる場合を含む。)を配合した製鉄用非焼成塊成鉱である。この非焼成塊成鉱は、炉内高温域においては添加した酸化鉄含有粉(C)の焼結による強度(熱間強度)が発現する。
From the above, it is estimated that the addition of high-purity fine particles can increase the strength of the non-fired agglomerated minerals at high temperatures by sintering these particles. As a result of repeated studies, it has been found effective to use iron oxide powder having a predetermined particle size or less. In other words, uncalcined agglomerated minerals to which an appropriate amount of iron oxide powder has been added begin to sinter the iron oxide powder from several hundred degrees Celsius at which the bond strength decreases due to a binder such as cement. It was found that interstitial strength could be secured. In addition, the ability to use such an iron-based material (iron oxide powder) is desirable as an agglomerate for iron making.
Such a non-fired agglomerated mineral of the present invention further includes an iron oxide-containing powder (C) in which the ratio of the particle size of 10 μm or less is 90 mass% or more in the raw material (provided that the powder is composed only of iron oxide) .)) Is a non-fired agglomerated mineral for iron making. This non-calcined agglomerated mineral develops strength (hot strength) due to sintering of the added iron oxide-containing powder (C) in a high temperature range in the furnace.
図4は、以上のような非焼成塊成鉱の基本構造と昇温時の挙動を示しており、xは非焼成塊成鉱である。この非焼成塊成鉱xの基本構造は、図4(イ)に示すように製鉄用鉄原料aとバインダーbの混合層と、この混合層内に散在する酸化鉄含有粉c(粒径10μm以下の割合が90mass%以上の酸化鉄含有粉)からなる。このような非焼成塊成鉱xが高炉内に装入されて昇温されると、温度が概ね500℃を超えたあたりから、酸化鉄含有粉cが焼結し始め、図4(ロ)に示すように、径を縮小させつつ、焼結した酸化鉄含有粉cがバインダー機能を発現した非焼成塊成鉱x′になる。
FIG. 4 shows the basic structure of the unfired agglomerated mineral and the behavior at the time of temperature rise, and x is the unfired agglomerated mineral. As shown in FIG. 4 (a), the basic structure of the unfired agglomerated x is a mixed layer of iron raw material a for iron making and a binder b, and iron oxide-containing powder c (
図5は、酸化鉄含有粉cの粒子どうしの焼結挙動を模式的に示している。高温雰囲気下で粒子どうしが接触すると、界面で物質の拡散、移動が生じ接合する。この反応については、さきに挙げた(2)式および(3)式に従うことになる。前記非焼成塊成鉱xの場合には、図6に示すように、酸化鉄含有粉cと製鉄用鉄原料aとの接触・接合を考えればよい。一般に製鉄用鉄原料aは酸化鉄に様々な不純物を含んだものとなっており、また、その粒径もミリオーダーのものが多い。このため上記(2)式で示したように焼結速度は遅い。したがって、製鉄用鉄原料aから酸化鉄含有粉cへの拡散は遅いが、酸化鉄含有粉cから製鉄用鉄原料aへの拡散は速い。これによって、酸化鉄含有粉cが製鉄用鉄原料aを接合する“のり”の役割を果たすことになる。 FIG. 5 schematically shows the sintering behavior of the particles of the iron oxide-containing powder c. When particles come into contact with each other in a high-temperature atmosphere, the material diffuses and moves at the interface and bonds. For this reaction, the equations (2) and (3) listed above are followed. In the case of the unfired agglomerated x, as shown in FIG. 6, contact / joining between the iron oxide-containing powder c and the iron raw material a for iron making may be considered. In general, the iron raw material a for iron making contains various impurities in iron oxide, and its particle size is often in the order of millimeters. For this reason, the sintering rate is slow as shown in the above equation (2). Therefore, diffusion from the iron-making iron raw material a to the iron oxide-containing powder c is slow, but diffusion from the iron oxide-containing powder c to the iron-making iron raw material a is fast. As a result, the iron oxide-containing powder c serves as a “paste” for joining the iron raw material a for iron making.
前記酸化鉄含有粉(C)は、酸化鉄を含有し、粒径10μm以下の粉を90mass%以上含むものであれば特別な制限はなく、実質的に酸化鉄のみからなる粉体であってもよい。また、酸化鉄含有粉(C)が酸化鉄以外の物質(例えば、SiO2、Al2O3など)を含む場合には、当該物質は酸化鉄とともに粒子の一部として含まれていてもよいし、酸化鉄を含まない粒子として含まれてもよい。また、酸化鉄はFe2O3(へマタイト)に限らず、Fe3O4(マグネタイト)、FeOであってもよい。
なお、この酸化鉄含有粉(C)の粒径の測定方法としては、例えば、レーザー回折式粒度分布測定装置を用いた測定法を適用することができる。この測定方法は、粒子にレーザービームを照射した場合、その回折・散乱光の強度および分布が粒子の粒度分布に依存することを利用するものであり、粒度分布を極めて精度良く測定することができる。
The iron oxide-containing powder (C) contains iron oxide and is not specifically limited as long as it contains 90 mass% or more of powder having a particle size of 10 μm or less. Also good. Further, when the iron oxide-containing powder (C) contains a substance other than iron oxide (for example, SiO 2 , Al 2 O 3, etc.), the substance may be contained as part of the particles together with the iron oxide. However, it may be contained as particles not containing iron oxide. The iron oxide is not limited to Fe 2 O 3 (hematite), but may be Fe 3 O 4 (magnetite) or FeO.
In addition, as a measuring method of the particle size of this iron oxide containing powder (C), the measuring method using a laser diffraction type particle size distribution measuring apparatus is applicable, for example. This measurement method utilizes the fact that when a particle is irradiated with a laser beam, the intensity and distribution of the diffracted / scattered light depends on the particle size distribution of the particle, and the particle size distribution can be measured with extremely high accuracy. .
図6に示すような焼結に有効な酸化鉄含有粉の粒度を決定するために、以下に示すような基礎試験を行った。図7に示すような非常に狭い粒度分布に整粒された酸化鉄粉(Fe2O3)を錠剤状に成形し、電気炉で焼成した後の収縮率を測定した。酸化鉄粉の粒径は6.5μm以下が99.3mass%、5.5μm以下が16.1mass%であり、これを6μmで代表させた。高炉内でセメント水和物の分解が始まり、従来のセメントボンド型非焼成塊成鉱の強度が低下し始める温度は500〜700℃の領域であるため、酸化鉄粉の錠剤成形体の焼成温度を700℃とし、高炉内で500〜700℃の滞留時間を考慮して焼成時間を1時間として焼結反応させた。このときの収縮率(ΔL/L)が0.0715であったことから、上記(3)式の未知数を決定し、粒径と収縮率の関係を求めて図8に示した。同図から、700℃で収縮する最大の粒径を作図により決定した。図示した2つの直線(破線)は、粒径が小なる部分及び大なる部分における曲線の“直線に近い部分”を仮想的に延長したものであり、これらの交点をもって700℃で収縮を開始する最大の粒径を求めると、収縮する最大の粒径は10μmと見積もられ、この粒径以下の粒子は収縮、すなわち焼結に寄与するものと推定される。以上の理由から、酸化鉄含有粉(C)は粒径10μm以下のものが好ましく、このため本発明では粒径10μm以下の割合が90mass%以上の酸化鉄含有粉(C)を用いる。 In order to determine the particle size of the iron oxide-containing powder effective for sintering as shown in FIG. 6, a basic test as shown below was conducted. The iron oxide powder (Fe 2 O 3 ) adjusted to a very narrow particle size distribution as shown in FIG. 7 was formed into a tablet shape, and the shrinkage ratio after firing in an electric furnace was measured. The particle size of the iron oxide powder is 99.3 mass% at 6.5 μm or less and 16.1 mass% at 5.5 μm or less, and this was represented by 6 μm. Since the decomposition of cement hydrate begins in the blast furnace and the strength of the conventional cement bond-type non-fired agglomerated ore starts to decrease, the temperature is in the range of 500 to 700 ° C. The sintering reaction was carried out in a blast furnace with a firing time of 1 hour in consideration of a residence time of 500 to 700 ° C. Since the shrinkage (ΔL / L) at this time was 0.0715, the unknown in the above equation (3) was determined, and the relationship between the particle size and the shrinkage was determined and shown in FIG. From the figure, the maximum particle size that shrinks at 700 ° C. was determined by drawing. The two straight lines (broken lines) shown in the figure are virtual extensions of the “parts close to a straight line” of the curve where the particle size is small and large, and shrinkage starts at 700 ° C. at the intersection of these. When the maximum particle size is obtained, the maximum particle size that shrinks is estimated to be 10 μm, and particles smaller than this particle size are estimated to contribute to shrinkage, that is, sintering. For the reasons described above, the iron oxide-containing powder (C) preferably has a particle size of 10 μm or less. Therefore, in the present invention, the iron oxide-containing powder (C) having a particle size of 10 μm or less is 90 mass% or more.
粒径10μm以下の割合が90mass%以上の酸化鉄含有粉(C)としては、例えば、鋼材酸洗ライン回収粉(いわゆるルスナー酸化鉄など)、鉄鋼製造プロセスで生じる精錬ダスト、鉄鉱石微粉などが挙げられ、これらの1種以上を用いることができる。
ここで、鋼材酸洗ライン回収粉とは、次のようなものである。鋼板などの鋼材製造プロセスの冷間圧延工程では、圧延前に表面の酸化鉄層を酸洗(塩酸溶液による酸洗)することにより除去している。この酸洗液中に鉄は塩化鉄として溶出するが、この塩化鉄を焙焼などの方法で処理することにより、高純度且つ微粉の酸化鉄粉(ヘマタイト粉)が回収される。この酸化鉄粉は非常に高純度(通常、酸化鉄含有率:95mass%以上)で微粉のものであり、酸化鉄含有粉(C)として好適なものである。
Examples of the iron oxide-containing powder (C) having a particle size of 10 μm or less of 90 mass% or more include steel pickling line recovered powder (so-called Rusner iron oxide, etc.), refined dust generated in the steel manufacturing process, iron ore fine powder, and the like. One or more of these can be used.
Here, the steel material pickling line recovered powder is as follows. In the cold rolling step of a steel material manufacturing process such as a steel plate, the surface iron oxide layer is removed by pickling (pickling with a hydrochloric acid solution) before rolling. In this pickling solution, iron is eluted as iron chloride. By treating this iron chloride by a method such as roasting, high purity and fine iron oxide powder (hematite powder) is recovered. This iron oxide powder is very fine (usually iron oxide content: 95 mass% or more) and fine powder, and is suitable as iron oxide-containing powder (C).
また、鋼製造プロセスで生じる精錬ダストには、溶銑予備処理工程で生じる精錬ダスト、転炉脱炭工程で生じる精錬ダスト(転炉OGダスト)などが含まれる。これらの精錬ダストは、精錬工程で発生した排ガスから集塵することにより回収されたものである。これらのダストは、酸化鉄粉の含有量が高く且つ微粉のものであり、酸化鉄含有粉(C)として好適なものである。
非焼成塊成鉱中での酸化鉄含有粉(C)の含有量は、酸化鉄換算量で1〜30mass%、特に5〜30mass%とすることが好ましい。酸化鉄含有粉(C)の含有量が酸化鉄換算量で1mass%未満では、酸化鉄含有粉(C)の焼結によるバインダー作用が十分でなく、一方、30mass%を超えると、製鉄用鉄原料(A)の量が少なくなるため生産性が低下する。
Further, the refining dust generated in the steel production process includes refining dust generated in the hot metal pretreatment process, refining dust (converter OG dust) generated in the converter decarburization process, and the like. These refining dusts are collected by collecting dust from the exhaust gas generated in the refining process. These dusts are high in content of iron oxide powder and fine powder, and are suitable as iron oxide-containing powder (C).
The content of the iron oxide-containing powder (C) in the unfired agglomerated mineral is preferably 1 to 30 mass%, particularly 5 to 30 mass%, in terms of iron oxide. If the content of the iron oxide-containing powder (C) is less than 1 mass% in terms of iron oxide, the binder action due to sintering of the iron oxide-containing powder (C) is not sufficient, while if it exceeds 30 mass%, the iron for iron making Productivity decreases because the amount of the raw material (A) decreases.
図10に、本発明の非焼成塊成鉱の製造フローの一例を示す。この製造フローは、製鉄用鉄原料(A)、バインダー(B)及び酸化鉄含有粉(C)を原料として非焼成塊成鉱を製造する場合を示している。
図において、1a〜1cは、製鉄用鉄原料(A)、バインダー(B)及び酸化鉄含有粉(C)をそれぞれ貯留した原料貯留槽であり、これら原料貯留槽1a〜1cから定量切り出し装置などを用いて、製鉄用鉄原料(A)、バインダー(B)及び酸化鉄含有粉(C)を所定量切り出し、原料搬送装置2により加湿混合機3(例えば、ドラムミキサー、アイリッヒミキサーなど)へ導入する。なお、製鉄用鉄原料(A)、バインダー(B)及び酸化鉄含有粉(C)は予め混合し、1つの原料貯留槽から切り出すようにしてもよい。また、図示しないが、必要に応じて事前に粒度を調整するための粉砕工程や、異物を取り除く工程などがあってもよい。
In FIG. 10, an example of the manufacturing flow of the non-baking agglomerated mineral of this invention is shown. This production flow shows a case where an unfired agglomerated ore is produced using an iron raw material for iron making (A), a binder (B) and an iron oxide-containing powder (C) as raw materials.
In the figure, 1a to 1c are raw material storage tanks storing iron raw materials (A), binders (B), and iron oxide-containing powders (C), respectively, and quantitative cut-out devices from these raw material storage tanks 1a to 1c, etc. Is used to cut out a predetermined amount of iron raw material (A) for iron making, binder (B) and iron oxide-containing powder (C), and to the humidifying mixer 3 (for example, a drum mixer, an Eirich mixer, etc.) by the raw
前記加湿混合機3では原料に水が添加され、混合・撹拌される。加湿混合機3の機能などに特別な制限はないが、混合攪拌能力の高いものが望ましい。混合攪拌能力の低いものを採用した場合は、混合時間を長く取る必要が生じ、生産性が低下する。
前記加湿混合機3で加湿混合された原料は原料搬送装置4により造粒機5に移送され、ここで造粒される。図10では造粒機5として皿型転動造粒機(ディスクペレタイザー)を用いているが、さきに述べたように他の形式の造粒機を用いてもよい。
In the
The raw material humidified and mixed by the
図10のような皿型転動造粒機を用いた場合には、球形に近い塊成鉱(造粒物)が製造される。一方、圧縮造粒機を用いた場合には、アーモンド形、豆炭形など、使用する型によりさまざまな形状のものが製造可能である。但し、さきに述べたように常温雰囲気下での球換算粒径が8〜30mm程度であれば、どのような形状でもよい。
造粒機5で得られた造粒物(塊成化物)は原料搬送装置6により静置ヤード7へ搬送され、この静置ヤード7で所定時間養生されることにより、高炉で使用可能な非焼成塊成鉱xとなる。
When a dish-type rolling granulator as shown in FIG. 10 is used, an agglomerate (granulated material) close to a spherical shape is produced. On the other hand, when a compression granulator is used, various shapes such as an almond shape and a bean charcoal shape can be manufactured depending on the type used. However, as described above, any shape may be used as long as the spherical equivalent particle diameter in a normal temperature atmosphere is about 8 to 30 mm.
The granulated product (agglomerated product) obtained by the
製鉄用鉄原料(A)である鉄鉱石(鉄鉱石粉)に、バインダー(B)であるポルトランドセメントと、酸化鉄含有粉(C)であるへマタイト粉を加えた原料を、図10に示すような製造フローを用いて造粒し、一定期間養生して非焼成塊成鉱を製造した。ここで、へマタイト粉としては鋼材酸洗ライン回収粉を用いた。
使用した原料の成分組成を表1に、また粒度分布を図11に示す。鉄鉱石(1),(2)は成分は同じであるが、鉄鉱石(1)は粒度がやや細かく、粒径20μm以下が10mass%以下のものである。一方、鉄鉱石(2)は粒度がやや粗く、粒径40μm以下が10mass%以下のものである。
また、へマタイト粉(1)は酸化鉄含有率が極めて高く、且つ微細粒のものであり、粒径10μm以下の割合が90mass%以上のものである。一方、へマタイト粉(2)は、粒度分布はへマタイト粉(1)とほぼ同じであるが、酸化鉄含有率が低いもの、へマタイト粉(3)は酸化鉄含有率は極めて高いが、粒度は粗く粒径10μm超の割合が40mass%近くあるものである。
FIG. 10 shows a raw material obtained by adding Portland cement as a binder (B) and hematite powder as an iron oxide-containing powder (C) to iron ore (iron ore powder) as an iron raw material (A) for iron making. Granulation using a simple production flow and curing for a certain period of time to produce a non-fired agglomerated ore. Here, steel material pickling line collection powder was used as hematite powder.
The component composition of the raw materials used is shown in Table 1, and the particle size distribution is shown in FIG. The components of iron ore (1) and (2) are the same, but iron ore (1) has a slightly fine particle size and a particle size of 20 μm or less is 10 mass% or less. On the other hand, the iron ore (2) has a slightly coarse particle size and a particle size of 40 μm or less is 10 mass% or less.
Further, the hematite powder (1) has a very high iron oxide content and is fine, and the ratio of the particle size of 10 μm or less is 90 mass% or more. On the other hand, the hematite powder (2) has almost the same particle size distribution as the hematite powder (1), but the iron oxide content is low, while the hematite powder (3) has a very high iron oxide content, The particle size is coarse and the ratio of the particle size exceeding 10 μm is close to 40 mass%.
各実施例(本発明例、比較例)の原料について、図12に示すように横軸に粒子径、縦軸に累積質量比率をとった粒度分布の曲線xを求め、粒径dからDの範囲において、前記各曲線xが下記(a)式の2つの曲線で囲まれようにqの最小値と最大値を選んだとき、その最小のqをq1、最大のqをq2とした。
P(%)=100×(d0/D)q …(a)
したがって、q1〜q2が0.1〜0.4の範囲にあれば、本発明が規定する前記(1)式を満足することになる。
About the raw material of each Example (invention example, comparative example), as shown in FIG. 12, a curve x of a particle size distribution having a particle diameter on the horizontal axis and a cumulative mass ratio on the vertical axis is obtained. In the range, when the minimum value and the maximum value of q were selected so that each curve x was surrounded by two curves of the following formula (a), the minimum q was set to q1, and the maximum q was set to q2.
P (%) = 100 × (d 0 / D) q (a)
Therefore, when q1 and q2 are in the range of 0.1 to 0.4, the above expression (1) defined by the present invention is satisfied.
各実施例の非焼成塊成鉱を他の鉄原料とともに高炉に装入し、非焼成塊成鉱の冷間強度と高炉操業状況の変化を調査した。その結果を、原料の粒度分布やバインダー配合量とともに表2に示す。なお、高炉への鉄原料の配合割合は、非焼成塊成鉱:12mass%、焼結鉱:79mass%、塊鉱石:9mass%とした。
非焼成塊成鉱の冷間強度については、ヤードにおける粉率と高炉炉頂における粉率を測定し、その差(輸送時粉化率)で評価した。塊成鉱が5mm以上の粒径であれば高炉の原料として使用可能であるため、−5mm(=粒径5mm未満)の粒子を粉と定義し、その質量割合を−5mmの粉率とした。
The unfired agglomerated ore of each example was charged into a blast furnace together with other iron raw materials, and the changes in the cold strength and blast furnace operating status of the unfired agglomerated ore were investigated. The results are shown in Table 2 together with the particle size distribution of the raw materials and the binder blending amount. In addition, the mixture ratio of the iron raw material to a blast furnace was made into non-baking agglomerated mineral: 12 mass%, sintered ore: 79 mass%, lump ore: 9 mass%.
About the cold intensity | strength of a non-baking agglomerated ore, the powder rate in a yard and the powder rate in a blast furnace top were measured, and the difference (powdering rate at the time of transport) evaluated. If the agglomerate has a particle size of 5 mm or more, it can be used as a raw material for a blast furnace. Therefore, particles of −5 mm (= particle size less than 5 mm) are defined as powder, and the mass ratio is set to a powder rate of −5 mm. .
また、表2中に示した吹き抜け回数の「吹き抜け現象」とは、高炉内の圧力損失が増大することで還元性ガスの流れが止められ、炉内の圧力が上昇し、一定の圧力に達したとき、爆発的に還元性ガスの上昇が再開される現象を指す。この場合、ガス流れの再開と同時に炉内の装入物がガスに同伴されて移動するため、層状に堆積された装入物の分布が乱れることになる。装入物の分布が乱れると、通気性がさらに悪化したり、酸化鉄の還元不良等の問題を生じるため、還元材比が上昇するなど高炉操業に極めて悪い影響を与えるのみならず、圧力の上昇により炉体への機械的ダメージを与えたり、急激に高温ガスが噴出することによる諸設備への熱的悪影響も懸念される。 Also, the “blow-out phenomenon” of the number of blow-throughs shown in Table 2 means that the flow of reducing gas is stopped by increasing the pressure loss in the blast furnace, the pressure in the furnace rises, and reaches a certain pressure. When this happens, it means a phenomenon in which the rising of the reducing gas explosively resumes. In this case, since the charge in the furnace moves with the gas simultaneously with the resumption of the gas flow, the distribution of the charge deposited in layers is disturbed. If the distribution of the charge is disturbed, the air permeability is further deteriorated, and problems such as poor reduction of iron oxide are caused. There is also concern about thermal adverse effects on various facilities due to mechanical damage to the furnace body due to the rise and rapid hot gas ejection.
表2によれば、本発明例の非焼成塊成鉱は、比較例の非焼成塊成鉱に比べて高炉への搬送中の粉化量が極めて小さいことが判る。また、高炉の操業を見ると、出銑量も多く還元材比も低く、吹き抜け現象も起きていない。これらの結果から、本発明の非焼成塊成鉱は、同一のバインダー量の比較例に対して高炉操業を格段に改善できること、また、バインダー量を低下させた場合でもなお優位であることが判る。 According to Table 2, it can be seen that the non-calcined agglomerated mineral of the present invention example has an extremely small amount of powder during conveyance to the blast furnace as compared with the non-calcined agglomerated mineral of the comparative example. In addition, when looking at the operation of the blast furnace, the amount of dredging is large, the ratio of reducing material is low, and there is no blow-through phenomenon. From these results, it can be seen that the non-fired agglomerated mineral ore of the present invention can significantly improve the blast furnace operation compared to the comparative example having the same binder amount, and is still superior even when the binder amount is reduced. .
x,x′ 非焼成塊成鉱
a 製鉄用鉄原料
b バインダー
c 酸化鉄含有粉
1a〜1c 原料貯留槽
2,4,6 原料搬送装置
3 加湿混合機
5 造粒機
7 静置ヤード
x, x 'Non-calcined agglomerates a Iron raw material for iron making b Binder c Iron oxide-containing powder 1a to 1c Raw
Claims (7)
粒径d(mm)以上の原料の累積体積率P(%)が下記(1)式を満足することを特徴とする製鉄用非焼成塊成鉱。
100×(d/D)0.1≦P≦100×(d/D)0.4 …(1)
但し D:原料粒子中の最大粒子径(mm) A non-fired agglomerated mineral obtained by solidifying a raw material in which the binder (B) is blended with the iron raw material (A) for iron making,
A non-fired agglomerated ore for iron making, wherein a cumulative volume fraction P (%) of a raw material having a particle size of d (mm) or more satisfies the following formula (1):
100 × (d / D) 0.1 ≦ P ≦ 100 × (d / D) 0.4 (1)
D: Maximum particle diameter in raw material particles (mm)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006133256A JP2007302956A (en) | 2006-05-12 | 2006-05-12 | Nonfired agglomerated ore for iron manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006133256A JP2007302956A (en) | 2006-05-12 | 2006-05-12 | Nonfired agglomerated ore for iron manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007302956A true JP2007302956A (en) | 2007-11-22 |
Family
ID=38837132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006133256A Pending JP2007302956A (en) | 2006-05-12 | 2006-05-12 | Nonfired agglomerated ore for iron manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007302956A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112430694A (en) * | 2020-11-04 | 2021-03-02 | 沙钢集团安阳永兴特钢有限公司 | Return-ore type blast furnace raw material and preparation method thereof |
-
2006
- 2006-05-12 JP JP2006133256A patent/JP2007302956A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112430694A (en) * | 2020-11-04 | 2021-03-02 | 沙钢集团安阳永兴特钢有限公司 | Return-ore type blast furnace raw material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5000402B2 (en) | Method for producing carbon-containing unfired pellets for blast furnace | |
JP2008214715A (en) | Method for manufacturing nonfired agglomerated ore for iron manufacture | |
JP5762403B2 (en) | Method for producing aggregate for raw materials charged in blast furnace from metal oxide-containing fine material | |
WO2011021577A1 (en) | Unfired carbon-containing agglomerate for blast furnaces and production method therefor | |
JP6540359B2 (en) | Modified carbon material for producing sintered ore and method for producing sintered ore using the same | |
JP4627236B2 (en) | Manufacturing method of carbonized material agglomerates | |
JP6056492B2 (en) | Method for producing unfired carbon-containing agglomerated blast furnace | |
WO2010041770A1 (en) | Blast furnace operating method using carbon-containing unfired pellets | |
JP5512205B2 (en) | Strength improvement method of raw material for agglomerated blast furnace | |
JP5114742B2 (en) | Method for producing carbon-containing unfired pellets for blast furnace | |
JP2009030115A (en) | Method for producing ore raw material for blast furnace | |
JP5786668B2 (en) | Method for producing unfired carbon-containing agglomerated mineral | |
JP4867394B2 (en) | Non-calcined agglomerate for iron making | |
JP5498919B2 (en) | Method for producing reduced iron | |
JP2007277683A (en) | Nonfired agglomerated ore for iron manufacture | |
JP2007302956A (en) | Nonfired agglomerated ore for iron manufacture | |
JP2009030114A (en) | Method for producing ore raw material for blast furnace | |
JP2003301205A (en) | Method for charging blast furnace material | |
JP2002241853A (en) | Non-burning agglomerate for blast furnace | |
JP5454505B2 (en) | Method for producing unfired carbon-containing agglomerated blast furnace | |
JP5825180B2 (en) | Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char | |
JP6887717B2 (en) | Charcoal interior granulated particles for sinter production and sinter production method using them | |
JP5835144B2 (en) | Method for producing unfired carbon-containing agglomerated blast furnace | |
TWI632241B (en) | Method for manufacturing sinter ore in carbon material | |
JP2007277684A (en) | Nonfired agglomerated ore for iron manufacture |