JPS6221055B2 - - Google Patents
Info
- Publication number
- JPS6221055B2 JPS6221055B2 JP21659282A JP21659282A JPS6221055B2 JP S6221055 B2 JPS6221055 B2 JP S6221055B2 JP 21659282 A JP21659282 A JP 21659282A JP 21659282 A JP21659282 A JP 21659282A JP S6221055 B2 JPS6221055 B2 JP S6221055B2
- Authority
- JP
- Japan
- Prior art keywords
- gas ash
- pellets
- mini
- dust
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000008188 pellet Substances 0.000 claims description 28
- 239000000428 dust Substances 0.000 claims description 24
- 238000005245 sintering Methods 0.000 claims description 17
- 239000002994 raw material Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- 239000010959 steel Substances 0.000 claims description 5
- 239000003610 charcoal Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 description 16
- 238000005469 granulation Methods 0.000 description 12
- 230000003179 granulation Effects 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000000440 bentonite Substances 0.000 description 3
- 229910000278 bentonite Inorganic materials 0.000 description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は焼結原料用非焼成ミニペレツトに関す
るものである。
周知の如く焼結鉱は粉鉱石、粉コークス、石灰
石等の焼結原料を充分混合、造粒した後焼結機へ
送給し、該焼結機において点火、焼成することに
よつて製造されている。近年、前記焼結原料の一
つとして銑鋼一貫工程の各工程、例えば高炉で発
生するガス灰、焼結工程の集塵ダスト、転炉で鋼
吹錬中に発生するダスト等を平均直径の2〜5mm
の粒に粒化した非焼成のミニペレツトが積極的に
用いられている。前記ミニペレツトは、ガス灰、
ダスト中の粉コークス及び鉄分を焼結鉱のC、
FeO源として再利用するものである。
ところで従来の上記ミニペレツトは、ガス灰各
種のダスト等の原料に必要に応じて蛇紋岩、珪
石、石灰石等のスラグ成分調整用原料を加え、そ
れぞれ所定割合で混合して粒化するのであるが前
記原料の粒度が非常に小さいため、それを周知の
造粒機で造粒されるのが一般的であるがミニペレ
ツトの全体的な造粒性が悪く、又ミニペレツト中
における成分も均一なものとはなり難い欠点を有
していた。
上記の造粒性に関して、水分の添加量を多くし
たり、又はバインダー機能を有するベントナイト
の配合量を高めると造粒性は向上するけれども、
ミニペレツト中に存在するガス灰等のCの燃焼性
が悪くなり、焼結鉱の品質を低下させるため粉コ
ークスの増配が必要となるという問題を有してい
た。
本発明は、前記従来のミニペレツトにおける問
題点の抜本的な解決を計ることを目的としてなさ
れたもので、その要旨は、銑鋼一貫工程の各工程
において発生する非含炭集塵ダストに水分を添加
し粒化したのちその表面に高炉ガス灰を被着せし
めたことを特徴とする焼結原料用非焼成ミニペレ
ツトに関するものである。
先づ、本発明に到達するまでの研究経緯につい
て述べる。
本発明者等は、前記造粒性が悪い原因を知るた
めに前記ガス灰およびダスト等について調査研究
を行つた結果、ガス灰は造粒性が極めて悪く逆に
転炉の鋼吹錬中に発生するダストを集塵した転炉
ダストは造粒性が秀れバインダー機能をも発揮す
ることが確認され、又、ガス灰及びダストを分析
した結果、それらの一般的な成分は、下記第1表
に示す通りであり、ガス灰は造粒性は悪いが炭素
cが多く、当然のことながらその燃焼性は秀れて
いることが判明した。
The present invention relates to unfired mini-pellets for sintering raw materials. As is well known, sintered ore is produced by thoroughly mixing and granulating sintering raw materials such as ore powder, coke powder, and limestone, feeding the sintering machine to a sintering machine, and igniting and firing the sintered ore in the sintering machine. ing. In recent years, as one of the raw materials for sintering, various processes in the integrated pig steel process, such as gas ash generated in blast furnaces, collected dust in the sintering process, and dust generated during steel blowing in converters, etc., have been used as sintering raw materials with an average diameter. 2~5mm
Unfired mini-pellets, which are granulated into granules, are actively used. The mini pellets are made of gas ash,
C of sintered ore, coke powder and iron in dust
It will be reused as a FeO source. By the way, in the conventional mini pellets mentioned above, raw materials for adjusting slag components such as serpentine, silica stone, and limestone are added as necessary to raw materials such as gas ash and various dusts, and the mixture is mixed in predetermined proportions and granulated. Since the particle size of the raw material is very small, it is generally granulated using a well-known granulator, but the overall granulation properties of the mini pellets are poor, and the ingredients in the mini pellets are not uniform. It had some serious drawbacks. Regarding the above-mentioned granulation properties, the granulation properties can be improved by increasing the amount of water added or by increasing the amount of bentonite that has a binder function.
There was a problem in that the combustibility of carbon such as gas ash present in the mini pellets deteriorated, and the quality of the sintered ore deteriorated, making it necessary to increase the amount of coke breeze. The present invention was made with the aim of fundamentally solving the problems with the conventional mini-pellets, and its gist is to add moisture to non-charcoal-containing dust that is generated in each step of the integrated pig steel process. This invention relates to non-sintered mini-pellets for use as a sintering raw material, characterized in that the particles are added and granulated, and then blast furnace gas ash is coated on the surface thereof. First, the research history leading up to the present invention will be described. The present inventors conducted research on the gas ash and dust in order to understand the cause of the poor granulation properties, and found that gas ash has extremely poor granulation properties and, conversely, during steel blowing in a converter. It has been confirmed that the converter dust obtained by collecting the generated dust has excellent granulation properties and also functions as a binder.As a result of analyzing the gas ash and dust, their general components are as follows: As shown in the table, it was found that gas ash had poor granulation properties, but contained a lot of carbon c, and naturally had excellent combustibility.
【表】
尚、第1表において1次ガス灰とは高炉の乾式
集塵装置で捕集されたガス灰をいい、2次ガス灰
とは高炉の湿式集塵装置で捕集されたガス灰を云
う。
本発明は前記知見に基づき、さらに研究を重ね
た結果、上記の殆んどCを含有しない集塵ダクト
(以下、非含炭集塵ダストという)を所定割合で
混合し、これに水分を添加して粒化したのち、そ
の表面に炭素を多量に含有しているガス灰を被着
せしめた、非焼成のミニペレツトは、前記の問題
点を効果的に解決するものであることを知つた。
第1図は、本発明に基づくミニペレツトの製造
手段の一例を示す構造図である。図において1は
非含炭集塵ダストを貯留するバンカー、2はガス
灰を貯留するバンカーである。バンカー1に貯留
された集塵ダストは、それぞれ切出フイーダー3
によつて所定量づつ切出され、ベルトコンベヤ5
a,5bを介して造粒機6へ供給され、該造粒機
6において水分を添加しつゝ造粒して粒子7とし
てベルトコンベヤ5dへ送り出される。一方、バ
ンカー2に貯留されたガス灰8は切出フイーダー
4によつて切出され、ベルトコンベヤ5cを介し
て前記ベルトコンベヤ5dへ乗載され搬送され
る。そこで前記粒子7は、第2図に示すようにガ
ス灰8の積層上に供給され、ガス灰8と共に後続
設備の篩分設備9およびあるいはミキサー10等
へ順次送給される。前記送給過程のベルトコンベ
ヤ5の乗継部や篩分設備9等において、ガス灰8
は第3図に示すように粒子7の表面全体にまぶさ
れ被着し、本発明のミニペレツト11が形成され
る。
粒子7の表面にガス灰8を被着させる手段とし
ては前記実施例に限定するものではなく例えば第
4図に示すように粒子7とガス灰8を混合ペレタ
イザー12へ送給し、該混合ペレタイザー12で
混合しつゝ被着せしめること、あるいは上記混合
ペレタイザー12に代えて図示はしないけれども
周知のドラムミキサーを用いることも可能であ
る。又前述のベルトコンベヤ5の乗継部における
被着効率を高めるために第5図に示すように複数
段の棚13aを設けたシユート13を配設するこ
とも効果的な手段である。
前記の通り、本発明のミニペレツト11は造粒
性がよいダストのみに水を加えて造粒し、その水
分を含有した粒子7の表面にガス灰8をまぶすよ
うに被着せしめてあるので、前記の造粒性が悪い
という問題は解決され、かつガス灰8は粒子7の
表面に均等に付着し、ミニペレツトの成分の不均
一という問題も解決することができた。
加えて前記表面に付着したガス灰8は粒子7の
水分を吸収しミニペレツト11の強度は著しく向
上した。
さらに、造粒性の極めて良好な転炉ダストに、
原料、焼結工程の集塵ダストを加え、場合によつ
ては、スラグ成分調整用微粉原料を加え、これに
水分を添加して粒子7を造粒することから、その
造粒性は極めて秀れ、ベントナイトの添加量を減
少させることが可能となつた。
さらに、又本発明のミニペレツト11は、C含
有率が高いガス灰8が粒子7内に埋没することな
く、ガス灰8の層が外側に形成され、その内側に
粒子7を形成している集塵ダストが包蔵されてい
ることから、他の焼結原料中に混合された本発明
のミニペレツト11は、焼結機において、その表
面が直ちに燃焼し、高熱を発し、これによつて集
塵ダストは効率的に溶融し反応を開始し焼結鉱の
品質を著しく向上させることができる。
尚、本発明において非含炭集塵ダストの殆んど
炭素を含有しないとは、前記造粒性に悪影響を与
えない範囲のC含有率以下のことを云い本発明者
等の経験では3〜4%程度以下であれば前記本発
明の機能を充分発揮できることが確認された。
次に本発明の具体的実施例を詳述する。
実施例
焼結面積170m2および183m2のDL焼結機におい
て10000屯/日の焼結鉱製造を行つた。第2表
は、本実施例における焼結原料の種類と配合量を
示すもので同様に第3表は、ミニペレツトに用い
た集塵ダストの種類およびガス灰とその配合量を
示すものである。而して第3表に示す集塵ダスト
に水分を添加して粒化し、その表面にガス灰を被
着せしめた本発明のミニペレツトは第3表の集塵
ダストおよびガス灰を同時に混合し粒化した従来
のミニペレツトに対し、ミニペレツト中のベント
ナイト配合量を2.0%から1.0%に減少したにも拘
らず、ロータツプスクリーンでもつて、[Table] In Table 1, primary gas ash refers to the gas ash collected by the dry dust collector of the blast furnace, and secondary gas ash refers to the gas ash collected by the wet dust collector of the blast furnace. says. The present invention is based on the above knowledge and as a result of further research, the above-mentioned dust collection duct containing almost no C (hereinafter referred to as non-carbon-containing dust collection dust) is mixed in a predetermined ratio, and water is added to this. It has been found that unfired mini-pellets, which are made by granulating the pellets and then coating the surface with gas ash containing a large amount of carbon, can effectively solve the above-mentioned problems. FIG. 1 is a structural diagram showing an example of a means for producing mini pellets according to the present invention. In the figure, 1 is a bunker that stores non-charcoal-containing collected dust, and 2 is a bunker that stores gas ash. The collected dust stored in the bunker 1 is transferred to the cutting feeder 3.
is cut out into a predetermined amount by a belt conveyor 5.
a, 5b to a granulator 6, where it is granulated while adding moisture and sent as particles 7 to a belt conveyor 5d. On the other hand, the gas ash 8 stored in the bunker 2 is cut out by the cut-out feeder 4, loaded onto the belt conveyor 5d via the belt conveyor 5c, and conveyed. Therefore, the particles 7 are supplied onto a stack of gas ash 8 as shown in FIG. 2, and together with the gas ash 8, they are sequentially sent to subsequent equipment such as a sieving equipment 9 and/or a mixer 10. Gas ash 8
As shown in FIG. 3, the powder is sprinkled and adhered to the entire surface of the particles 7, thereby forming the mini-pellets 11 of the present invention. The means for depositing the gas ash 8 on the surface of the particles 7 is not limited to the above embodiment, but for example, as shown in FIG. 4, the particles 7 and the gas ash 8 are fed to a mixing pelletizer 12, It is also possible to perform the mixing and coating using the mixing pelletizer 12, or to use a well-known drum mixer, although not shown, in place of the mixing pelletizer 12. Furthermore, in order to increase the deposition efficiency at the transfer section of the belt conveyor 5 described above, it is an effective means to provide a chute 13 provided with a plurality of shelves 13a as shown in FIG. As mentioned above, the mini pellets 11 of the present invention are granulated by adding water only to dust with good granulation properties, and the surfaces of the particles 7 containing moisture are coated with gas ash 8, so that The above-mentioned problem of poor granulation properties was solved, gas ash 8 was evenly attached to the surface of particles 7, and the problem of non-uniformity of the components of the mini pellets was also solved. In addition, the gas ash 8 adhering to the surface absorbed moisture from the particles 7, and the strength of the mini pellets 11 was significantly improved. Furthermore, the converter dust has extremely good granulation properties,
The particles 7 are granulated by adding raw materials, collected dust from the sintering process, and in some cases, fine powder raw material for adjusting the slag composition, and adding moisture to this, resulting in extremely excellent granulation properties. This made it possible to reduce the amount of bentonite added. Furthermore, the mini pellets 11 of the present invention are aggregates in which the gas ash 8 having a high C content is not buried in the particles 7, and a layer of the gas ash 8 is formed on the outside and the particles 7 are formed on the inside. Because the dust is contained, the surface of the mini-pellets 11 of the present invention mixed with other sintering raw materials burns immediately in the sintering machine and generates high heat, thereby causing the collected dust to can efficiently melt and initiate a reaction, significantly improving the quality of sintered ore. In the present invention, "containing almost no carbon in the non-charcoal-containing collected dust" means that the C content is below a range that does not adversely affect the granulation properties, and in the experience of the present inventors, the C content is 3 to 3. It was confirmed that the functions of the present invention can be fully exhibited if the content is about 4% or less. Next, specific embodiments of the present invention will be described in detail. EXAMPLE A DL sintering machine with a sintering area of 170 m 2 and 183 m 2 was used to produce 10,000 tons/day of sintered ore. Table 2 shows the types and amounts of the sintering raw materials used in this example, and Table 3 shows the types of collected dust, gas ash, and amounts used in the mini pellets. The mini pellets of the present invention are made by adding moisture to the collected dust shown in Table 3 and granulating it, and then coating the surface with gas ash. Despite reducing the amount of bentonite in the mini pellets from 2.0% to 1.0%, even with the rotor tap screen,
【表】【table】
【表】
2分間篩分けした−0.5mmの指数で、従来のミニ
ペレツトの20〜25%に対して10〜12%と大巾に改
善され、破壊され難いことが確認された。又、本
発明のミニペレツトを焼結原料に配合することに
より、従来のミニペレツトに対し、コークス原単
位を0.8Kg/屯低減できた。
以上のように本発明の実用的効果は極めて大で
ある。[Table] It was confirmed that the -0.5 mm index after sieving for 2 minutes was 10-12% compared to 20-25% for conventional mini pellets, and that it was difficult to break. Furthermore, by blending the mini-pellets of the present invention into the sintering raw material, the coke consumption rate could be reduced by 0.8 kg/ton compared to conventional mini-pellets. As described above, the practical effects of the present invention are extremely large.
第1図は、本発明のミニペレツト製造手段の1
例の構造図、第2図はベルト上で粒子がガス灰上
に載置している説明図、第3図は本発明のミニペ
レツトの断面図、第4,5図は粒子にガス灰を被
着する他の手段を示す説明図である。
1,2:バンカー、3,4:切出フイーダー、
5,5a〜5f:ベルトコンベヤ、6:造粒機、
7:粒子、8:ガス灰、9:篩分設備、10:ミ
キサー、11:ミニペレツト、12:混合ペレタ
イザー、13:シユート。
FIG. 1 shows one of the means for producing mini pellets of the present invention.
Fig. 2 is an explanatory diagram of particles placed on gas ash on a belt, Fig. 3 is a cross-sectional view of the mini pellets of the present invention, and Figs. 4 and 5 show particles covered with gas ash. It is an explanatory view showing other means of wearing. 1, 2: bunker, 3, 4: cutting feeder,
5, 5a to 5f: belt conveyor, 6: granulator,
7: particles, 8: gas ash, 9: sieving equipment, 10: mixer, 11: mini pellets, 12: mixing pelletizer, 13: chute.
Claims (1)
炭集塵ダストに水分を添加し粒化したのちその表
面に高炉ガス灰を被着せしめたことを特徴とする
焼結原料用非焼成ミニペレツト。1. Non-fired mini-pellets for sintering raw material, characterized in that non-charcoal-containing dust generated in each step of the integrated pig steel process is granulated by adding moisture, and then coated with blast furnace gas ash on its surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21659282A JPS59107036A (en) | 1982-12-10 | 1982-12-10 | Non-calcined mini-pellet for raw material to be sintered |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21659282A JPS59107036A (en) | 1982-12-10 | 1982-12-10 | Non-calcined mini-pellet for raw material to be sintered |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59107036A JPS59107036A (en) | 1984-06-21 |
JPS6221055B2 true JPS6221055B2 (en) | 1987-05-11 |
Family
ID=16690828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21659282A Granted JPS59107036A (en) | 1982-12-10 | 1982-12-10 | Non-calcined mini-pellet for raw material to be sintered |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59107036A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3052706B2 (en) * | 1993-12-10 | 2000-06-19 | 日本鋼管株式会社 | How to recover zinc in dust |
GB2324081A (en) * | 1997-04-07 | 1998-10-14 | Heckett Multiserv Plc | Additives for Electric Arc Furnace |
DE602005020994D1 (en) * | 2005-12-02 | 2010-06-10 | Kyouzai Kogyo Co Ltd | PROCESS FOR GRANULATING SINTERED MATERIAL AND METHOD FOR PRODUCING SINTERED ORE |
JP4327222B1 (en) | 2008-03-31 | 2009-09-09 | 株式会社 テツゲン | Cement bond agglomerate production method |
-
1982
- 1982-12-10 JP JP21659282A patent/JPS59107036A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59107036A (en) | 1984-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101717854B (en) | Method for producing metallized pellet by using metallurgical roasting furnace | |
CA2306805C (en) | Method and apparatus for making metallic iron | |
EP0578253B1 (en) | Method for manufacturing agglomerates of fired pellets | |
JP2007284744A (en) | Method for manufacturing sintered ore | |
EP0207654B1 (en) | Method for continuously manufacturing fired pellets | |
JP2000248309A (en) | Production of calcium-ferrite for refining molten iron | |
EP1365036A1 (en) | Method of preparing carbonaceous iron oxide pellets with hydrocarbon-type binder | |
JP4781807B2 (en) | Manufacturing method of dephosphorizing agent for steel making using sintering machine | |
JP4022941B2 (en) | Method for forming reduced iron production raw material | |
JP4918754B2 (en) | Semi-reduced sintered ore and method for producing the same | |
JP4984488B2 (en) | Method for producing semi-reduced sintered ore | |
JPS6221055B2 (en) | ||
JP2009019224A (en) | Method for manufacturing sintered ore | |
WO2005111248A1 (en) | Semi-reduced sintered ore and method for production thereof | |
JP2000256731A (en) | Production of calcium ferrite for refining molten iron | |
JP4087982B2 (en) | Granulation method for raw materials for sintering with excellent flammability | |
JP2002226920A (en) | Sintered ore manufacturing method, and sintered ore | |
CN1533443A (en) | Method for accelerating separation of granular metallic iron from slag | |
JP3675105B2 (en) | Sintering raw material processing method | |
JP5517501B2 (en) | Method for producing sintered ore | |
JP6805672B2 (en) | Manufacturing method of carbonaceous interior granulated particles and manufacturing method of carbonaceous interior agglomerate | |
JP3709001B2 (en) | Non-fired agglomerated ore for iron making and method of using the same | |
JP2001262241A (en) | Method for producing sintered ore containing carbon | |
JPH0583620B2 (en) | ||
JPS6028891B2 (en) | Pre-treatment method for sintering raw materials |