JP4087982B2 - Granulation method for raw materials for sintering with excellent flammability - Google Patents

Granulation method for raw materials for sintering with excellent flammability Download PDF

Info

Publication number
JP4087982B2
JP4087982B2 JP09777199A JP9777199A JP4087982B2 JP 4087982 B2 JP4087982 B2 JP 4087982B2 JP 09777199 A JP09777199 A JP 09777199A JP 9777199 A JP9777199 A JP 9777199A JP 4087982 B2 JP4087982 B2 JP 4087982B2
Authority
JP
Japan
Prior art keywords
coke
ore
drum mixer
sintering
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09777199A
Other languages
Japanese (ja)
Other versions
JP2000290732A (en
Inventor
健一 八ケ代
武 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09777199A priority Critical patent/JP4087982B2/en
Publication of JP2000290732A publication Critical patent/JP2000290732A/en
Application granted granted Critical
Publication of JP4087982B2 publication Critical patent/JP4087982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、粉鉱石等にコークスを添加し擬似粒子に造粒して焼結鉱を製造する際に、擬似粒子の燃焼性を高めて生産性を向上する焼結用原料の造粒方法に関する。
【0002】
【従来の技術】
一般に製鉄原料は、8mm以下の微粉の鉄鉱石や集塵機等から回収されたダスト、焼結機から払い出された後の篩下粉(返し鉱)等の粉鉱石に、コークスを添加し、水や生石灰等のバインダーを添加して、ドラムミキサー等を用いて擬似粒子を造粒し、これを焼結機に装入して1100〜1300℃の温度で焼いて焼結鉱を製造し、高炉に使用している。
この焼結鉱の品質は、高炉の通気性や装入の荷下がり等に影響し、場合によっては、高炉の安定操業や高炉の出銑量等に支障が生じる場合があり、良質の焼結鉱の供給が望まれている。
また、焼結機により製造される焼結鉱は、微粉を多く含んだ粉鉱石等とコークスを添加して造粒した擬似粒子の良否によって、焼結操業時の通気性や燃焼性、擬似粒子の焼結状態に影響を与え、その強度や還元粉化率(RDI)等の特性が大きく左右され、これ等の品質と生産性や焼結歩留りを満足する擬似粒子の製造そのものが難しい実情であった。
従って、旧来より焼結鉱の品質や生産性、焼結歩留り等を向上するために、特開昭63−69926号公報に記載されているように、微粉の鉄鉱石や返し鉱等の粉鉱石に、全使用水の40〜90重量%の水を添加してドラムミキサー等で混合して、最初に粉鉱石のみからなる擬似粒子を製造し、この擬似粒子にコークスやスケール等の副原料を加えてドラムミキサー等を用いて、内部の鉄分からなる粒子の表面にコークスの付着層を形成することにより、焼結機での着火性及び燃焼性を改善して焼結鉱の生産性を向上している。
また、特開昭62−225238号公報に記載されているように、粉鉱石や石灰石等の原料をドラムミキサー内に装入し、ドラムミキサー内の原料の運動領域に噴霧管から擬似粒子化促進剤を添加して擬似粒子を製造し、焼結機での通気性の改善や燃焼時間の短縮等により、焼結鉱の生産性を向上することが行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、特開昭63−69926号公報では、内部の鉄分をリッチにした擬似粒子の表面にコークスの付着層を形成しているので、焼結機に装入した際に、着火性及び燃焼性が良好になり過ぎて、燃焼速度が過剰に上昇し、上層から下層における燃焼帯の移動が速くなり、コークスの少ない内部に十分な熱を付与することができず、内部の焼結が不十分になったり、粒子間におけるボンドの形成が悪くなる。
その結果、焼結鉱の強度の低下を招き、高炉への搬送過程や高炉内に装入した際に粉化し、高炉の通気性等を阻害して出銑量の低下等が生じる。
また、特開昭62−225238号公報では、ドラムミキサー内を転動しながら粉鉱石やコークス等が擬似粒子になりつつある運動領域内に噴霧管から擬似粒子化促進剤を添加して擬似粒子にするので、コークスがほぼ均等に含まれる擬似粒子になり、焼結機内の疑似粒子の燃焼性が阻害され、生産性や歩留りが低下する等の問題がある。
【0004】
本発明はかかる事情に鑑みてなされたもので、焼結機内の擬似粒子の燃焼性を良好にし、焼結鉱の生産性や歩留り等を向上することができる燃焼性に優れた焼結用原料の造粒方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う本発明に係る燃焼性に優れた焼結用原料の造粒方法は、ドラムミキサーで粉鉱石とコークスを攪拌して擬似粒子に造粒する焼結用原料の造粒方法において、予め前記コークスの全添加量の20〜50重量%と前記粉鉱石とを前記ドラムミキサーに装入し、残部のコークスを、前記ドラムミキサーの全長をLとして装入口から0.5L〜0.98Lの範囲に添加する。
この方法により、擬似粒子の内部と表層にコークスを含ませ、表層に露出するコークスが多くなり、装入した擬似粒子の着火性及び燃焼性が高まり、表層の燃焼速が向上し、内部を温度の上昇につれて燃焼させることができ、燃焼性を向上させながら相反する燃焼速度を適正にできる。
なお、残部のコークスを添加する位置がドラムミキサーの0.5Lより手前の範囲になると、擬似粒子の内部のコークスが増加したり、コークスそのものの表面に粉鉱石が付着して、疑似粒子の燃焼性が低下したり、燃焼速度が遅くなり、焼結鉱の強度や生産性等が阻害される。
一方、ドラムミキサーの0.98Lより後方(留時間が10秒未満)になると、擬似粒子の表面に付着するコークスが少なくなり、擬似粒子に必要なコークスの絶対量が不足し、燃焼性や燃焼速度が低下する。
【0006】
ここで、前記粉鉱石は、粒度が500μm未満の微粉を30〜70重量%含んでいる。
これにより、添加したコークスが、最初に造粒された擬似粒子やその外側に形成される層の内部に埋もれて、燃焼性や燃焼速度が悪くなるのを防止できる。
500μm未満の粉鉱石が70重量%を超えると、微粉が多くなり過ぎて、最初の擬似粒子の形成が悪くなり、後で添加する残部のコークスに粉鉱石が付着して燃焼性等を阻害する。500μm未満の粉鉱石が30重量%未満になると、擬似粒子内へのコークスの混入やコークス表面への粉鉱石の付着が減少し、コークス添加を前後に分割する効果が無くなる。
【0007】
更に、前記残部のコークスの添加位置を、500μm未満の粉鉱石の含有量に応じて調整することができる。
これにより、最初に造粒された擬似粒子の状態に適したコークスを適正な位置で添加し、擬似粒子の内部に含まれるコークスを均一にし、表層に付着するコークスを多くでき、燃焼性や燃焼速度をより安定させることができる。
【0008】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1は本発明の一実施の形態に係る燃焼性に優れた焼結用原料の造粒方法に適用される焼結用原料の造粒装置の全体図、図2は同造粒方法に適用する粉鉱石とコークスの粒径ごとの容積%を比較したグラフ、図3は粉鉱石中の500μm未満の粉鉱石の重量%とコークス付着厚を200μmとするコークスの添加位置の関係を示すグラフ、図4はコークスの付着厚と焼結機の生産性の関係を示すグラフである。
図1に示すように、本発明の一実施の形態に係る燃焼性に優れた焼結用原料の造粒方法に用いられる焼結用原料の造粒装置10は、図示しない駆動装置により傾斜状態で回転するドラムミキサー11と、このドラムミキサー11内に微粉の鉄鉱石、返し鉱石、ダスト等の粉鉱石を貯蔵する貯蔵ホッパー12及び貯蔵ホッパー12から粉鉱石を切り出すフィーダ13と、コークスの貯蔵ホッパー14及び貯蔵ホッパー14からコークスを切り出すフィーダ15と、これ等の粉鉱石とコークスを搬送するベルトコンベア16、17と、後からドラムミキサー11にコークスを添加するためのベルトコンベア18、その上方に設けられたコークスの貯蔵ホッパー19及びフィーダ20とを備えている。
更に、ドラムミキサー11の入り側には、装入される粉鉱石に散水するスプレー配管21を備えており、ドラムミキサー11の出側には、ドラムミキサー11からでた擬似粒子を分級する篩22を設けている。
この篩22の篩上は、製品として図示しない焼結機に搬送され、篩下となる返し粉23は、ベルトコンベア17に返送して再度ドラムミキサー11に供給している。なお、ここで、Lは、ドラムミキサー11の全長を表す。
【0009】
次に、焼結用原料の造粒装置10を用いた燃焼性に優れた焼結用原料の造粒方法について説明する。
まず、貯蔵ホッパー12に貯蔵された微粉の鉄鉱石、返し鉱石、ダスト等からなる粉鉱石は、6mm以下の大きさであり、特に粒度500μm未満(−500μm)の微粉を30〜70重量%含有している。貯蔵ホッパー14に貯蔵されたコークスは、6mm以下各粒度が略平均的に分布している。
この粉鉱石及びコークスは、フィーダ13、15からベルトコンベア16上に切り出され、ベルトコンベア17に乗り継いでドラムミキサー11内に装入される。
最終的に粉鉱石に対するコークスの全配合量(全添加量)は、2.5重量%であり、この内の20〜50重量%がここで貯蔵ホッパー14から切り出されることになる。
そして、残部のコークスは、ドラムミキサー11の装入口から0.5L〜0.98Lの範囲で、貯蔵ホッパー19からフィーダ20、ベルトコンベア18を介して添加される。
【0010】
また、図2のように、粉鉱石に添加するコークス(△)の各粒径(μm)の分布は、6mm〜125μmの範囲で略平均的に分布をしている。
しかも、粉鉱石に配合したコークスのみの容積%でみると、添加量が少ないにも係わらず1.5〜5容積%(平均約3.8容積%)であり、重量から見た場合にくらべ1.5倍の容積を有し、コークスの添加量が少なくても擬似粒子の表面を覆うに十分な量であることが判る。なお、図中□は、粉鉱物とコークスを配合した場合の粒径分布を示す。
しかし、このコークスは粉鉱石に含有する500μm以上の粒子が多くなったり、ドラムミキサー11の装入側から0.5L未満の範囲に残部のコークスを添加した場合では、コークスの内の大きい粒子が核になり、この周囲に粉鉱石が付着した擬似粒子を形成したり、粉鉱石の擬似粒子の内部に埋没するコークスが多くなったりして、燃焼性を高めた擬似粒子を得ることができない。
【0011】
従って、予め粉鉱石に全添加量の20〜50重量%のコークスと生石灰、石灰石等を添加し、スプレー配管21から5〜8重量%の水を散水してからドラムミキサー11で攪拌し、粉鉱石とコークスを混合し、内部にコークスを含む擬似粒子を造粒する。
予め粉鉱石に添加するコークスの量が20重量%未満になると、擬似粒子の内部のコークスが不足して、燃焼速度や燃焼温度を高く保持する時間が短くなり、粒子間のボンドの形成や焼結不良等が生じる。また、コークスの量が50重量%を超えると、ドラムミキサー11により造粒された擬似粒子の内部のコークスが多くなり、表面に付着させるコークスの量が減少するので、燃焼性や燃焼速度が低下し、焼結鉱の歩留りの低下、焼結鉱の強度や還元粉化率等の品質低下を招くことになる。
更に、コークスの各粒径(μm)が略平均的に分布をしていることを利用して、図3に示すように、粉鉱石に含まれる500μm未満の粒子の量が30重量%の場合で、ドラムミキサー11の全長Lに対し、出側方向の0.5Lの位置でコークスを添加することで、擬似粒子の表面に200μmの厚みのコークスを主にした付着層を形成することができる。このコークスを主にした付着層は、粉鉱石に含まれる500μm未満の粒子の量に応じて、ドラムミキサー11内のコークスの添加位置を調整することにより、擬似粒子の表面への付着厚みを100〜250μmとすることができ、その一部が露出した形態を有する理想的な擬似粒子にすることができる。
この調整は、粉鉱石とコークスを同じ条件にして、コークスの添加位置を変えながら造粒した擬似粒子の表面に付着したコークスの厚みを測定しておき、図示しない焼結機のパレットの装入の層厚や焼結機の移動速度等が変動した際に、前記の測定された値から、コークスの添加位置を変えて付着厚みを100〜250μmの範囲内で最適な生産性が得られるように調整することができる。
コークスの添加位置は、ベルトコンベア18をドラムミキサー11内に進退させて位置を決定し、貯蔵ホッパー19のフィーダ20を作動してコークスの切り出しと搬送を行って、造粒されている粉鉱石に添加する。
この残部のコークスの添加量は、全添加量の50〜80重量%にすることで、擬似粒子の表面にコークスの100〜250μmの付着層が形成される。
ドラムミキサー11に添加する残部のコークスの量が50重量%未満になると、擬似粒子の内部のコークスが増加したり、コークスそのものの表面に粉鉱石原料付着が増加して、擬似粒子の燃焼性や燃焼速度が低下する。
しかも、ドラムミキサー11に添加する残部のコークスの量が80重量%を超えると、擬似粒子の表面に付着するコークスの量が多くなり、燃焼速度が速くなり過ぎたり、擬似粒子の内部のコークスの量が不足し、焼結鉱の品質を阻害するからである。
このように、擬似粒子の表面に積極的にコークスの付着層を形成し、その付着厚みを100〜250μmに調整することにより、図4に示すように、焼結機の生産性(T/d・m2)を約29.7〜33に向上することができる。
そして、ドラムミキサー11を出た擬似粒子は、篩22で分級され、10mm以上の篩上は焼結機に搬送され、10mm未満の篩下は、返し粉23として再度ドラムミキサー11に供給される。
【0012】
【実施例】
次に、燃焼性に優れた焼結用原料の造粒方法の実施例について説明する。
鉄鉱石粉や返し鉱等からなる粉鉱石を用い、500μm未満が40重量%と70重量%含有する粉鉱石に、蛇紋岩や石灰石粉を12重量%配合して、直径が4m、全長が20mのドラムミキサーを7回転/分で回転しながら、水6.5重量%を外掛けで添加し、コークスの全添加量を2.5重量%にしてコークスのドラムミキサー内の添加条件を変えて造粒を行って、焼結機の焼結鉱の生産性(T/d・m2 )を比較した。
表1に示すように、実施例1では、500μm未満が40重量%の粉鉱石に、ドラムミキサーの1/2(0.5L)の位置で、残部80重量%のコークスを添加したものと、同様に500μm未満が70重量%の粉鉱石に、ドラムミキサーの1/2(0.5L)の位置で、残部のコークスを80重量%添加した場合であり、生産性(T/d・m2 )が35、31であり、いずれも良好な結果が得られた。
実施例2では、500μm未満が40重量%の粉鉱石に、ドラムミキサーの3/4(0.75L)の位置で、残部50重量%のコークスを添加したものと、同様に500μm未満が70重量%の粉鉱石に、ドラムミキサーの3/4(0.75L)の位置で、残部50重量%のコークスを添加した場合であり、生産性(T/d・m2 )が32、32であり、いずれも良好な結果が得られた。
【0013】
【表1】

Figure 0004087982
【0014】
これに対して、表2に示すように、500μm未満が40重量%の粉鉱石と、500μm未満が70重量%の粉鉱石にそれぞれ全添加量が粉鉱石の2.5重量%であるコークスを全てドラムミキサーの入口で添加した場合であり、それぞれの生産性(T/d・m2 )が25、20と極めて悪い結果であった。
【0015】
【表2】
Figure 0004087982
【0016】
以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、粉鉱石は、各産地から出荷される銘柄の鉄鉱石粉等の他に、乾燥スラジ、焼結鉱粉、庫下粉、ペレット用粉等の鉄分を含有するものを一部配合して用いることができる。
更に、ドラムミキサーは傾斜角度を調整して滞留時間の調整や回転数を遅くする等により全長を短くしたり、長くすることができる。
【0017】
【発明の効果】
請求項1、2記載の燃焼性に優れた焼結用原料の造粒方法は、ドラムミキサーに粉鉱石とコークスを添加して攪拌を行って擬似粒子に造粒する焼結用原料の造粒方法において、予め粉鉱石に全添加量の20〜50重量%のコークスを添加し、残部のコークスを、ドラムミキサーの全長をLとして、装入口から0.5L〜0.98Lの範囲に添加するので、焼結機内に装入した擬似粒子の燃焼性や燃焼速度が良くなり適正な燃焼温度で焼結でき、焼結鉱の生産性や歩留り等が向上できる。
【0018】
特に、請求項2記載の燃焼性に優れた焼結用原料の造粒方法は、粉鉱石が粒度が500μm未満の微粉を30〜70重量%含んでいるので、造粒した擬似粒子の内部や外側にコークスが埋没するのを抑制して、燃焼性が低下するのを防止し、焼結鉱の生産性をより向上できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る燃焼性に優れた焼結用原料の造粒方法に適用される焼結用原料の造粒装置の全体図である。
【図2】同造粒方法に適用する原料の粉鉱石とコークスの粒径ごとの容積%を比較したグラフである。
【図3】500μm未満の粉鉱石の重量%とコークス付着厚を200μmとするコークスの添加位置の関係を示すグラフである。
【図4】コークス付着厚と焼結機の生産性の関係を示すグラフである。
【符号の説明】
10:焼結用原料の造粒装置、11:ドラムミキサー、12:貯蔵ホッパー、13:フィーダ、14:貯蔵ホッパー、15:フィーダ、16:ベルトコンベア、17:ベルトコンベア、18:ベルトコンベア、19:貯蔵ホッパー、20:フィーダ、21:スプレー配管、22:篩、23:返し粉[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for granulating a sintering raw material to improve the productivity by increasing the combustibility of pseudo particles when a coke is added to powder ore and granulated into pseudo particles to produce sintered ore. .
[0002]
[Prior art]
In general, ironmaking raw materials are made by adding coke to fine ore of fine iron ore of 8 mm or less, dust collected from dust collectors, etc., or fine ores such as sieving powder (returned ore) after being discharged from a sintering machine, Add a binder such as lime and quick lime, granulate pseudo particles using a drum mixer, etc., charge this into a sintering machine, and bake at a temperature of 1100-1300 ° C. to produce sintered ore, blast furnace It is used for.
The quality of this sinter affects the air permeability of the blast furnace and the unloading of the charging.In some cases, the stable operation of the blast furnace and the amount of blast furnace discharge may be hindered. Mining supply is desired.
In addition, sintered ore produced by a sintering machine is fine or fine powdered ore and pseudo-particles granulated by adding coke. It affects the sintering state of the steel, and its properties such as strength and reduced powder ratio (RDI) are greatly affected. It is difficult to produce pseudo particles that satisfy these quality, productivity, and sintering yield. there were.
Therefore, in order to improve the quality and productivity of sintered ore, the yield of sintering, etc. from the past, as described in JP-A-63-69926, fine ore such as fine iron ore and reverse ore. In addition, 40 to 90% by weight of the total water used is added and mixed with a drum mixer or the like to produce pseudo particles made only of fine ore, and auxiliary materials such as coke and scale are added to the pseudo particles. In addition, by using a drum mixer or the like, a coke adhesion layer is formed on the surface of particles made of iron, thereby improving the ignitability and combustibility of the sintering machine and improving the productivity of sintered ore. is doing.
In addition, as described in JP-A-62-225238, raw materials such as fine ore and limestone are charged into a drum mixer, and pseudo-particle formation is promoted from the spray tube to the moving region of the raw material in the drum mixer. Pseudoparticles are produced by adding an agent and improving the productivity of sintered ore by improving the air permeability in the sintering machine and shortening the combustion time.
[0003]
[Problems to be solved by the invention]
However, in Japanese Patent Laid-Open No. 63-69926, a coke adhesion layer is formed on the surface of pseudo particles enriched in the internal iron content, so that when ignited and combustible when charged in a sintering machine. Becomes too good, the combustion rate increases excessively, the movement of the combustion zone from the upper layer to the lower layer becomes faster, sufficient heat cannot be applied to the interior with little coke, and internal sintering is insufficient Or the formation of bonds between particles becomes worse.
As a result, the strength of the sintered ore is reduced, and the powder is pulverized when transported to the blast furnace or when it is inserted into the blast furnace, and the air permeability and the like of the blast furnace are hindered, resulting in a decrease in the amount of output.
Japanese Patent Laid-Open No. 62-225238 discloses a pseudo-particle by adding a pseudo-particle-forming accelerator from a spray tube into a motion region in which fine ore, coke and the like are becoming pseudo-particles while rolling in a drum mixer. Therefore, there are problems such as pseudo particles containing coke almost uniformly, impairing the flammability of the pseudo particles in the sintering machine, and reducing productivity and yield.
[0004]
The present invention has been made in view of such circumstances, and has excellent flammability, which can improve the flammability of pseudo particles in a sintering machine and improve the productivity and yield of sintered ore. It aims at providing the granulation method of.
[0005]
[Means for Solving the Problems]
The granulation method of the sintering raw material excellent in combustibility according to the present invention in accordance with the above object is a granulation method of the sintering raw material in which the powdered ore and coke are stirred with a drum mixer and granulated into pseudo particles. 20-50% by weight of the total amount of coke and the powdered ore are charged into the drum mixer in advance, and the remaining coke is 0.5 L to 0.98 L from the charging port with the total length of the drum mixer being L. Add to the range.
By this method, coke is included in the inside and surface layer of the quasi-particle, so that more coke is exposed on the surface layer, the ignitability and flammability of the inserted quasi-particle is increased, the combustion speed of the surface layer is improved, and the inside temperature is increased. It is possible to combust as the temperature rises, and it is possible to make the conflicting combustion speed appropriate while improving the combustibility.
In addition, when the position where the remaining coke is added is in a range before 0.5 L of the drum mixer, the coke inside the pseudo particles increases, or fine ore adheres to the surface of the coke itself, and the pseudo particles burn. As a result, the combustion rate is lowered, the burning rate is slowed, and the strength and productivity of the sintered ore are hindered.
On the other hand, if it is behind 0.98L of the drum mixer (residence time is less than 10 seconds), the amount of coke adhering to the surface of the pseudo particles decreases, the absolute amount of coke necessary for the pseudo particles is insufficient, and the flammability and combustion The speed is reduced.
[0006]
Here, the fine ore contains 30 to 70% by weight of fine powder having a particle size of less than 500 μm.
Thereby, it is possible to prevent the added coke from being buried inside the initially granulated pseudo particles and the layer formed outside thereof, and thus the combustibility and the combustion speed are not deteriorated.
If the powder ore of less than 500 μm exceeds 70% by weight, the amount of fine powder increases too much, and the formation of the first pseudo particles deteriorates, and the powder ore adheres to the remaining coke to be added later and inhibits combustibility and the like. . When the amount of powdered ore of less than 500 μm is less than 30% by weight, the mixing of coke into the pseudo particles and the adhesion of the powdered ore to the coke surface are reduced, and the effect of dividing the addition of the coke before and after is lost.
[0007]
Furthermore, the addition position of the remaining coke can be adjusted according to the content of fine ore of less than 500 μm.
This makes it possible to add coke suitable for the state of the first granulated pseudo particles at the proper position, make the coke contained in the pseudo particles uniform, and increase the amount of coke adhering to the surface layer. Speed can be made more stable.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
FIG. 1 is an overall view of a sintering raw material granulating apparatus applied to a sintering raw material granulating method excellent in combustibility according to an embodiment of the present invention, and FIG. 2 is applied to the granulating method. FIG. 3 is a graph showing the relationship between the weight percent of fine ore less than 500 μm in the fine ore and the coke addition position where the coke deposit thickness is 200 μm, FIG. 4 is a graph showing the relationship between the coke deposit thickness and the productivity of the sintering machine.
As shown in FIG. 1, a granulating device 10 for sintering raw material used in the method for granulating a sintering raw material having excellent combustibility according to an embodiment of the present invention is tilted by a driving device (not shown). A drum mixer 11 that rotates at the same time, a storage hopper 12 that stores fine ore such as fine iron ore, return ore, and dust in the drum mixer 11, a feeder 13 that cuts the powder ore from the storage hopper 12, and a coke storage hopper 14 and a feeder 15 for cutting out coke from the storage hopper 14, belt conveyors 16 and 17 for conveying these fine ores and coke, and a belt conveyor 18 for adding coke to the drum mixer 11 later, provided above A coke storage hopper 19 and a feeder 20 are provided.
Further, the inlet side of the drum mixer 11 is provided with a spray pipe 21 for sprinkling the charged ore to be charged, and the outlet side of the drum mixer 11 is a sieve 22 for classifying pseudo particles emitted from the drum mixer 11. Is provided.
The top of the sieve 22 is conveyed as a product to a sintering machine (not shown), and the powdered powder 23 under the sieve is returned to the belt conveyor 17 and supplied to the drum mixer 11 again. Here, L represents the total length of the drum mixer 11.
[0009]
Next, a method for granulating a sintering raw material excellent in combustibility using the sintering raw material granulator 10 will be described.
First, the fine ore made of fine iron ore, reverse ore, and dust stored in the storage hopper 12 has a size of 6 mm or less, and particularly contains 30 to 70% by weight of fine powder having a particle size of less than 500 μm (−500 μm). is doing. Coke stored in the storage hopper 14, each of the following granularity 6mm is averagely distributed substantially.
The fine ore and coke are cut out from the feeders 13 and 15 onto the belt conveyor 16, transferred to the belt conveyor 17, and charged into the drum mixer 11.
Finally, the total amount of coke added to the fine ore (total addition amount) is 2.5% by weight, and 20 to 50% by weight of the coke is cut out from the storage hopper 14 here.
Then, the remaining coke is added from the storage hopper 19 through the feeder 20 and the belt conveyor 18 in the range of 0.5 L to 0.98 L from the charging inlet of the drum mixer 11.
[0010]
Moreover, as shown in FIG. 2, the distribution of the particle sizes (μm) of coke (Δ) added to the fine ore is approximately average in the range of 6 mm to 125 μm.
In addition, when looking at the volume% of coke mixed with fine ore, it is 1.5 to 5 volume% (average of about 3.8 volume%) despite the small amount added, compared to the weight. It can be seen that it has a volume of 1.5 times, and even if the amount of coke added is small, it is sufficient to cover the surface of the pseudo particles. In the figure, □ indicates the particle size distribution when powdered mineral and coke are blended.
However, when this coke contains more than 500 μm particles contained in the fine ore, or when the remaining coke is added in a range of less than 0.5 L from the charging side of the drum mixer 11, large particles in the coke Pseudoparticles that become nuclei and have adhering fine ore to the surroundings or coke buried in the fine particles of fine ore are increased, and pseudoparticles with improved combustibility cannot be obtained.
[0011]
Therefore, 20-50% by weight of coke, quick lime, limestone, etc. are added to the powdered ore in advance, and 5-8% by weight of water is sprayed from the spray pipe 21 and stirred with the drum mixer 11 to obtain powder. Mixing ore and coke, granulate pseudo particles containing coke inside.
If the amount of coke added to the fine ore in advance is less than 20% by weight, the coke inside the pseudo-particles will be insufficient, and the time during which the combustion rate and the combustion temperature will be kept high will be shortened. Defects occur. Further, when the amount of coke exceeds 50% by weight, the amount of coke inside the pseudo particles granulated by the drum mixer 11 increases, and the amount of coke adhered to the surface decreases, so the combustibility and the combustion speed are lowered. As a result, the yield of sintered ore is reduced, and the quality of sintered ore is reduced, such as strength and reduced powdering rate.
Furthermore, using the fact that each particle size (μm) of the coke is distributed approximately on average, as shown in FIG. 3, the amount of particles less than 500 μm contained in the fine ore is 30% by weight Thus, by adding coke at a position of 0.5 L in the outlet direction with respect to the total length L of the drum mixer 11, an adhesion layer mainly composed of coke having a thickness of 200 μm can be formed on the surface of the pseudo particles. . The adhesion layer mainly composed of coke has a cohesion thickness on the surface of pseudo particles of 100 by adjusting the coke addition position in the drum mixer 11 according to the amount of particles less than 500 μm contained in the fine ore. It can be set to ˜250 μm, and ideal pseudo particles having a form in which a part thereof is exposed can be obtained.
This adjustment is performed by measuring the thickness of coke adhering to the surface of the granulated pseudo particles while changing the coke addition position under the same conditions for the fine ore and coke. When the layer thickness, the moving speed of the sintering machine, etc. fluctuate, the optimum productivity can be obtained within the range of 100 to 250 μm by changing the coke addition position from the above measured values. Can be adjusted.
The coke addition position is determined by moving the belt conveyor 18 back and forth in the drum mixer 11, operating the feeder 20 of the storage hopper 19 to cut out and convey the coke, and to the granulated ore being granulated Added.
The remaining coke is added in an amount of 50 to 80% by weight of the total added amount, so that a coke adhesion layer of 100 to 250 μm is formed on the surface of the pseudo particles.
When the amount of the remaining coke to be added to the drum mixer 11 is less than 50% by weight, the coke inside the pseudo particles increases or the adhesion of the raw material of the fine ore to the surface of the coke itself increases. And burning speed decreases.
Moreover, when the amount of the remaining coke added to the drum mixer 11 exceeds 80% by weight, the amount of coke adhering to the surface of the pseudo particles increases, the combustion speed becomes too high, or the coke inside the pseudo particles This is because the amount is insufficient and the quality of the sintered ore is impaired.
In this manner, by actively forming a coke adhesion layer on the surface of the pseudo particles and adjusting the adhesion thickness to 100 to 250 μm, as shown in FIG. · m 2) it can be improved to about 29.7 to 33.
Then, the pseudo particles exiting the drum mixer 11 are classified by the sieve 22, and the sieve above 10 mm is conveyed to the sintering machine, and the sieve below 10 mm is supplied to the drum mixer 11 again as the powdered powder 23. .
[0012]
【Example】
Next, an example of a method for granulating a sintering raw material having excellent combustibility will be described.
Using powder ore consisting of iron ore powder, reverse ore, etc., blending 12% by weight of serpentinite and limestone powder into powder ore containing less than 500μm 40% and 70% by weight, 4m in diameter and 20m in total length While rotating the drum mixer at 7 rev / min, 6.5% by weight of water was added on the outside, and the total amount of coke added was 2.5% by weight to change the addition conditions in the coke drum mixer. Graining was performed and the sintered ore productivity (T / d · m 2 ) of the sintering machine was compared.
As shown in Table 1, in Example 1, less than 500 μm was added to 40% by weight of fine ore, and the remaining 80% by weight of coke was added at 1/2 (0.5 L) of the drum mixer, Similarly, this is the case where the remaining coke is added to the powder ore of less than 500 μm in 70% by weight at a position of 1/2 (0.5 L) of the drum mixer, and the productivity (T / d · m 2 ) Was 35 and 31, and good results were obtained in both cases.
In Example 2, less than 500 μm of 40% by weight of fine ore is added to the drum mixer at 3/4 (0.75 L), and the remaining 50% by weight of coke is added. Similarly, less than 500 μm is less than 70% by weight. % Coke with a balance of 50% by weight at 3/4 (0.75 L) of the drum mixer, and the productivity (T / d · m 2 ) is 32, 32 In both cases, good results were obtained.
[0013]
[Table 1]
Figure 0004087982
[0014]
On the other hand, as shown in Table 2, coke whose total addition amount is 2.5% by weight of the fine ore to the fine ore of 40% by weight less than 500 μm and 70% by weight of less than 500 μm, respectively. All were added at the inlet of the drum mixer, and the respective productivity (T / d · m 2 ) was 25 and 20, which were extremely bad results.
[0015]
[Table 2]
Figure 0004087982
[0016]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.
For example, in addition to the brand name iron ore powder shipped from each production area, the powder ore is used in combination with a part containing iron such as dry sludge, sintered ore powder, warehouse powder, and pellet powder. be able to.
Further, the drum mixer can be shortened or lengthened by adjusting the inclination angle to adjust the residence time or to slow the rotational speed.
[0017]
【The invention's effect】
The method for granulating a raw material for sintering excellent in combustibility according to claim 1 or 2 is the granulation of a raw material for sintering in which powdered ore and coke are added to a drum mixer and agitated and granulated into pseudo particles. In the method, 20-50% by weight of the total amount of coke is added to the fine ore in advance, and the remaining coke is added in the range of 0.5 L to 0.98 L from the charging port, where L is the total length of the drum mixer. Therefore, the flammability and burning speed of the pseudo particles charged in the sintering machine are improved and sintering can be performed at an appropriate combustion temperature, and the productivity and yield of the sintered ore can be improved.
[0018]
In particular, in the method for granulating a sintering raw material excellent in combustibility according to claim 2, since the powdered ore contains 30 to 70% by weight of fine powder having a particle size of less than 500 μm, It is possible to prevent the coke from being buried outside, prevent the combustibility from being lowered, and improve the productivity of the sintered ore.
[Brief description of the drawings]
FIG. 1 is an overall view of a sintering raw material granulating apparatus applied to a sintering raw material granulating method excellent in combustibility according to an embodiment of the present invention.
FIG. 2 is a graph comparing the volume% for each particle size of raw material ore and coke applied to the granulation method.
FIG. 3 is a graph showing the relationship between the weight percentage of fine ore of less than 500 μm and the addition position of coke with a coke deposit thickness of 200 μm.
FIG. 4 is a graph showing the relationship between coke adhesion thickness and productivity of a sintering machine.
[Explanation of symbols]
10: Granulator of raw material for sintering, 11: Drum mixer, 12: Storage hopper, 13: Feeder, 14: Storage hopper, 15: Feeder, 16: Belt conveyor, 17: Belt conveyor, 18: Belt conveyor, 19 : Storage hopper, 20: Feeder, 21: Spray piping, 22: Sieve, 23: Flour

Claims (2)

ドラムミキサーで粉鉱石とコークスを攪拌して擬似粒子に造粒する焼結用原料の造粒方法において、予め前記コークスの全添加量の20〜50重量%と前記粉鉱石とを前記ドラムミキサーに装入し、残部のコークスを、前記ドラムミキサーの全長をLとして装入口から0.5L〜0.98Lの範囲に添加することを特徴とする燃焼性に優れた焼結用原料の造粒方法。  In a granulation method of a raw material for sintering in which fine ore and coke are agitated with a drum mixer and granulated into pseudo particles, 20 to 50% by weight of the total amount of coke and the fine ore are added to the drum mixer in advance. A method for granulating a raw material for sintering excellent in combustibility, wherein the remaining coke is added in a range of 0.5 L to 0.98 L from the charging inlet with the total length of the drum mixer being L. . 請求項1記載の燃焼性に優れた焼結用原料の造粒方法において、前記粉鉱石は、粒度が500μm未満の微粉を30〜70重量%含んでいる燃焼性に優れた焼結用原料の造粒方法。  The method for granulating a sintering raw material excellent in combustibility according to claim 1, wherein the fine ore is 30% to 70% by weight of a fine powder having a particle size of less than 500 µm. Granulation method.
JP09777199A 1999-04-05 1999-04-05 Granulation method for raw materials for sintering with excellent flammability Expired - Lifetime JP4087982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09777199A JP4087982B2 (en) 1999-04-05 1999-04-05 Granulation method for raw materials for sintering with excellent flammability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09777199A JP4087982B2 (en) 1999-04-05 1999-04-05 Granulation method for raw materials for sintering with excellent flammability

Publications (2)

Publication Number Publication Date
JP2000290732A JP2000290732A (en) 2000-10-17
JP4087982B2 true JP4087982B2 (en) 2008-05-21

Family

ID=14201127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09777199A Expired - Lifetime JP4087982B2 (en) 1999-04-05 1999-04-05 Granulation method for raw materials for sintering with excellent flammability

Country Status (1)

Country Link
JP (1) JP4087982B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599737B2 (en) * 2001-03-23 2010-12-15 Jfeスチール株式会社 Granulation method of sintering raw material
BRPI0306668B1 (en) * 2002-12-17 2016-09-06 Jfe Steel Corp method and apparatus for making a sintering material.
BRPI0520717A2 (en) * 2005-12-02 2009-07-14 Kyouzai Kogyo Co Ltd sintering raw material granulation process and sintered iron ore manufacturing process
JP5165943B2 (en) * 2007-07-09 2013-03-21 大同特殊鋼株式会社 Granulated product sizing equipment for metal-containing by-products
JP5817629B2 (en) * 2012-04-06 2015-11-18 新日鐵住金株式会社 Method for producing sintered ore using finely granulated carbon
JP7040332B2 (en) * 2018-07-19 2022-03-23 日本製鉄株式会社 Sintered ore manufacturing method
JP7095562B2 (en) * 2018-11-15 2022-07-05 日本製鉄株式会社 Sintered ore manufacturing method

Also Published As

Publication number Publication date
JP2000290732A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
JP5194378B2 (en) Method for producing sintered ore
JP4087982B2 (en) Granulation method for raw materials for sintering with excellent flammability
JP4589875B2 (en) Reduction method of metal oxide in rotary hearth type reduction furnace
JPH0379729A (en) Manufacture of fired pellet
JP2003138319A (en) Method for manufacturing raw material for sintering
CN103052724A (en) Method for producing starting material for sintering
WO1994005817A1 (en) Method for producing sintered ore
JP2006274440A (en) Semi-reduced sintered ore and method for production thereof
JP4261672B2 (en) Granulation method of sintering raw material
JP5821362B2 (en) Method for manufacturing raw materials for sintering
JP6734370B2 (en) Raw material processing apparatus and raw material processing method
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
WO2005111248A1 (en) Semi-reduced sintered ore and method for production thereof
JP3635252B2 (en) Method for reducing metal oxide
JP3756754B2 (en) Repair method for reduced iron rotary hearth
JPH0797639A (en) Method of granulating raw material for sintering
JP4317316B2 (en) Pretreatment method of sintering raw materials
JP2003277838A (en) High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method
KR100544465B1 (en) A Method for Manufacturing Sinter
JPS6028891B2 (en) Pre-treatment method for sintering raw materials
JPS59107036A (en) Non-calcined mini-pellet for raw material to be sintered
JP2009209408A (en) Method for producing sintered ore
JP2701178B2 (en) Pre-treatment method of sinter ore raw material for blast furnace
JPH05112834A (en) Manufacture of sintered ore
JP3198468B2 (en) Sinter production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

EXPY Cancellation because of completion of term