JP5817629B2 - Method for producing sintered ore using finely granulated carbon - Google Patents

Method for producing sintered ore using finely granulated carbon Download PDF

Info

Publication number
JP5817629B2
JP5817629B2 JP2012087749A JP2012087749A JP5817629B2 JP 5817629 B2 JP5817629 B2 JP 5817629B2 JP 2012087749 A JP2012087749 A JP 2012087749A JP 2012087749 A JP2012087749 A JP 2012087749A JP 5817629 B2 JP5817629 B2 JP 5817629B2
Authority
JP
Japan
Prior art keywords
granulated
coke
ore
carbon material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012087749A
Other languages
Japanese (ja)
Other versions
JP2013216938A (en
Inventor
一昭 片山
一昭 片山
謙一 樋口
謙一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012087749A priority Critical patent/JP5817629B2/en
Publication of JP2013216938A publication Critical patent/JP2013216938A/en
Application granted granted Critical
Publication of JP5817629B2 publication Critical patent/JP5817629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、微粉造粒炭材を用いた焼結鉱の製造方法に関する。   The present invention relates to a method for producing sintered ore using finely granulated carbonaceous material.

製鉄所の焼結鉱製造においては、燃料として使用する炭材の燃焼により排ガス中に窒素酸化物(NOx)が発生する。このNOxの低減は、大気汚染の改善において、重要な課題である。当該NOxを低減する手段として、アンモニアを還元剤とする排ガス脱硝技術がある。
しかし、当該技術に係る排ガス脱硝設備は建設費が高額で、またアンモニアが高価である為に操業費が高くなる。また、窒素の含有量が少ない無煙炭を使用する手段もあるが、窒素の含有量が少ない無煙炭は、資源枯渇により採掘環境が劣化してきており、その使用は制限をうける。
In the production of sintered ore at an ironworks, nitrogen oxides (NOx) are generated in exhaust gas due to combustion of carbonaceous materials used as fuel. This reduction of NOx is an important issue in improving air pollution. As means for reducing the NOx, there is an exhaust gas denitration technique using ammonia as a reducing agent.
However, the exhaust gas denitration equipment according to the technology has a high construction cost, and the operation cost is high because ammonia is expensive. There is also a means to use anthracite with a low nitrogen content, but anthracite with a low nitrogen content has deteriorated in the mining environment due to resource depletion, and its use is limited.

一方、大量生産方式の製鉄所では、焼結機は高い生産性が求められており、高い生産性向上効果の発現とNOx抑制の両立を可能とする焼結鉱の製造方法が望まれている。   On the other hand, high-productivity is required for sintering machines in mass-production steelworks, and a method for producing sintered ore that enables both high productivity improvement effects and NOx suppression is desired. .

遠心力を利用するマルメライザーやアイリッヒミキサーなどの特殊な造粒機を用いて粉コークス、無煙炭を造粒し、生産性向上とNOx抑制を図る発明が開示されている(特許文献1)。
又、微粉コークスと微粉石炭の混合物にセメント等の水硬性結合材バインダーを添加して混合造粒した後、硬化のために養生する方法の発明が開示されている(特許文献2)。
又、焼結用原料をドラムミキサーにより造粒する際に、石灰系粉原料と固体燃料系粉原料を除く焼結用原料を装入し造粒後、下流側に石灰系粉原料と固体燃料系粉原料を添加し焼結用原料の外装部に付着・形成する方法が開示されている(特許文献3)。
又、本出願人は、炭材表面に、石灰系原料由来のCaを36質量%以上含有する被覆物を炭材に対し2質量%超かつ50質量%未満の割合で被覆した表面被覆炭材を、焼結燃料として配合炭中に含める焼結鉱の製造方法を開示している(特許文献4)。
An invention is disclosed in which powder coke and anthracite are granulated using a special granulator such as a Malmerizer or Eirich mixer that utilizes centrifugal force to improve productivity and suppress NOx (Patent Document 1).
Moreover, invention of the method of curing for hardening after adding a hydraulic binder binder such as cement to a mixture of fine coke and fine coal and mixing and granulating is disclosed (Patent Document 2).
In addition, when the sintering raw material is granulated with a drum mixer, the raw material for sintering excluding the lime-based powder raw material and the solid fuel-based powder raw material is charged and granulated, and then the lime-based powder raw material and the solid fuel are downstream. A method of adding a system powder raw material and adhering / forming it to the exterior of the sintering raw material is disclosed (Patent Document 3).
In addition, the applicant of the present invention is a surface-coated carbon material in which a coating containing 36 mass% or more of Ca derived from a lime-based raw material is coated on the carbon material surface at a ratio of more than 2 mass% and less than 50 mass% with respect to the carbon material. Is disclosed as a sintered fuel in a blended coal (Patent Document 4).

特開平5−156271号公報JP-A-5-156271 特開昭62−220590号公報JP-A-62-220590 特開2003―138319号公報JP 2003-138319 A 国際公開2011/129388号International Publication No. 2011/129388

特許文献1に記載の発明は、特殊な造粒機を用い遠心力により粉コークスと無煙炭を造粒するものであり、装置選定の制約がある。
特許文献2に記載の発明は、粉コークスと微粉石炭を造粒するものであり、水硬性結合材バインダーを使用することと、硬化のために養生する必要があり、製造工程が複雑化するという課題がある
特許文献3に記載の発明は、石灰系粉原料と固体燃料系粉原料をドラムミキサーの後段に添加するものであるが、焼結鉱の冷間強度と被還元性の向上を目的とするものであり、NOx抑制についての記述は無い。
The invention described in Patent Document 1 granulates powdered coke and anthracite coal by centrifugal force using a special granulator, and there are restrictions on device selection.
The invention described in Patent Document 2 granulates coke breeze and fine coal, and uses a hydraulic binder and requires curing for hardening, which complicates the manufacturing process. The invention described in Patent Document 3 adds a lime-based powder raw material and a solid fuel-based powder raw material to the subsequent stage of the drum mixer, and aims to improve the cold strength and reducibility of the sintered ore. There is no description about NOx suppression.

特許文献4に記載の発明は、NOx低減効果と生産性の向上を実現でき有効なものであるが、更なる生産性向上を実現することが要望されている。   The invention described in Patent Document 4 is effective because it can achieve a NOx reduction effect and an improvement in productivity, but further improvement in productivity is desired.

本願発明の目的は、高い生産性向上効果の発現とNOx抑制の両立を可能とする微粉造粒炭材を用いた焼結鉱の製造方法を提供することである。   The objective of this invention is providing the manufacturing method of the sintered ore using the fine-powder granulated carbon material which enables coexistence of the high productivity improvement effect and NOx suppression.

本発明者等は、焼結鉱製造用の炭材を分級し、1mm以下の炭材に石灰源を混合・造粒して製造した造粒炭材が、その他焼結工程で使用する原料との接触を抑制することで、焼結機の生産性向上とNOx低減効果を発現するという知見を得た。
本発明は、この新たな知見に基づくものであり、その要旨とするところは、以下のとおりである。
The present inventors classify the carbonaceous material for the production of sintered ore, and the granulated carbonaceous material produced by mixing and granulating a lime source with a carbonaceous material of 1 mm or less, and other raw materials used in the sintering process It was found that by suppressing the contact, the productivity improvement of the sintering machine and the NOx reduction effect are exhibited.
The present invention is based on this new knowledge, and the gist thereof is as follows.

(1)焼結鉱製造用の炭材を分級して、1mm以下の含有量が73.0質量%以上の篩下
炭材と、篩上炭材を得る工程と、
前記篩下炭材に1mm以下の含有量が70質量%以上である生石灰又は消石灰を、前記篩下炭材と前記生石灰又は消石灰の合計に対してCaで5質量%以上50%以下配合し、混合・造粒して微粉造粒炭材を製造する工程と、
鉄鉱石、返鉱及び副原料を含む原料を混合・造粒する合計の時間に対して、前記混合・
造粒を開始してから50%を超える時間が経過した時点で、前記篩上炭材と前記微粉造粒
炭材を添加して、前記鉄鉱石、返鉱及び副原料を含む原料、前記篩上炭材及び前記造粒炭
材を混合・造粒する工程とを実施することを特徴とする微粉造粒炭材を用いた焼結鉱の製
造方法。
(2)前記篩上炭材と前記微粉造粒炭材を鉄鉱石、返鉱及び副原料を含む原料に添加する
時点が、鉄鉱石、返鉱及び副原料を含む原料の混合・造粒の合計の時間に対して、前記混
合・造粒を開始してから75%を超える時間が経過した時点であることを特徴とする(1
)に記載の微粉造粒炭材を用いた焼結鉱の製造方法。
(1) Classifying carbonaceous materials for sinter ore production, obtaining a sieved carbonaceous material having a content of 1 mm or less of 73.0% by mass or more, and a sieved carbonaceous material,
Quick lime or slaked lime whose content of 1 mm or less is 70% by mass or more in the sieving carbon material is blended by 5% by mass or more and 50% or less by Ca with respect to the total of the sieving carbon material and the lime or slaked lime , Mixing and granulating to produce a fine granulated carbonaceous material,
For the total time of mixing and granulating raw materials including iron ore, return ore and auxiliary materials,
When a time exceeding 50% has elapsed since the start of granulation, the above-mentioned sieved carbon material and the above-mentioned finely granulated carbonaceous material are added, and the raw material including the iron ore, the return mineral and the auxiliary material, the sieve The manufacturing method of the sintered ore using the fine-powder granulated carbon material characterized by implementing the upper carbon material and the process of mixing and granulating the said granulated carbon material.
(2) The time of adding the above sieved carbon material and the finely granulated carbon material to the raw material containing iron ore, return ore and auxiliary material is the mixing and granulation of the raw material including iron ore, return ore and auxiliary material It is a point in time that exceeds 75% has elapsed since the start of the mixing and granulation with respect to the total time (1
The manufacturing method of the sintered ore using the fine-powder granulated carbon material as described in).

高い生産性向上効果の発現とNOx抑制の両立を可能とする微粉造粒炭材を用いた焼結鉱の製造方法を提供することができる。   It is possible to provide a method for producing a sintered ore using a finely divided granulated carbon material that can achieve both a high productivity improvement effect and NOx suppression.

NOx転換率と温度の関係を示す図。The figure which shows the relationship between NOx conversion rate and temperature. コークス粒径とNOx発生量の関係を示す図。The figure which shows the relationship between a coke particle size and NOx generation amount. 本発明の実験プロセスの説明図。Explanatory drawing of the experimental process of this invention. 焼結鍋試験装置の概略図。Schematic of a sintering pot test apparatus.

以下、添付図面を参照しながら本発明の好適な実施形態を説明する。
図1にコークス燃焼によるNOx転換率と温度の関係を示す。NOx転換率は、燃焼した燃料中の窒素原子がNOxに転換した割合(モル百分率)である。具体的には、下記の(1)式で算出される。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows the relationship between the NOx conversion rate by coke combustion and temperature. The NOx conversion rate is a ratio (molar percentage) at which nitrogen atoms in the burned fuel are converted to NOx. Specifically, it is calculated by the following equation (1).

ηNO=100×NOx/((CO+CO)・NCOKE/(CLPG+CCOKE+CLS))/10000
・・・・・・・・・・(式1)
ただし、ηNO:NOx転換率(%)、NOx:排ガスNOx(ppm)
CO:排ガスCO(%)、CO:排ガスCO(%)、
COKE:コークス中N(mol)、CLPG:点火ガス中C(mol)、
COKE:コークス中C(mol)、CLS:石灰石中C(mol)。
ηNO = 100 × NOx / ((CO + CO 2 ) · N CAKE / (C LPG + C CAKE + C LS )) / 10000
... (Formula 1)
However, ηNO: NOx conversion rate (%), NOx: exhaust gas NOx (ppm)
CO: exhaust gas CO (%), CO 2 : exhaust gas CO (%),
N CAKE : N (mol) in coke, C LPG : C (mol) in ignition gas,
C CAKE : C (mol) in coke, C LS : C (mol) in limestone.

焼結で生成するNOxは、炭材中の窒素が酸化したものが主体であり、図1に示されるように、1,000℃以下の低温で生成し易いことが確認されている。したがって、NOx生成を抑制するためには、炭材を極力、高温燃焼させることが重要である。
また、炭材中の微粉は、低温で燃焼し、NOxを増大させる。炭材粒度とNOx発生量の関係を図2に示す。NOxは、O15%で補正したものである。炭材中の微粉は、燃焼速度が速く、低温で燃焼が完了するため、NOxを増大させると考えられる。粒径が1mm以下の微粉炭材を除去することができれば、NOx発生量を低減できると考えられる。
NOx produced by sintering is mainly formed by oxidation of nitrogen in the carbonaceous material, and as shown in FIG. 1, it has been confirmed that it is easily produced at a low temperature of 1,000 ° C. or less. Therefore, in order to suppress NOx generation, it is important to burn the carbonaceous material as high as possible.
Moreover, the fine powder in the carbonaceous material burns at a low temperature and increases NOx. FIG. 2 shows the relationship between the carbonaceous material particle size and the NOx generation amount. NOx is corrected with O 2 15%. The fine powder in the carbonaceous material is considered to increase NOx because the combustion speed is high and combustion is completed at a low temperature. It is considered that the amount of NOx generated can be reduced if the fine carbonaceous material having a particle size of 1 mm or less can be removed.

本発明では、焼結鉱製造用の炭材を分級して、1mm以下の含有量が73.0質量%以上の篩下炭材と、残部となる篩上炭材を得る。1mm以下の含有量が73.0質量%以上とするのは、73.0質量%未満では造粒炭材使用時の生産性向上効果が小さいからである。1mmを超える炭材については表面に付着物のない状態が燃焼速度の観点で望ましいため、造粒炭材に使用する炭材については1mm以下の含有量の上限は特に制限なく、高い方が望ましく、最高100質量%である。   In this invention, the carbonaceous material for sinter production is classified, and the sieving carbon material whose content of 1 mm or less is 73.0 mass% or more and the remaining sieving carbon material are obtained. The reason why the content of 1 mm or less is 73.0% by mass or more is that when the content is less than 73.0% by mass, the productivity improvement effect when using the granulated carbon material is small. For carbon materials exceeding 1 mm, a state where there is no deposit on the surface is desirable from the viewpoint of combustion speed, so the upper limit of the content of 1 mm or less is not particularly limited for carbon materials used for granulated carbon materials, and the higher one is desirable. The maximum is 100% by mass.

前記1mm以下の含有量が73.0質量%以上の篩下炭材は、Ca含有原料と混合、造粒して、微粉造粒炭材を製造する。
炭材としては、コークス、無煙炭その他の焼結鉱製造に用いられる燃料があるが、一般的には、製鉄所で発生する粉コークスが焼結鉱製造に用いられる。粉コークスは、石炭の乾留により製造されたものであるため表面の濡れ性が悪く、粉コークスのみでは、造粒が困難である。そこで、無煙炭、微粉炭又は水硬性結合材と混合して造粒する方法があるが(前記特許文献1乃至特許文献3)、本発明は、前記のCa含有原料を結合材として用いることを特徴とする。
Ca含有原料としては、生石灰及び消石灰等がある。従来、Ca含有原料は、高炉のスラグの塩基度を調整し、又、焼結鉱の生産性と品質を向上させるために、鉄鉱石等の焼結原料に混合して焼結鉱が製造されてきた。
The sieving carbon material having a content of 1 mm or less of 73.0% by mass or more is mixed and granulated with a Ca-containing raw material to produce a finely granulated carbon material.
Carbonaceous materials include coke, anthracite, and other fuels used for sinter ore production. Generally, powder coke generated at ironworks is used for sinter ore production. Since powder coke is produced by dry distillation of coal, the wettability of the surface is poor, and granulation is difficult only with powder coke. Therefore, there is a method of granulating by mixing with anthracite, pulverized coal or hydraulic binder (Patent Document 1 to Patent Document 3), and the present invention is characterized by using the Ca-containing raw material as a binder. And
Examples of the Ca-containing raw material include quick lime and slaked lime. Conventionally, Ca-containing raw materials are mixed with sintered raw materials such as iron ore to adjust the basicity of blast furnace slag and improve the productivity and quality of sintered ores. I came.

そこで、本発明は、従来用いられてきたCa含有原料の一部を造粒が困難な粉コークスの造粒の結合材として用いるものである。
Ca含有原料は、粒度が1mm以下で70質量%以上であり、その混合割合は、炭材とCa含有原料の総質量に対してCaで5%〜50%である。
Ca含有原料の粒度が大きく、1mm以下の含有量が70質量%以上を満たさないと、粉コークス造粒の結合材としての効果を発揮しない。又、Ca含有原料の添加割合がCaで5質量%未満では、結合材としての効果を発揮できず、50質量%あれば十分で、これを超えれば、経済的に不利となるからである。
Therefore, the present invention uses a part of conventionally used Ca-containing raw materials as a binder for granulation of powder coke, which is difficult to granulate.
The Ca-containing raw material has a particle size of 1 mm or less and 70% by mass or more, and the mixing ratio is 5% to 50% in Ca with respect to the total mass of the carbonaceous material and the Ca-containing raw material.
If the Ca-containing raw material has a large particle size and the content of 1 mm or less does not satisfy 70% by mass or more, the effect as a binder for powder coke granulation is not exhibited. Moreover, if the addition ratio of the Ca-containing raw material is less than 5% by mass with Ca, the effect as a binder cannot be exhibited, and if it exceeds 50% by mass, it is sufficient, and if it exceeds this, it becomes economically disadvantageous.

炭材を分級して発生した篩上炭材は、前記微粉造粒炭材と共に、鉄鉱石、返鉱及び副原料を含む原料と混合・造粒される。
本発明では、篩上炭材及び微粉造粒炭材は、後添加して、混合・造粒する。即ち、鉄鉱石、返鉱及び副原料を含む原料の混合・造粒が終了する前に、篩上炭材及び微粉造粒炭材は、混合、造粒中の鉄鉱石、返鉱及び副原料を含む原料に添加され、その後、全ての配合原料を混合、造粒する。
The sieving carbon material generated by classifying the carbon material is mixed and granulated together with the finely granulated carbon material and raw materials including iron ore, return mineral and auxiliary materials.
In the present invention, the sieving carbon material and the finely granulated carbon material are added after being mixed and granulated. That is, before mixing and granulation of raw materials including iron ore, return ore and auxiliary raw materials are completed, sieving carbonaceous materials and fine granulated carbonaceous materials are mixed, granulated iron ore, return ores and auxiliary raw materials. Is added to the raw material containing, and then all the blended raw materials are mixed and granulated.

前記微粉造粒炭材を後添加するのは、微粉造粒炭材の破壊防止のためである。即ち、鉄鉱石、返鉱及び副原料を含む原料の混合・造粒の開始から微粉造粒炭材を添加したのでは、これらの原料の混合・造粒時の転動により、せっかく篩下炭材とCa含有原料から形成された擬似粒子が破壊されてしまうからである。   The reason why the fine granulated carbon material is added afterwards is to prevent the fine granulated carbon material from being destroyed. In other words, when the fine granulated carbon material is added from the start of mixing / granulation of raw materials including iron ore, return minerals and auxiliary raw materials, the sieving charcoal is generated by rolling during mixing and granulation of these raw materials. This is because the pseudo particles formed from the material and the Ca-containing raw material are destroyed.

前記篩上炭材を後添加とするのは、炭材の燃焼性を高め、焼結製造の生産性を高めるためである。即ち、鉄鉱石、返鉱及び副原料を含む原料の混合・造粒の開始から篩上炭材を添加したのでは、篩上炭材の表面に、微粉鉄鉱石等が付着し、炭材の燃焼性を低下させる。その結果、炭材の燃焼性が劣化し、焼結製造の生産性を低下させるからである。   The reason why the above sieving carbon material is added afterwards is to increase the combustibility of the carbon material and increase the productivity of the sintered production. In other words, when sieving coal is added from the start of mixing and granulation of raw materials including iron ore, return ore, and auxiliary materials, fine iron ore adheres to the surface of sieving coal, Reduce flammability. As a result, the combustibility of the carbonaceous material is deteriorated, and the productivity of the sintered production is lowered.

前記篩上炭材及び前記微粉造粒炭材を後添加する時点は、前記鉄鉱石、返鉱及び副原料を含む原料、前記篩上炭材及び前記微粉造粒炭材を混合・造粒する時間の合計に対して、前記混合・造粒を開始してから50%を超える時間が経過した時点であることが好ましく、75%以上の時間が経過した時点であることが、更に好ましい。
本発明者は、実施例に示す焼結実験により、篩上炭材及び前記微粉造粒炭材を後添加する時点の最適点を得た。
At the time when the sieving carbon material and the finely granulated carbon material are added later, the raw material including the iron ore, the return mineral and the auxiliary material, the sieving carbon material and the finely granulated carbon material are mixed and granulated. It is preferable that a time exceeding 50% has elapsed since the start of the mixing / granulation with respect to the total time, and it is more preferable that a time of 75% or more has elapsed.
The inventor obtained the optimum point at the time of post-adding the sieve carbonaceous material and the fine granulated carbonaceous material by a sintering experiment shown in the examples.

次に、本発明の実施例について説明するが、本発明は、これに限られるものではない。
図3に、本発明の実験プロセスの一例の説明図を示す。炭材として粉コークス、Ca含有原料として生石灰又は消石灰を用いて焼結鉱の鍋焼成試験を実施した。Ca含有原料は、1mm以下の比率が70質量%の生石灰、1mm以下の比率が37質量%の生石灰又は1mm以下の比率が100質量%の消石灰(以下、総称してCaO源と記す。)を用いた。
Next, examples of the present invention will be described, but the present invention is not limited thereto.
FIG. 3 shows an explanatory diagram of an example of the experimental process of the present invention. A pot firing test of sintered ore was carried out using powdered coke as the carbonaceous material and quick lime or slaked lime as the Ca-containing raw material. The Ca-containing raw material is quick lime with a ratio of 1 mm or less of 70% by mass, quick lime with a ratio of 1 mm or less of 37% by mass, or slaked lime with a ratio of 1 mm or less of 100% by mass (hereinafter collectively referred to as a CaO source). Using.

篩下粉コークスにCaO源を添加し、万能混練機及びドラム型造粒機を用いて混合・造粒し、あらかじめ微粉造粒コークスを製造した。この例では、CaO源として生石灰を用い、その添加量は、篩下粉コークスとCaO源の全量に対して30.8質量%で、混合時間180秒、造粒時間180秒である。
鉄鉱石、返鉱及び副原料を含む原料に水分7.5質量%を加え、直径1mのドラムミキサーを用いて混合60秒、造粒220秒した時点で、あらかじめ製造した前記微粉造粒コークス及び分級後の篩上コークスをドラムミキサー内に添加した。鉄鉱石、返鉱及び副原料を含む原料、微粉造粒コークス及び篩上コークスを更に20秒造粒し、鍋焼成試験用の配合原料を作成した。この例では、微粉造粒コークス及び分級後の篩上コークスを鉄鉱石、返鉱及び副原料を含む原料に添加するタイミングは、鉄鉱石、返鉱及び副原料を含む原料の混合・造粒を開始してから混合・造粒が終了するまでの時間の合計に対し開始から93%(20/(60+220+20))の時間が経過した時点である。
A CaO source was added to the under-sieve coke and mixed and granulated using a universal kneader and a drum granulator to produce finely granulated coke in advance. In this example, quick lime is used as the CaO source, and the addition amount thereof is 30.8% by mass with respect to the total amount of the under sieve coke and the CaO source, the mixing time is 180 seconds, and the granulation time is 180 seconds.
The above-mentioned finely granulated coke produced in advance at the time of adding 7.5% by weight of water to the raw material including iron ore, return mineral and auxiliary materials, and mixing for 60 seconds using a drum mixer having a diameter of 1 m and granulating for 220 seconds; The sieved coke after classification was added to the drum mixer. The raw material containing iron ore, return ore and auxiliary materials, fine granulated coke and sieve coke were further granulated for 20 seconds to prepare a blended raw material for a pot firing test. In this example, the timing of adding finely granulated coke and classified coke after sieving to the raw material containing iron ore, return ore and auxiliary materials is the mixing and granulation of raw materials including iron ore, return ore and auxiliary materials. This is the time when 93% (20 / (60 + 220 + 20)) time has elapsed from the start to the total time from the start to the end of mixing and granulation.

上記の作製した鍋焼成試験用の配合原料を焼結鍋試験装置に充填し、焼成試験を実施した。実施に用いた焼結鍋試験装置の概略図を図4に示す。
この焼結鍋試験装置は、点火炉1、焼結鍋2、風箱3、ブロアー4及び分析計5を備える。焼結鍋2の直径は、300mm、層高600mmであり、焼結鍋2に試験体となる配合原料を充填し、点火炉1で点火して加熱する。点火90秒、同時にブロアー4を起動して、吸引負圧12kPa一定の条件で焼成する。焼結鍋2で生じた排気ガスは、風箱3を介して排出され、分析計5によりNOxを分析した。
The above-prepared raw material for a pot firing test was filled in a sintering pot test apparatus, and a firing test was performed. A schematic view of the sintering pot test apparatus used for the implementation is shown in FIG.
The sintering pot test apparatus includes an ignition furnace 1, a sintering pot 2, an air box 3, a blower 4, and an analyzer 5. The diameter of the sintering pot 2 is 300 mm and the bed height is 600 mm. The sintering pot 2 is filled with a blended raw material to be a test body, ignited in the ignition furnace 1 and heated. At the same time, the blower 4 is activated for 90 seconds after ignition and firing is performed under a constant suction negative pressure of 12 kPa. The exhaust gas generated in the sintering pan 2 was discharged through the wind box 3 and analyzed for NOx by the analyzer 5.

本試験に用いた粉コークスの粒度分布を表1に示す。又、本試験に用いた原料の配合を表2に示す。表2で、「CaO造粒有り」とは、粉コークスをサイズの異なる篩を用いて分級し篩下コークスをCaO源で造粒した場合、及び、粉コークスを分級しないで粉コークス全量をCaO源で造粒した場合をいう。又、「CaO造粒なし」とは、粉コークスを分級しないで鉄鉱石、返鉱及び副原料を含む原料と合わせてCaO源と混合・造粒した場合をいう。
表3に実施例又は比較例として試験結果を一覧に示す。表4にCaO造粒に用いた篩下粉コークスの粒度分布を示す。
Table 1 shows the particle size distribution of the powder coke used in this test. Table 2 shows the composition of the raw materials used in this test. In Table 2, “CaO granulated” means that when powder coke is classified using sieves of different sizes and granulated coke is granulated with a CaO source, and when the powder coke is not classified, the total amount of powder coke is CaO. When granulated at the source. “No CaO granulation” refers to a case where powdered coke is mixed and granulated with a CaO source together with raw materials including iron ore, return ore and auxiliary materials without classifying the powder coke.
Table 3 lists the test results as examples or comparative examples. Table 4 shows the particle size distribution of the sieving coke used for CaO granulation.

実施例1〜実施例8と比較例1〜比較例12ではCaO源として1mm以下の比率が70質量%の生石灰を用いて篩下コークスを造粒した。比較例17ではCaO源として1mm以下の比率が37質量%の生石灰を用い、実施例9ではCaO源として1mm以下の比率が100質量%の消石灰を用いた。
(実施例1〜実施例8)
実施例1は、事前分級で調製した0.25mm以下の篩下コークスに対して、CaO源を66.7質量%(Ca;47.6質量%)添加した後、混合・造粒して微粉造粒コークスを作成した。配合原料の混合・造粒の全時間が93%経過した時点で、篩上コークスと微粉造粒コークスを配合原料に添加し、更に残りの造粒をした。生産率は36.7t/d/m2で良好であり、NOxも150ppmで低かった。
実施例2は、実施例1に対して、配合原料の混合・造粒の全時間が75%経過した時点で、篩上コークスと微粉造粒コークスを添加し、残りの造粒をした。生産率、NOx共に良好であった。
実施例3は、実施例1、実施例2に対して、配合原料の混合・造粒の全時間が55%経過した時点で、篩上コークスと微粉造粒コークスを添加し、残りの造粒をした。生産率、NOx共に良好であった。
実施例4、実施例5、実施例6は、事前分級で調製した1.0mm以下の篩下コークスに対して、CaO源を30.8質量%(Ca;22.0質量%)添加し、混合・造粒して、微粉造粒コークスを作成した。配合原料の混合・造粒の全時間が95%、75%、55%経過した時点で、篩上コークスと造粒コークスを添加し、残りの造粒をした。生産率、NOx共に良好であった。
実施例7、実施例8は事前分級で調製した1.0mm以下の比率が73.5質量%の篩下コークスに対して、CaO源を27.2質量%(Ca;19.4質量%)添加し、混合・造粒して、微粉造粒コークスを作成した。配合原料の混合・造粒の全時間が75%、55%経過した時点で、篩上コークスと造粒コークスを添加し、残りの造粒をした。生産率、NOx共に良好であった。
実施例1〜実施例8の結果より、微粉造粒コークスのCa含有量は、50質量%以下であれば良いことが分かった。
In Examples 1 to 8 and Comparative Examples 1 to 12, sieving coke was granulated using quick lime having a ratio of 1 mm or less of 70% by mass as a CaO source. In Comparative Example 17, quick lime having a ratio of 1 mm or less of 37% by mass was used as the CaO source, and in Example 9, slaked lime having a ratio of 1 mm or less of 100% by mass was used as the CaO source.
(Example 1 to Example 8)
In Example 1, 66.7% by mass (Ca; 47.6% by mass) of a CaO source was added to 0.25 mm or less sieving coke prepared by pre-classification, and then mixed and granulated to obtain a fine powder. Granulated coke was created. When 93% of the total mixing and granulation time of the blended raw material passed, sieved coke and fine granulated coke were added to the blended raw material, and the remaining granulation was performed. The production rate was good at 36.7 t / d / m 2 , and NOx was also low at 150 ppm.
In Example 2, when 75% of the total mixing and granulation time of the blended raw materials had elapsed with respect to Example 1, sieving coke and fine granulated coke were added, and the remaining granulation was performed. Both production rate and NOx were good.
In Example 3, compared to Example 1 and Example 2, when the total mixing and granulation time of 55% has elapsed, sieving coke and fine granulated coke are added, and the remaining granulation is performed. Did. Both production rate and NOx were good.
In Example 4, Example 5, and Example 6, 30.8% by mass (Ca; 22.0% by mass) of a CaO source was added to 1.0 mm or less sieving coke prepared by pre-classification, Finely granulated coke was prepared by mixing and granulating. When 95%, 75%, and 55% of the total mixing and granulation time of the blended raw materials passed, sieved coke and granulated coke were added, and the remaining granulation was performed. Both production rate and NOx were good.
In Example 7 and Example 8, the CaO source was 27.2% by mass (Ca; 19.4% by mass) with respect to the under-sieve coke having a ratio of 1.0 mm or less prepared by pre-classification and having a ratio of 73.5% by mass. Add, mix and granulate to make fine granulated coke. When 75% and 55% of the total mixing and granulation time of the blended raw materials had elapsed, sieved coke and granulated coke were added, and the remaining granulation was performed. Both production rate and NOx were good.
From the results of Examples 1 to 8, it was found that the Ca content of fine granulated coke should be 50% by mass or less.

(実施例9)
実施例5のCaO源としての生石灰30.8質量%(Ca;22.0質量%)に替えて、実施例9では、1mm以下の比率が100質量%の消石灰40.7質量%(Ca;22.0質量%)を用いた。その結果、生産率、NOx共に良好であった。
このことより、CaO源として生石灰と消石灰の両者が適切であることが分かった。
Example 9
Instead of quick lime 30.8% by mass (Ca; 22.0% by mass) as the CaO source of Example 5, in Example 9, 40.7% by mass of slaked lime (Ca; 22.0% by weight) was used. As a result, both the production rate and NOx were good.
From this, it turned out that both quicklime and slaked lime are suitable as a CaO source.

(比較例1〜比較例4)
実施例1〜実施例6に対し、篩上コークスと微粉造粒コークスの添加を配合原料の混合・造粒の全時間が50%経過した時点又は0%経過した時点(混合・造粒開始と同時)で行った。生産率は低く、NOxも高かった。このことより、篩上コークスと微粉造粒コークスの添加は、配合原料の混合・造粒の全時間の50%を超える時点が好ましく、75%以上が特に好ましいことが分かった。
(Comparative Examples 1 to 4)
Compared to Examples 1 to 6, the addition of sieving coke and finely granulated coke is performed at the time when the total time of mixing and granulation of the blended raw materials is 50% or when 0% has elapsed (mixing and granulation start and At the same time). The production rate was low and NOx was high. From this, it was found that the addition of sieve coke and fine granulated coke is preferably over 50% of the total time of mixing and granulation of the blended raw materials, and more preferably 75% or more.

(比較例5〜比較例8)
比較例5〜比較例8は、実施例1〜実施例8に対し、粉コークスを篩目3mmの篩いにより分級した。篩下コークスに対して、CaO源を22.2質量%(Ca;15.9質量%)添加し、混合・造粒して、微粉造粒コークスを作成した。比較例5、比較例6は、配合原料の混合・造粒の全時間の93%、75%経過時に篩上コークスと造粒コークスを添加した場合であり、いずれも生産率が低かった。比較例7、比較例8は、配合原料の混合・造粒の全時間の50%、0%経過時に篩上コークスと造粒コークスを添加した場合であり、いずれも生産率は低く、NOxも高かった。
表4に示す篩下コークスの粒度分布において、篩下コークスの1mm以下の割合は実施例7、実施例8では73.5質量%であるのに対し、比較例5、比較例6では72.2質量%である。このことより、篩下コークス中の粒径1mm以下の割合は、73.0質量%以上であることが好ましいことが分かった。
(Comparative Example 5 to Comparative Example 8)
Comparative Example 5 to Comparative Example 8 classified powder coke with respect to Examples 1 to 8 by a sieve having a mesh size of 3 mm. The CaO source was added to 22.2 mass% (Ca; 15.9 mass%) with respect to the under-sieving coke, and mixed and granulated to prepare fine granulated coke. Comparative Example 5 and Comparative Example 6 were cases where 93% and 75% of the total time of mixing and granulation of the blended raw materials were added when sieving coke and granulated coke were added, and both had low production rates. Comparative Example 7 and Comparative Example 8 are cases in which 50% of the total time of mixing and granulation of the blended raw materials and 0% elapsed when sieving coke and granulated coke are added, both of which have low production rates and NOx it was high.
In the particle size distribution of the under sieve coke shown in Table 4, the ratio of 1 mm or less of under sieve coke is 73.5% by mass in Example 7 and Example 8, whereas in Comparative Example 5 and Comparative Example 6, 72. 2% by mass. From this, it was found that the ratio of the particle size of 1 mm or less in the under sieve coke is preferably 73.0% by mass or more.

(比較例9〜比較例12)
粉コークスを分級することなく表面をCaOで被覆した場合である。比較例9、10は、配合原料の混合・造粒の全時間の93%、75%経過時に被覆コークスを添加した例である。本出願人が、前記特許文献4により提案した発明であり、生産率、NOx共に良好であるが、本願発明と比較すると、生産性がやや劣る。比較例11、比較例12は、被覆コークスの添加を配合原料の混合・造粒の全時間の50%以下とした場合で、いずれも、生産率は低く、NOxも高かった。
(Comparative Example 9 to Comparative Example 12)
This is a case where the surface is coated with CaO without classifying the powder coke. Comparative Examples 9 and 10 are examples in which the coated coke was added when 93% and 75% of the total time of mixing and granulation of the blended raw materials had elapsed. This is an invention proposed by the present applicant according to Patent Document 4, and both the production rate and NOx are good, but the productivity is slightly inferior to the present invention. Comparative Example 11 and Comparative Example 12 were cases where the addition of the coated coke was 50% or less of the total time of mixing and granulation of the blended raw materials. In both cases, the production rate was low and the NOx was also high.

(比較例13〜比較例16)
粉コークスを分級することなく、又、CaOを粉コークスと混合・造粒することなく、全体の配合原料と混合・造粒した場合である。いずれも、生産率は低く、NOxも高かった。
(Comparative Examples 13 to 16)
This is a case where the powdered coke is mixed and granulated with the entire blended raw material without classification and without mixing and granulating CaO with the powdered coke. In both cases, the production rate was low and the NOx was also high.

(比較例17)
比較例17は、CaO源の1mm以下の比率を低下させた場合である。実施例4で生石灰の1mm以下の比率70%に替えて、比較例17は37質量%とした。その結果、比較例17では生産率は低く、NOxも高かった。このことより、CaO源の1mm以下の比率は70%以上が望ましいことが分かった。
(Comparative Example 17)
The comparative example 17 is a case where the ratio of 1 mm or less of a CaO source is reduced. In Example 4, instead of the ratio of quick lime of 1 mm or less of 70%, Comparative Example 17 was 37% by mass. As a result, in Comparative Example 17, the production rate was low and NOx was also high. From this, it was found that the ratio of 1 mm or less of the CaO source is desirably 70% or more.

高い生産性向上効果の発現とNOx抑制の両立を可能とする微粉造粒炭材を用いた焼結鉱の製造に利用することができる。   The present invention can be used for the production of sintered ore using a finely granulated carbon material that can achieve both high productivity improvement effects and NOx suppression.

1…点火炉、2…焼結鍋、3…風箱、4…ブロアー、5…分析計。   DESCRIPTION OF SYMBOLS 1 ... Ignition furnace, 2 ... Sintering pan, 3 ... Wind box, 4 ... Blower, 5 ... Analyzer.

Claims (2)

焼結鉱製造用の炭材を分級して、1mm以下の含有量が73.0質量%以上の篩下炭材
と、篩上炭材を得る工程と、
前記篩下炭材に1mm以下の含有量が70質量%以上である生石灰又は消石灰を、前記篩下炭材と前記生石灰又は消石灰の合計に対してCaで5質量%以上50%以下配合し、混合・造粒して微粉造粒炭材を製造する工程と、
鉄鉱石、返鉱及び副原料を含む原料を混合・造粒する合計の時間に対して、前記混合・
造粒を開始してから50%を超える時間が経過した時点で、前記篩上炭材と前記微粉造粒
炭材を添加して、前記鉄鉱石、返鉱及び副原料を含む原料、前記篩上炭材及び前記造粒炭
材を混合・造粒する工程とを実施することを特徴とする微粉造粒炭材を用いた焼結鉱の製
造方法。
Classifying the carbonaceous material for sinter ore production, obtaining a sieved carbonaceous material having a content of 1 mm or less of 73.0% by mass or more, and a sieved carbonaceous material,
Quick lime or slaked lime whose content of 1 mm or less is 70% by mass or more in the sieving carbon material is blended by 5% by mass or more and 50% or less by Ca with respect to the total of the sieving carbon material and the lime or slaked lime , Mixing and granulating to produce a fine granulated carbonaceous material,
For the total time of mixing and granulating raw materials including iron ore, return ore and auxiliary materials,
When a time exceeding 50% has elapsed since the start of granulation, the above-mentioned sieved carbon material and the above-mentioned finely granulated carbonaceous material are added, and the raw material including the iron ore, the return mineral and the auxiliary material, the sieve The manufacturing method of the sintered ore using the fine-powder granulated carbon material characterized by implementing the upper carbon material and the process of mixing and granulating the said granulated carbon material.
前記篩上炭材と前記微粉造粒炭材を鉄鉱石、返鉱及び副原料を含む原料に添加する時点
が、鉄鉱石、返鉱及び副原料を含む原料の混合・造粒の合計の時間に対して、前記混合・
造粒を開始してから75%を超える時間が経過した時点であることを特徴とする請求項1
に記載の微粉造粒炭材を用いた焼結鉱の製造方法。
The time at which the sieving carbon material and the finely granulated carbon material are added to the raw material containing iron ore, return ore and auxiliary materials is the total time of mixing and granulating the raw materials including iron ore, return ore and auxiliary materials Against
The time when more than 75% has elapsed since the start of granulation,
The manufacturing method of the sintered ore using the fine-powder granulated carbon | charcoal material of description.
JP2012087749A 2012-04-06 2012-04-06 Method for producing sintered ore using finely granulated carbon Active JP5817629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012087749A JP5817629B2 (en) 2012-04-06 2012-04-06 Method for producing sintered ore using finely granulated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012087749A JP5817629B2 (en) 2012-04-06 2012-04-06 Method for producing sintered ore using finely granulated carbon

Publications (2)

Publication Number Publication Date
JP2013216938A JP2013216938A (en) 2013-10-24
JP5817629B2 true JP5817629B2 (en) 2015-11-18

Family

ID=49589394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012087749A Active JP5817629B2 (en) 2012-04-06 2012-04-06 Method for producing sintered ore using finely granulated carbon

Country Status (1)

Country Link
JP (1) JP5817629B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327082B2 (en) * 2014-09-17 2018-05-23 新日鐵住金株式会社 Pretreatment method for sintered aggregates
JP6540359B2 (en) * 2014-11-21 2019-07-10 日本製鉄株式会社 Modified carbon material for producing sintered ore and method for producing sintered ore using the same
JP6880951B2 (en) * 2016-09-21 2021-06-02 日本製鉄株式会社 Manufacturing method of coal-containing agglomerate and coal-containing agglomerate
CN109913639B (en) * 2019-01-31 2020-08-04 武汉钢铁有限公司 Sintering method for layered distribution after fuel pre-screening

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559046B2 (en) * 1973-12-31 1980-03-07
JPS51114302A (en) * 1975-04-02 1976-10-08 Nippon Steel Corp Method of pre-processing sintered material for louering nox
JPS5271305A (en) * 1975-12-12 1977-06-14 Nippon Steel Corp Opration of sintering with low genration of nox
JPS5921374B2 (en) * 1976-09-17 1984-05-19 新日本製鐵株式会社 NOx suppression sintering operation method
JPS54104403A (en) * 1978-02-06 1979-08-16 Kawasaki Steel Co Production of sintered ore
JP4087982B2 (en) * 1999-04-05 2008-05-21 新日本製鐵株式会社 Granulation method for raw materials for sintering with excellent flammability

Also Published As

Publication number Publication date
JP2013216938A (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP4870247B2 (en) Method for producing sintered ore
JP5817629B2 (en) Method for producing sintered ore using finely granulated carbon
JP2016104901A (en) Modified carbonaceous material for manufacturing sinter ore and manufacturing method of sinter ore using the same
JP6686974B2 (en) Sintered ore manufacturing method
CN101289697B (en) Blast furnace ironmaking raw material and method for preparing same
CN103130428B (en) Method of utilizing dicyandiamide waste residues and carbide slag to produce lime
JP6102463B2 (en) Method for producing sintered ore
RU2669653C2 (en) Method of producing granular metallic iron
JP2005290456A (en) Highly combustible coal for sintering, manufacturing method therefor, and method for manufacturing sintered ore with the use of the coal
JP5703913B2 (en) Method for producing sintered ore
JP2014122417A (en) Method for manufacturing direct-reduced iron
JP2006290925A (en) Granular fuel for sintering and method for producing the same
JP5811756B2 (en) Method for producing sintered ore
JP2014196548A (en) Method for producing sintered ore for iron manufacture
CN113736989A (en) Sintered ore using dust-removing coke and preparation method thereof
WO2014129282A1 (en) Method for manufacturing reduced iron
JP5621653B2 (en) A modified coal for producing sintered ore and a method for producing a sintered ore using the modified coal.
JP6167852B2 (en) Method for producing sintered ore
JP2008019455A (en) Method for producing half-reduced sintered ore
JP2012026016A (en) Method of manufacturing sintered ore
JP2014062321A (en) Method of manufacturing reduced iron agglomerated product
JP2014084526A (en) Method for manufacturing direct-reduced iron
JP5995004B2 (en) Sintering raw material manufacturing method
JP7187971B2 (en) Method for producing sintered ore
JP2009114485A (en) Method for manufacturing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R150 Certificate of patent or registration of utility model

Ref document number: 5817629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350