JP5703913B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP5703913B2
JP5703913B2 JP2011082925A JP2011082925A JP5703913B2 JP 5703913 B2 JP5703913 B2 JP 5703913B2 JP 2011082925 A JP2011082925 A JP 2011082925A JP 2011082925 A JP2011082925 A JP 2011082925A JP 5703913 B2 JP5703913 B2 JP 5703913B2
Authority
JP
Japan
Prior art keywords
coating
mass
solid fuel
sintered ore
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011082925A
Other languages
Japanese (ja)
Other versions
JP2012219283A (en
Inventor
健至 佐藤
健至 佐藤
匡 村上
匡 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011082925A priority Critical patent/JP5703913B2/en
Publication of JP2012219283A publication Critical patent/JP2012219283A/en
Application granted granted Critical
Publication of JP5703913B2 publication Critical patent/JP5703913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、焼結機で発生する排ガス中のNOxの低減が図れる焼結鉱の製造方法に関する。 The present invention relates to a method for producing sintered ore that can reduce NOx in exhaust gas generated by a sintering machine.

従来、製鉄所では、焼結機を使用して焼結原料を焼結している。
この焼結原料の焼結時に発生する排ガス中には、窒素酸化物(NOx)が含まれているため、発生した排ガスは、窒素酸化物を除去した後に大気へ放散される。窒素酸化物の除去方法としては、例えば、特許文献1に、CaO−FeO(酸化鉄)系複合酸化物を含有する微粉末触媒と燃料コークス(固体燃料)とからなる擬似粒子を用いて焼結を行う方法が開示されている。
また、製鉄所の製鋼工程からは、製鋼スラグが発生しており、これを路盤材や埋立て材等に使用している。
Conventionally, in a steel mill, a sintering raw material is sintered using a sintering machine.
Since the exhaust gas generated during sintering of the sintering raw material contains nitrogen oxides (NOx), the generated exhaust gas is released to the atmosphere after removing the nitrogen oxides. As a method for removing nitrogen oxides, for example, in Patent Document 1, using the CaO-Fe t O pseudo particles consisting a fine powder catalyst and the fuel coke containing (iron oxide) based composite oxide (solid fuel) A method of performing sintering is disclosed.
In addition, steelmaking slag is generated from the steelmaking process of steelworks, and this is used for roadbed materials and landfill materials.

特開平8−60257号公報JP-A-8-60257

しかしながら、前記特許文献1に開示された方法は、焼結原料として使用されていないCaO−FeO系複合酸化物を準備する必要があり、新たなコストが生じて経済的でない。
また、製鉄所から発生する製鋼スラグの使用可能な分野には限りがあり、利用用途の更なる拡大が望まれている。
このため、燃料コークスの表面を製鋼スラグで被覆し、焼結機で発生する排ガス中のNOxの低減を図ることも考えられるが、この製鋼スラグは燃料コークスの表面に付着しづらいため、付着層厚が薄くなる場合や、また付着力が十分でなく搬送途中で燃料コークスの表面から剥がれ落ち易かった。
However, the method disclosed in the above Patent Document 1, it is necessary to prepare a CaO-Fe t O composite oxide that is not used as a raw material to be sintered is not economical to cause additional costs.
In addition, there are limits to the fields in which steelmaking slag generated from steelworks can be used, and further expansion of usage is desired.
For this reason, it is conceivable to cover the surface of the fuel coke with steelmaking slag and to reduce NOx in the exhaust gas generated by the sintering machine. However, this steelmaking slag is difficult to adhere to the surface of the fuel coke. When the thickness became thin or the adhesion was not sufficient, it was easy to peel off from the surface of the fuel coke during transportation.

本発明はかかる事情に鑑みてなされたもので、固体燃料の表面に製鋼スラグを所定の層厚に付着可能にすると共に、搬送途中においても製鋼スラグを剥離しづらくして、焼結原料の焼結時に発生する排ガス中のNOxを経済的に低減でき、しかも製鋼スラグの有効利用も図れる焼結鉱の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and enables steelmaking slag to adhere to the surface of the solid fuel to a predetermined layer thickness, and makes it difficult to peel the steelmaking slag even during the transfer, thereby sintering the sintered raw material. It is an object of the present invention to provide a method for producing a sintered ore that can economically reduce NOx in exhaust gas generated at the time of sintering and that can also effectively use steelmaking slag.

上記の課題を解決するためになされた本発明の要旨は、以下の通りである。
(1)鉄鉱石、固体燃料、及び石灰石系原料を含む焼結原料を造粒機で擬似造粒した擬似造粒物と、表面が製鋼スラグ微粉及び消石灰を含む被覆物で覆われた被覆用固体燃料とを混合し、焼結パレット上に装入して焼結する焼結鉱の製造方法において、
前記被覆用固体燃料に、粒径0.5mm未満を60質量%以上含む前記製鋼スラグ微粉及び前記消石灰を添加し、更に水分を添加して混練し造粒することにより、該被覆用固体燃料の表面を前記被覆物で覆うに際し、該被覆物中のCa(OH)量が該被覆物量の60質量%以上となるように、前記消石灰を添加することを特徴とする焼結鉱の製造方法。
The gist of the present invention made to solve the above problems is as follows.
(1) iron ore, a pseudo Nizo grains prepared by pseudo granulated solid fuel, and a sintering raw material containing limestone-based raw materials granulator, the surface is covered with a coating comprising a steelmaking slag and hydrated lime In the method for producing sintered ore, which is mixed with a solid fuel for coating , charged on a sintering pallet and sintered.
Said coating solid fuel, adding the steelmaking slag and the slaked lime containing a particle size less than 0.5 mm 60% by weight or more, further by granulating kneaded with addition of water, of the coating for a solid fuel upon covering the surface with the coating material, as Ca (OH) 2 content of the coating in is more than 60% by weight of the coating amount, method for producing sintered ore, which comprises adding the hydrated lime .

(2)前記被覆物中の水分量が9質量%以上16質量%以下となるように、混練中に水分を添加することを特徴とする(1)記載の焼結鉱の製造方法。 (2) The method for producing a sintered ore according to (1), wherein water is added during kneading so that the water content in the coating is 9% by mass or more and 16% by mass or less.

(3)前記被覆物の被覆層厚を5μm以上500μm以下とすることを特徴とする(1)又は(2)記載の焼結鉱の製造方法。 (3) The method for producing a sintered ore according to (1) or (2), wherein the coating layer thickness of the coating is 5 μm or more and 500 μm or less.

(4)前記造粒機の下流側から前記被覆物で覆われた被覆用固体燃料を供給し、該被覆物で覆われた被覆用固体燃料と前記擬似造粒物とを混合することを特徴とする(1)〜(3)のいずれか1に記載の焼結鉱の製造方法。 (4) the supply granulator coating solid fuel covered with the coating material from the downstream side of the, match mixed and said the coating solid fuel covered with the coating pseudo granulate Rukoto The method for producing a sintered ore according to any one of (1) to (3).

本発明に係る焼結鉱の製造方法は、被覆用固体燃料の表面を覆う被覆物に、粒径0.5mm未満を60質量%以上含む製鋼スラグ微粉が含まれているので、製鋼スラグ微粉の表面積を大きくして、カルシウムフェライトの生成効率を向上させることができると共に、製鋼スラグ微粉を被覆用固体燃料の表面へ付着し易くしている。
更に、被覆物中のCa(OH)量が被覆物量の60質量%以上となるように消石灰を添加するので、製鋼スラグ由来のCa(OH)と、添加した消石灰のCa(OH)によるバインダー機能を発揮させることができ、被覆用固体燃料の表面に被覆物を、確実かつ強固に、所定の層厚に形成できる。
これにより、固体燃料の低温燃焼を抑制できると共に、1200℃以上の高温領域では、被覆物中のCaOが周囲の鉄鉱石と反応して低融点のカルシウムフェライトになって溶融し溶け落ちる。従って、焼結時に発生する排ガス中のNOxを経済的に低減できると共に、製鋼スラグの有効利用も図れる。
In the method for producing sintered ore according to the present invention, the coating covering the surface of the solid fuel for coating contains steelmaking slag fine powder containing 60% by mass or more of particle size less than 0.5 mm. The surface area can be increased to improve the generation efficiency of calcium ferrite, and the steelmaking slag fine powder can easily adhere to the surface of the solid fuel for coating.
Furthermore, since Ca (OH) 2 content in the coating is the addition of slaked lime so that the above 60 mass% of the coating amount, the steelmaking slag from the Ca (OH) 2, the added hydrated lime Ca (OH) 2 The binder function can be exhibited, and the coating can be reliably and firmly formed on the surface of the coating solid fuel with a predetermined layer thickness.
Thereby, low temperature combustion of the solid fuel can be suppressed, and in a high temperature region of 1200 ° C. or higher, CaO in the coating reacts with surrounding iron ore to become low melting point calcium ferrite and melts and melts down. Therefore, NOx in the exhaust gas generated during sintering can be reduced economically, and effective use of the steelmaking slag can be achieved.

また、被覆物で覆われた被覆用固体燃料を、造粒機の下流側から擬似造粒物に供給する場合、被覆用固体燃料の表面から被覆物が剥離することを防止することが可能になると共に、被覆物で覆われた被覆用固体燃料が擬似造粒物内に埋没することを防止できるので、効率的にNOx発生を抑制できる。 In addition, when the solid fuel for coating covered with the coating is supplied to the pseudo-granulated material from the downstream side of the granulator, it is possible to prevent the coating from peeling off from the surface of the solid fuel for coating. In addition, since it is possible to prevent the covering solid fuel covered with the covering from being buried in the pseudo-granulated material, it is possible to efficiently suppress the generation of NOx.

本発明の一実施の形態に係る焼結鉱の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the sintered ore which concerns on one embodiment of this invention. 鍋試験装置の説明図である。It is explanatory drawing of a pan testing apparatus.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の一実施の形態に係る焼結鉱の製造方法は、焼結原料を焼結機10の焼結パレット上に装入して焼結する方法であり、製鋼スラグ微粉を使用して、焼結原料の焼結時に発生する排ガス中のNOxを経済的に低減すると共に、製鋼スラグの有効利用を図る方法である。以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, the manufacturing method of the sintered ore which concerns on one embodiment of this invention is a method of charging and sintering a sintering raw material on the sintering pallet of the sintering machine 10, and steelmaking. In this method, slag fine powder is used to economically reduce NOx in the exhaust gas generated during sintering of the sintering raw material and to make effective use of the steelmaking slag. This will be described in detail below.

まず、鉄鉱石(例えば、鉄鉱石原料や返鉱等)、コークス(固体燃料の一例)、石灰石系原料(例えば、CaOやCaCO)、及びその他の副原料(例えば、MgO源やSiO源)を、貯留槽11から予め設定した配合割合でそれぞれ切出す。
そして、この鉄鉱石、コークス、石灰石系原料、及びその他の副原料を含む焼結原料を1次ドラムミキサー(造粒機の一例)12へ投入し、これに水分を添加して造粒を行う。更に、これらを、1次ドラムミキサー12の下流側に配置された2次ドラムミキサー(造粒機の一例)13へ投入して、更なる造粒を行う。
First, iron ore (for example, iron ore raw material or return ore), coke (an example of solid fuel), limestone-based raw material (for example, CaO or CaCO 3 ), and other auxiliary materials (for example, MgO source or SiO 2 source) ) Are respectively cut out from the storage tank 11 at a preset blending ratio.
And the sintering raw material containing this iron ore, coke, a limestone raw material, and other auxiliary materials is thrown into the primary drum mixer (an example of a granulator) 12, and water is added to this to perform granulation. . Further, these are put into a secondary drum mixer (an example of a granulator) 13 disposed on the downstream side of the primary drum mixer 12 for further granulation.

この造粒を行うに際しては、2台のドラムミキサー12、13を直列に配置して行ったが、3台以上(複数台)のドラムミキサーを直列に配置して行ってもよく、また1台のドラムミキサーのみで行ってもよい。
これにより、核となる粒子の周囲に粉を付着させ、平均粒径が2〜4mm程度の擬似造粒物を製造することができる。例えば、核となる粒子が粗粒鉄鉱石であれば、その周囲に微粉鉄鉱石や粉コークスが付着し易く、また、核となる粒子が粗粒コークスであれば、その周囲に微粉鉄鉱石が付着し易い。
When performing this granulation, the two drum mixers 12 and 13 are arranged in series, but three or more (a plurality of) drum mixers may be arranged in series. It is also possible to use only a drum mixer.
Thereby, powder can be made to adhere to the periphery of the particle | grains used as a nucleus, and the pseudo granulated material whose average particle diameter is about 2-4 mm can be manufactured. For example, if the core particle is coarse iron ore, fine iron ore and fine coke are likely to adhere to it, and if the core particle is coarse coke, fine iron ore is around it. Easy to adhere.

なお、2次ドラムミキサー13内の下流側では、貯留槽14から予め設定した割合で切り出されたコークス(被覆用固体燃料の一例、即ち被覆されるための固体燃料である)15が被覆物16で覆われて被覆造粒物となって供給される。
被覆物16は、製鋼スラグ微粉と消石灰(水酸化カルシウム:Ca(OH))で構成されて、このコークス15の表面を覆っている。
ここで、製鋼スラグ微粉には、製鉄所から発生する転炉スラグ、脱硫スラグ、脱燐スラグ、電気炉スラグ等の製鋼スラグを使用できる。この製鋼スラグは、CaO成分系(例えば、CaOやCa(OH)等)を20質量%以上(好ましくは、25質量%以上)含有し、CaO成分系の上限は、例えば、50質量%程度である。なお、製鋼スラグには、Fe成分(T.Fe(全鉄)で5質量%以上40質量%以下程度)も含まれている。
On the downstream side in the secondary drum mixer 13, coke (an example of a solid fuel for coating, that is, a solid fuel to be coated) 15 cut out from the storage tank 14 at a preset ratio is a coating 16. And is supplied as a coated granulated product.
The covering 16 is composed of fine steelmaking slag powder and slaked lime (calcium hydroxide: Ca (OH) 2 ) and covers the surface of the coke 15.
Here, steelmaking slag such as converter slag, desulfurization slag, dephosphorization slag, electric furnace slag, etc. generated from steelworks can be used as the steelmaking slag fines. This steelmaking slag contains 20 mass% or more (preferably 25 mass% or more) of CaO component system (for example, CaO or Ca (OH) 2 ), and the upper limit of the CaO component system is, for example, about 50 mass%. It is. The steelmaking slag also contains an Fe component (about 5% by mass or more and 40% by mass or less in terms of T.Fe (total iron)).

この製鋼スラグ微粉は、製鉄所から発生した製鋼スラグを粉砕機により粉砕して微粉としたものでもよいが、溶銑予備処理工程で発生する脱硫スラグや脱燐スラグ等のように、もともと微粉であるものが好ましく、いずれにおいても、粒径0.5mm未満の微粉を60質量%以上含有するものを使用する。
ここで、粒径0.5mm未満の微粉を60質量%以上としたのは、製鋼スラグ微粉の表面積を大きくして、カルシウムフェライトの生成効率を向上させるため、またコークスの粒径(粒径0.5mm未満を20質量%以下、かつ粒径0.5mm以上5.0mm以下を40質量%以上、好ましくは70質量%以上)を考慮して付着させ易くするためである。このため、微粉量の上限値については、特に規定していないが、製鋼スラグを粉砕する場合、その作業の効率等を考慮すれば、90質量%、更には85質量%程度である。
This steelmaking slag fine powder may be a fine powder obtained by pulverizing steelmaking slag generated from a steel mill with a pulverizer, but it is originally fine powder, such as desulfurization slag and dephosphorization slag generated in the hot metal pretreatment process. In any case, one containing 60% by mass or more of fine powder having a particle size of less than 0.5 mm is used.
Here, the reason why the fine powder having a particle size of less than 0.5 mm is set to 60% by mass or more is to increase the surface area of the steelmaking slag fine powder and improve the formation efficiency of calcium ferrite. Is less than 5 mm and less than 20% by mass, and a particle size of 0.5 mm or more and 5.0 mm or less is 40% by mass or more, preferably 70% by mass or more. For this reason, the upper limit value of the fine powder amount is not particularly defined, but when steelmaking slag is pulverized, it is about 90% by mass and further about 85% by mass in consideration of the efficiency of the work.

上記した製鋼スラグには、前記したように、CaOとCa(OH)が含まれている。
このCaOは、コークス15の表面を被覆物16で覆うに際して添加される水分によってCa(OH)となり、これが、元来含まれていたCa(OH)と共にコークス15の表面に被覆物16を付着させるバインダーとなって機能するが、これだけでは十分ではないことがある。このため、この製鋼スラグに消石灰単味を加えて、バインダー機能の不足分を補っている。
なお、加える消石灰としては、市販のものでもよいが、生灰石に水を加えて消化したものを、そのまま使用してもよい。いずれの場合においても、消石灰の構成を、粒径0.15mm以下が70質量%以上とすることが好ましい。
The steelmaking slag described above contains CaO and Ca (OH) 2 as described above.
This CaO becomes Ca (OH) 2 due to moisture added when the surface of the coke 15 is covered with the coating 16, and this, together with the Ca (OH) 2 originally contained, forms the coating 16 on the surface of the coke 15. It functions as a binder to be deposited, but this alone may not be sufficient. For this reason, the slaked lime is added to this steelmaking slag to make up for the lack of binder function.
In addition, as slaked lime to add, a commercially available thing may be sufficient, However, What digested by adding water to raw apatite may be used as it is. In any case, it is preferable that the slaked lime has a particle size of 0.15 mm or less and 70% by mass or more.

ここで、被覆物中のCa(OH)量が被覆物量の60質量%未満の場合、被覆物中のCa(OH)量が少な過ぎてバインダー機能が不足するため、被覆物がコークス表面から剥がれてコークス表面が露出し易くなり、コークスが低温領域で燃焼して、排ガス中のNOx量の低減効果が少なくなる。
従って、被覆物中のCa(OH)量を被覆物量の60質量%以上とした。
一方、被覆物中のCa(OH)量の上限値は、特に規定しないが、製鋼スラグの有効利用の観点から95質量%、更には90質量%であることが好ましい。
Here, when the amount of Ca (OH) 2 in the coating is less than 60% by mass of the amount of the coating, the amount of Ca (OH) 2 in the coating is too small and the binder function is insufficient. The coke surface is easily exposed and the coke burns in a low temperature region, and the effect of reducing the amount of NOx in the exhaust gas is reduced.
Therefore, the amount of Ca (OH) 2 in the coating is set to 60% by mass or more of the coating amount.
On the other hand, the upper limit value of the amount of Ca (OH) 2 in the coating is not particularly defined, but is preferably 95% by mass and more preferably 90% by mass from the viewpoint of effective use of the steelmaking slag.

なお、被覆物16で被覆するコークス15の量は、擬似造粒物中へのコークスの埋没を抑制すること等を考慮すれば、焼結パレットに供給する全コークス量の一部である30質量%以上(好ましくは、40質量%以上)とすることが好ましく、更には全部(100質量%)でもよい。
このため、貯留槽11から1次ドラムミキサー12へ供給されるコークス量は、焼結パレットに供給する全コークス量から、被覆物16で被覆するコークス15量を差し引いた量(70質量%以下)となる。
Note that the amount of coke 15 coated with the coating 16 is 30 mass, which is a part of the total amount of coke supplied to the sintered pallet in consideration of suppressing the burying of coke in the pseudo-granulated product. % Or more (preferably 40% by mass or more), more preferably all (100% by mass).
For this reason, the amount of coke supplied from the storage tank 11 to the primary drum mixer 12 is an amount obtained by subtracting the amount of coke 15 covered with the coating 16 from the total amount of coke supplied to the sintering pallet (70% by mass or less). It becomes.

また、コークス15を被覆する被覆物16の被覆層厚は、5μm以上500μm以下であることが好ましい。
ここで、コークスを被覆する被覆物の被覆層厚が5μm未満の場合、被覆物の被覆層厚が薄過ぎるため、被覆物がコークス表面から剥がれてコークス表面が露出し易くなり、コークスが低温領域で燃焼し、排ガス中のNOx量の低減効果が少なくなる。一方、被覆層厚が500μmを超える場合、被覆物の被覆層厚が厚過ぎるため、焼結パレットに供給された後に、被覆物の溶融に時間がかかり、被覆されたコークスが未燃のままになる。
以上のことから、コークスを被覆する被覆物の被覆層厚を、5μm以上500μm以下としたが、下限を50μm、更には100μmとし、上限を300μm、更には200μmとすることが好ましい。
Moreover, it is preferable that the coating layer thickness of the coating 16 covering the coke 15 is 5 μm or more and 500 μm or less.
Here, when the coating layer thickness of the coating covering the coke is less than 5 μm, the coating layer thickness of the coating is too thin, so that the coating is peeled off from the coke surface and the coke surface is easily exposed, and the coke is in a low temperature region. And the effect of reducing the amount of NOx in the exhaust gas is reduced. On the other hand, when the coating layer thickness exceeds 500 μm, the coating layer thickness of the coating is too thick, so it takes time to melt the coating after being supplied to the sintering pallet, and the coated coke remains unburned. Become.
From the above, the coating layer thickness of the coating covering the coke is 5 μm or more and 500 μm or less, but the lower limit is preferably 50 μm, more preferably 100 μm, and the upper limit is preferably 300 μm, more preferably 200 μm.

そして、被覆物16でコークス15を覆うに際しては、被覆物16を構成する製鋼スラグ微粉及び消石灰と、コークス15と、水分とを、ダウミキサー(混練機の一例)17に供給して混練した後、この混練物をパンペレタイザー18で造粒し、コークス15の周囲に被覆物16を付着させて、このコークス15を被覆物16で覆う。
なお、ダウミキサー17での混練中(更には造粒中)に添加する水分量は、コークス15表面への被覆物16の付着効果を高めるため、被覆物16中の水分量(消石灰中の水分も含む)が、9質量%以上16質量%以下(好ましくは、下限を11質量%、上限を14質量%)となるように調整することが好ましいが、これに限定されるものではない。
Then, when covering the coke 15 with the coating 16, the steelmaking slag fine powder and slaked lime constituting the coating 16, the coke 15, and moisture are supplied to a dow mixer (an example of a kneader) 17 and kneaded. The kneaded product is granulated with a pan pelletizer 18, the coating 16 is adhered around the coke 15, and the coke 15 is covered with the coating 16.
Note that the amount of water added during kneading in the Dow mixer 17 (and also during granulation) increases the amount of water in the coating 16 (moisture in slaked lime) in order to enhance the adhesion effect of the coating 16 on the coke 15 surface. Is preferably adjusted so that it is 9% by mass or more and 16% by mass or less (preferably, the lower limit is 11% by mass and the upper limit is 14% by mass), but is not limited thereto.

しかし、被覆物16中の水分量(含有水分量)を、上記した範囲に調整することで、被覆物の被覆層厚5μm以上500μm以下の歩留を、例えば、80質量%以上、更には90質量%以上にできる。
なお、上記した水分量とは、最終的な製品(焼結機へ装入される前の造粒物である被覆造粒物)の被覆物中の水分量であり、製鋼スラグ微粉及び消石灰の含有水分量と、混合時(更には造粒時)の添加水分量との合計量で現される。この水分量は、乾燥状態の被覆物(製鋼スラグ微粉及び消石灰)100に対する割合(質量%:外掛け)である。
However, by adjusting the water content (content of water content) in the coating 16 to the above range, the yield of the coating layer with a coating layer thickness of 5 μm or more and 500 μm or less is, for example, 80% by mass or more, and further 90%. It can be made more than mass%.
In addition, the above-mentioned moisture content is the moisture content in the coating of the final product (the coated granulated product before being charged into the sintering machine), and the steelmaking slag fine powder and slaked lime It is expressed as the total amount of the water content and the amount of water added during mixing (and also during granulation). This moisture content is a ratio (mass%: outer coating) to the dried coating (steel slag fine powder and slaked lime) 100.

ここで、コークス15と製鋼スラグ微粉及び消石灰の混練は、ダウミキサーを用いて行ったが、これ以外の他の混練機、例えば、レディゲミキサー等を使用することもできる。
上記した方法により、コークス15の表面の全部を、被覆物16で覆うことができる。
以上の方法で得られた被覆物16で覆われたコークス15、即ち被覆造粒物を、最下流位置に配置された2次ドラムミキサー13内の下流側(排出口から供給口側に向かって5m(2次ドラムミキサーの全長の20%)以内の位置が好ましい)に供給することで、この被覆造粒物を、前記した核となる粒子の周囲に粉を付着させた擬似造粒物と混合することができる。なお、被覆造粒物の添加位置は、上記した位置に限定されるものではなく、例えば、2次ドラムミキサー13の下流側に配置された擬似造粒物を搬送するコンベア(図示しない)のベルト上とすることもできる(図1中の点線矢印参照)。
Here, the coke 15 and the steelmaking slag fine powder and slaked lime are kneaded using a Dow mixer, but other kneaders such as a Redige mixer can also be used.
By the above-described method, the entire surface of the coke 15 can be covered with the covering 16.
The coke 15 covered with the coating 16 obtained by the above method, that is, the coated granulated product, is downstream in the secondary drum mixer 13 arranged at the most downstream position (from the discharge port toward the supply port). 5m (preferably within 20% of the total length of the secondary drum mixer), this coated granulated product is a pseudo-granulated product in which powder is adhered around the core particles described above, Can be mixed. The addition position of the coated granule is not limited to the above-described position. For example, a belt of a conveyor (not shown) that conveys the pseudo granule disposed on the downstream side of the secondary drum mixer 13. It can also be set to the top (see dotted arrow in FIG. 1).

そして、この被覆造粒物を、前記した擬似造粒物と混合させた状態で、供給装置(例えば、ドラムフィーダ等)を介して焼結パレット上に装入する。
このとき、被覆造粒物は、コークスの表面が被覆物で構成された被覆層で覆われているため、コークスの燃焼初期である低温領域で、被覆層内のコークスの燃焼を抑えてNOxの発生を抑制できる。一方、1200℃以上の高温領域に達すると、被覆層中のCa(OH) 、周囲の鉱石及び被覆物中の製鋼スラグに含まれている前記したFe成分と反応し、低融点のカルシウムフェライトとして溶融し、溶け落ちる。
これにより、コークス表面は、被覆層が消失して裸の状態になるが、裸の状態であってもコークスは1200℃以上の高温領域で燃焼されるため、NOxの発生は少ない。
従って、本発明の焼結鉱の製造方法を使用することで、焼結原料の焼結時に発生する排ガス中のNOxを経済的に低減できると共に、製鋼スラグの有効利用も図れる。
Then, the coated granulated product is charged onto the sintered pallet via a supply device (for example, a drum feeder) in a state of being mixed with the pseudo granulated product.
At this time, since the surface of the coke is covered with the coating layer composed of the coating, the coated granulated product suppresses the combustion of the coke in the coating layer in the low temperature region at the early stage of the combustion of the coke, thereby reducing the NOx content. Generation can be suppressed. On the other hand, it reaches a high temperature range above 1200 ℃, Ca (OH) 2 in the coating layer is reacted with the above-mentioned Fe component contained in the steel slag around the ore and coatings in a low melting point calcium It melts as a ferrite and melts down.
As a result, the coating layer disappears on the surface of the coke, but the coke is burned in a high temperature region of 1200 ° C. or higher even in the bare state, so that the generation of NOx is small.
Therefore, by using the method for producing a sintered ore according to the present invention, NOx in the exhaust gas generated during sintering of the sintered raw material can be reduced economically, and the steelmaking slag can be effectively used.

次に、本発明の作用効果を確認するために行った実施例について説明する。
準備した焼結鉱の配合原料は、鉄原料、石灰石系原料、MgO系及びその他の副原料、返鉱、及びコークス、である。なお、鉄原料は67.5質量%、石灰石系原料は10.7質量%、MgO系及びその他の副原料は2.3質量%、返鉱は16.1質量%、コークスは3.4質量%、である。
ここで、被覆造粒物を製造にするに際しては、上記した配合原料のコークス3.4質量%のうちの3質量%分のコークス(被覆用固体燃料)を使用し、製鋼スラグと消石灰を新たに準備した。
Next, examples carried out for confirming the effects of the present invention will be described.
The prepared raw materials for sintered ore are iron raw materials, limestone raw materials, MgO-based and other auxiliary raw materials, return minerals, and coke. The iron raw material was 67.5% by mass, the limestone-based raw material was 10.7% by mass, the MgO-based and other auxiliary raw materials were 2.3% by mass, the return was 16.1% by mass, and the coke was 3.4% by mass. %.
Here, when manufacturing the coated granulated product, 3% by mass of coke (solid fuel for coating) out of 3.4% by mass of the above-described blended raw material is used, and steelmaking slag and slaked lime are newly added. Prepared for.

まず、被覆造粒物の製造条件を、以下に示す。
被覆造粒物は、上記したコークス、製鋼スラグ、消石灰、及び水を、ダウミキサー(混練機)に供給して混練した後、この混練物をパンペレタイザーに供給して造粒し、コークス表面に製鋼スラグと消石灰を付着させて製造した。なお、パンペレタイザーは、直径が5mであり、回転数を8rpmとし、傾斜角度を57度とした(水の添加なし)。
ここで、使用したコークスの粒度分布及び含有水分量を表1に、また製鋼スラグの主成分構成及び含有水分量と粒度分布を表2と表3に、それぞれ示す。
First, the production conditions of the coated granulated product are shown below.
The coated granulated product is prepared by supplying the above-mentioned coke, steelmaking slag, slaked lime, and water to a dow mixer (kneading machine) and kneading, and then supplying the kneaded product to a pan pelletizer to granulate, It was manufactured by attaching steelmaking slag and slaked lime. The pan pelletizer had a diameter of 5 m, a rotation speed of 8 rpm, and an inclination angle of 57 degrees (no addition of water).
Here, the particle size distribution and water content of the coke used are shown in Table 1, and the main component composition, water content and particle size distribution of the steelmaking slag are shown in Table 2 and Table 3, respectively.

Figure 0005703913
Figure 0005703913

Figure 0005703913
Figure 0005703913

Figure 0005703913
Figure 0005703913

一方、上記した被覆造粒物の原料を除いた焼結鉱の配合原料は、1次ドラムミキサーを用いて混合し、これに水分を添加して造粒を行った後、更に、2次ドラムミキサーへ投入し、更なる造粒を行って擬似造粒物とした。なお、1次ドラムミキサーは、内径が4.8m、長さが17.1mであり、回転数を6rpmとし、2次ドラムミキサーは、内径が5.4m、長さが26mであり、回転数を6rpmとした。
ここで、前記した被覆造粒物は、2次ドラムミキサー内に供給され、被覆造粒物を擬似造粒物と共に混合した。なお、被覆造粒物の添加位置は、2次ドラムミキサーによる混合造粒が終了する0.3分(18秒)前とした。
そして、被覆造粒物と擬似造粒物の混合物を使用して、鍋試験を行った。
On the other hand, the blended raw material of sintered ore excluding the raw material of the above-mentioned coated granulated material is mixed using a primary drum mixer, and after adding water to the granulated material, the secondary drum is further mixed. The mixture was put into a mixer and further granulated to give a pseudo granulated product. The primary drum mixer has an inner diameter of 4.8 m and a length of 17.1 m, and the rotational speed is 6 rpm. The secondary drum mixer has an inner diameter of 5.4 m and a length of 26 m, and the rotational speed. Was 6 rpm.
Here, the above-mentioned coated granulated product was supplied into a secondary drum mixer, and the coated granulated product was mixed together with the pseudo-granulated product. The addition position of the coated granulated product was 0.3 minutes (18 seconds) before the mixing granulation by the secondary drum mixer was completed.
And the pot test was done using the mixture of a covering granulated material and a pseudo-granulated material.

次に、鍋試験に使用した鍋試験装置について説明する。
図2に示すように、鍋試験装置は、鍋本体、集塵機、冷却機、ブロワー、及びNOx計を有し、鍋本体で発生したガスをブロワーによってその下方から吸引し、集塵機及び冷却機で処理して、焼結排ガスの煙道に設置されたNOx計((株)島津製作所の常圧式化学発光方式の測定器)で、ガス中のNOx濃度を測定する装置である。
なお、鍋本体は、上記した混合物を装入する部分が円筒状となっており、その底部にグレートバー(火格子)を簀子状に敷いたものである。この円筒状部分の直径dは300mm、深さhは500mmである。
Next, the pan test apparatus used for the pan test will be described.
As shown in FIG. 2, the pan test apparatus has a pan body, a dust collector, a cooler, a blower, and a NOx meter. The gas generated in the pan body is sucked from below by the blower and processed by the dust collector and the cooler. Then, it is a device that measures the NOx concentration in the gas with a NOx meter (measuring device of atmospheric pressure chemiluminescence method of Shimadzu Corporation) installed in the flue of the sintered exhaust gas.
The pan body has a cylindrical portion where the above-described mixture is charged, and has a grate bar (grate) on the bottom. The cylindrical portion has a diameter d of 300 mm and a depth h of 500 mm.

この鍋試験に際しては、鍋本体に上記した混合物を装入し、鍋本体内の擬似造粒物に着火して焼結させ、発生したNOxをNOx計を用いて測定した。
上記した試験条件と試験結果を、表4に示す。なお、表4中の製鋼スラグの種類に記載のA、B、及びCは、表2及び表3に記載のスラグA、スラグB、及びスラグCに、それぞれ該当する。
In this pan test, the above-mentioned mixture was charged into the pan body, the pseudo-granulated material in the pan body was ignited and sintered, and the generated NOx was measured using a NOx meter.
Table 4 shows the test conditions and test results described above. In addition, A, B, and C described in the type of steelmaking slag in Table 4 correspond to the slag A, slag B, and slag C described in Table 2 and Table 3, respectively.

Figure 0005703913
Figure 0005703913

表4に示す実施例1〜8は、粒径0.5mm未満を60質量%以上含む製鋼スラグA、Bを使用し、かつ被覆物中のCa(OH)量が被覆物量の60質量%以上となるように消石灰を添加した結果である。これにより、カルシウムフェライトの生成効率が高められ、しかもコークスの表面に被覆物を確実かつ強固に形成できたため、被覆物の被覆層厚が5〜500μmとなる被覆造粒物の歩留りを70質量%程度以上にすることができ、その結果、発生するNOx量を145ppm以下に低減することができた。
特に、実施例1〜4に示すように、被覆物中のCa(OH)量を増加させるに伴い、被覆物の被覆層厚5〜500μmの歩留りも、80質量%以上、更には90質量%以上にでき、NOx濃度も138ppmから130ppmまで減少できた。
Examples 1 to 8 shown in Table 4 use steelmaking slags A and B containing 60% by mass or more of particles having a particle size of less than 0.5 mm, and the amount of Ca (OH) 2 in the coating is 60% by mass of the coating amount. It is the result of adding slaked lime so that it may become the above. As a result, the production efficiency of calcium ferrite was increased, and the coating could be reliably and firmly formed on the surface of the coke. Therefore, the yield of the coated granulated product having a coating layer thickness of 5 to 500 μm was increased to 70% by mass. As a result, the amount of generated NOx could be reduced to 145 ppm or less.
In particular, as shown in Examples 1 to 4, as the amount of Ca (OH) 2 in the coating is increased, the yield of the coating with a coating layer thickness of 5 to 500 μm is also 80% by mass or more, and further 90% by mass. % And the NOx concentration could be reduced from 138 ppm to 130 ppm.

一方、比較例1、2は、消石灰の添加量を減らして、被覆物中のCa(OH)量を被覆物量の60質量%未満とした結果である。このように、被覆物中のCa(OH)量を低下させることで、被覆物のバインダー機能も低下したため、製鋼スラグの種類に関係なく、被覆物の被覆層厚5〜500μmの歩留りが40質量%以下程度になり、その結果、発生するNOx量が155ppm以上に上昇した。
また、比較例3は、粒径0.5mm未満を60質量%未満含む製鋼スラグCを使用した結果である。このように、微粉量を減少させた製鋼スラグを使用することで、製鋼スラグ微粉の表面積が小さくなり、カルシウムフェライトの生成効率が低下すると共に、製鋼スラグがコークス表面へ付着しづらくなった。このため、被覆物の被覆層厚5〜500μmの歩留りが20質量%まで減少し、その結果、発生するNOx量が150ppmまで上昇した。
On the other hand, Comparative Examples 1 and 2 are the results of reducing the amount of slaked lime added and setting the amount of Ca (OH) 2 in the coating to less than 60% by mass of the coating. Thus, since the binder function of the coating was reduced by reducing the amount of Ca (OH) 2 in the coating, the yield of the coating with a coating layer thickness of 5 to 500 μm was 40 regardless of the type of steelmaking slag. As a result, the amount of generated NOx increased to 155 ppm or more.
Moreover, the comparative example 3 is the result of using the steelmaking slag C which contains less than 60 mass% of particle sizes less than 0.5 mm. Thus, by using the steelmaking slag in which the amount of fine powder was reduced, the surface area of the steelmaking slag fine powder was reduced, the production efficiency of calcium ferrite was lowered, and the steelmaking slag became difficult to adhere to the coke surface. For this reason, the yield of the coating layer having a coating layer thickness of 5 to 500 μm was reduced to 20% by mass, and as a result, the amount of NOx generated was increased to 150 ppm.

なお、実施例5、6は、被覆物中の含有水分量を最適範囲(9質量%以上16質量%以下)外に調整した結果であり、被覆物中の含有水分量を最適範囲内に調整した実施例1〜4と比較してNOx濃度が上昇したが、比較例1〜3と比較して、NOxの低減効果は発揮できていた(NOx濃度:145ppm以下)。
また、実施例7、8は、実施例1〜4とは主成分構成及び含有水分量と粒度分布が異なる製鋼スラグBを使用した結果であるが、この製鋼スラグBも、実施例1〜4に示す製鋼スラグAと同様、粒径0.5mm未満を60質量%以上含むため、実施例1〜4と同程度のNOx濃度にできた。
Examples 5 and 6 are the results of adjusting the moisture content in the coating to the outside of the optimal range (9% by mass to 16% by mass), and adjusting the moisture content in the coating to be within the optimal range. The NOx concentration increased as compared with Examples 1 to 4, but the NOx reduction effect was exhibited as compared with Comparative Examples 1 to 3 (NOx concentration: 145 ppm or less).
Moreover, although Example 7, 8 is a result of using steel-making slag B from which a main component structure and a moisture content and a particle size distribution differ from Examples 1-4, this steel-making slag B is also Examples 1-4. In the same manner as in steelmaking slag A shown in FIG. 4, since it contains 60% by mass or more of particles having a particle size of less than 0.5 mm, the NOx concentration was comparable to those in Examples 1 to 4.

以上のことから、本発明の焼結鉱の製造方法を使用することで、固体燃料の表面に製鋼スラグを所定の層厚に付着可能にすると共に、搬送途中においても製鋼スラグを剥離しづらくして、焼結原料の焼結時に発生する排ガス中のNOxを経済的に低減でき、しかも製鋼スラグの有効利用も図れることを確認できた。 From the above, by using the method for producing sintered ore of the present invention, it is possible to attach steelmaking slag to the surface of the solid fuel with a predetermined layer thickness, and it is difficult to peel the steelmaking slag even during the transportation. Thus, it has been confirmed that NOx in the exhaust gas generated during sintering of the sintered raw material can be economically reduced and that the steelmaking slag can be effectively used.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の焼結鉱の製造方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、コークスの表面を覆う被覆物を、製鋼スラグ微粉と消石灰のみで構成した場合について説明したが、これに限定されるものではなく、被覆物中に、例えば、鉄鉱石微粉や固体燃料微粉等が含まれる場合もある。この固体燃料微粉については、NOx低減の観点から、被覆物に含まれないことが好ましいが、製造上、完全に除去することができない。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the sintered ore production method of the present invention is configured by combining a part or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Moreover, in the said embodiment, although the coating which covers the surface of a coke was demonstrated about the case where it comprised only with steel-making slag fine powder and slaked lime, it is not limited to this, For example, iron ore in a coating Stone fine powder, solid fuel fine powder, etc. may be included. The solid fuel fine powder is preferably not included in the coating from the viewpoint of NOx reduction, but cannot be completely removed in production.

10:焼結機、11:貯留槽、12、13:ドラムミキサー(造粒機)、14:貯留槽、15:コークス(被覆用固体燃料)、16:被覆物、17:ダウミキサー、18:パンペレタイザー 10: Sintering machine, 11: Storage tank, 12, 13: Drum mixer (granulating machine), 14: Storage tank, 15: Coke (solid fuel for coating), 16: Coating, 17: Dow mixer, 18: Pampereizer

Claims (4)

鉄鉱石、固体燃料、及び石灰石系原料を含む焼結原料を造粒機で擬似造粒した擬似造粒物と、表面が製鋼スラグ微粉及び消石灰を含む被覆物で覆われた被覆用固体燃料とを混合し、焼結パレット上に装入して焼結する焼結鉱の製造方法において、
前記被覆用固体燃料に、粒径0.5mm未満を60質量%以上含む前記製鋼スラグ微粉及び前記消石灰を添加し、更に水分を添加して混練し造粒することにより、該被覆用固体燃料の表面を前記被覆物で覆うに際し、該被覆物中のCa(OH)量が該被覆物量の60質量%以上となるように、前記消石灰を添加することを特徴とする焼結鉱の製造方法。
Iron ore, solid fuel, and a pseudo Nizo grains prepared by pseudo granulated sintering raw material containing limestone-based material in a granulator, coating the solid surface is covered with a coating comprising a steelmaking slag and hydrated lime In the method for producing sintered ore, which is mixed with fuel , charged onto a sintering pallet and sintered.
Said coating solid fuel, adding the steelmaking slag and the slaked lime containing a particle size less than 0.5 mm 60% by weight or more, further by granulating kneaded with addition of water, of the coating for a solid fuel upon covering the surface with the coating material, as Ca (OH) 2 content of the coating in is more than 60% by weight of the coating amount, method for producing sintered ore, which comprises adding the hydrated lime .
請求項1記載の焼結鉱の製造方法において、前記被覆物中の水分量が9質量%以上16質量%以下となるように、混練中に水分を添加することを特徴とする焼結鉱の製造方法。 The method for producing a sintered ore according to claim 1, wherein water is added during kneading so that the water content in the coating is 9% by mass or more and 16% by mass or less. Production method. 請求項1又は2記載の焼結鉱の製造方法において、前記被覆物の被覆層厚を5μm以上500μm以下とすることを特徴とする焼結鉱の製造方法。 3. The method for producing a sintered ore according to claim 1, wherein the coating layer has a coating layer thickness of 5 μm or more and 500 μm or less. 4. 請求項1〜3のいずれか1項に記載の焼結鉱の製造方法において、前記造粒機の下流側から前記被覆物で覆われた被覆用固体燃料を供給し、該被覆物で覆われた被覆用固体燃料と前記擬似造粒物とを混合することを特徴とする焼結鉱の製造方法。 In the manufacturing method of the sintered ore of any one of Claims 1-3, the solid fuel for coating | covering covered with the said coating | coated is supplied from the downstream of the said granulator, and it is covered with this coating | coated thing. method for producing sintered ore in which the coating solid fuel and said pseudo granulated product characterized Rukoto to adjust mixing was.
JP2011082925A 2011-04-04 2011-04-04 Method for producing sintered ore Expired - Fee Related JP5703913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011082925A JP5703913B2 (en) 2011-04-04 2011-04-04 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011082925A JP5703913B2 (en) 2011-04-04 2011-04-04 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2012219283A JP2012219283A (en) 2012-11-12
JP5703913B2 true JP5703913B2 (en) 2015-04-22

Family

ID=47271135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011082925A Expired - Fee Related JP5703913B2 (en) 2011-04-04 2011-04-04 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP5703913B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107236861A (en) * 2017-05-08 2017-10-10 浙江特力再生资源有限公司 A kind of method that utilization industrial residue produces stainless steel smelting sintering deposit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6295783B2 (en) * 2014-03-31 2018-03-20 新日鐵住金株式会社 Method for producing sintered ore
JP6323297B2 (en) * 2014-10-27 2018-05-16 新日鐵住金株式会社 Pretreatment method of sintering raw materials
JP6288462B2 (en) * 2015-01-08 2018-03-07 Jfeスチール株式会社 Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114302A (en) * 1975-04-02 1976-10-08 Nippon Steel Corp Method of pre-processing sintered material for louering nox
JPS61243132A (en) * 1985-04-19 1986-10-29 Nippon Steel Corp Binder for starting material to be sintered
JPH0816249B2 (en) * 1991-08-14 1996-02-21 日本鋼管株式会社 Pretreatment method in agglomerated ore production
WO2011129388A1 (en) * 2010-04-14 2011-10-20 新日本製鐵株式会社 Process for production of sintered mineral
JP5423611B2 (en) * 2010-08-09 2014-02-19 新日鐵住金株式会社 Method for producing sintered ore
JP5454503B2 (en) * 2011-03-29 2014-03-26 新日鐵住金株式会社 Carbon material reforming equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107236861A (en) * 2017-05-08 2017-10-10 浙江特力再生资源有限公司 A kind of method that utilization industrial residue produces stainless steel smelting sintering deposit

Also Published As

Publication number Publication date
JP2012219283A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
JP4870247B2 (en) Method for producing sintered ore
JP5699567B2 (en) Method for producing sintered ore
JP4887728B2 (en) Granulation method of sintering raw material
JP5703913B2 (en) Method for producing sintered ore
JP5423611B2 (en) Method for producing sintered ore
JP5817629B2 (en) Method for producing sintered ore using finely granulated carbon
JP6459724B2 (en) Method for producing sintered ore
JP2014214334A (en) Method for manufacturing sintered ore
JP2012255189A (en) Reforming apparatus for carbon material
JP2015183289A (en) Method for manufacturing sintered ore
CN110257626B (en) Method for preparing sinter from steel rolling iron scale and prepared sinter
JP6020832B2 (en) Sintering raw material manufacturing method
JP5598439B2 (en) Method for producing sintered ore
JP2009270193A (en) Method for producing granular metallic iron
JP2000256731A (en) Production of calcium ferrite for refining molten iron
JP2012092384A (en) Method of manufacturing sintered ore
JP6020840B2 (en) Sintering raw material manufacturing method
JP5733075B2 (en) Method for producing sintered ore
JP5995005B2 (en) Sintering raw material manufacturing method
JP6004191B2 (en) Sintering raw material manufacturing method
JP2009114485A (en) Method for manufacturing sintered ore
JP6028554B2 (en) Method for producing sintered ore
JP7187971B2 (en) Method for producing sintered ore
JP5831397B2 (en) Method for producing sintered ore
JP2009167466A (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R151 Written notification of patent or utility model registration

Ref document number: 5703913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees