JP7187971B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP7187971B2
JP7187971B2 JP2018199832A JP2018199832A JP7187971B2 JP 7187971 B2 JP7187971 B2 JP 7187971B2 JP 2018199832 A JP2018199832 A JP 2018199832A JP 2018199832 A JP2018199832 A JP 2018199832A JP 7187971 B2 JP7187971 B2 JP 7187971B2
Authority
JP
Japan
Prior art keywords
mgo
mass
sintered ore
carbonaceous
containing auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018199832A
Other languages
Japanese (ja)
Other versions
JP2020066770A (en
Inventor
英昭 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018199832A priority Critical patent/JP7187971B2/en
Publication of JP2020066770A publication Critical patent/JP2020066770A/en
Application granted granted Critical
Publication of JP7187971B2 publication Critical patent/JP7187971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、焼結鉱の製造方法に関する。 The present invention relates to a method for producing sintered ore.

焼結鉱の製造方法は概略以下の通りである。まず、焼結鉱の原料となる焼結用原料を所定の比率で配合して配合原料とした後、水とともに造粒する。ここに、焼結用原料は、主原料である鉄含有原料、焼結反応及び成分調整のために必要な副原料、熱源である炭材(固体燃料)、及び返鉱等で構成される。鉄含有原料は、例えば粉鉱石、微粉鉱石等の鉄鉱石、及び製鉄ダスト(製鉄ダスト、製鋼ダスト、スケール等)等である。副原料は、石灰石、生石灰、消石灰、含MgO副原料(蛇紋岩、カンラン岩、ドロマイト等)、転炉スラグ、及び珪石等である。生石灰および消石灰は、造粒促進機能を有するので、以下、造粒材と呼ぶ。炭材は、例えば粉コークス及び無煙炭等である。 The method for producing sintered ore is outlined below. First, sintering raw materials, which are raw materials for sintered ore, are blended at a predetermined ratio to form a blended raw material, which is then granulated with water. Here, the raw material for sintering is composed of an iron-containing raw material as a main raw material, auxiliary raw materials necessary for sintering reaction and component adjustment, carbonaceous material (solid fuel) as a heat source, return ore, and the like. Iron-containing raw materials are, for example, iron ore such as fine ore and fine ore, ironmaking dust (ironmaking dust, steelmaking dust, scale, etc.), and the like. The auxiliary materials include limestone, quicklime, slaked lime, MgO-containing auxiliary materials (serpentinite, peridotite, dolomite, etc.), converter slag, silica stone, and the like. Since quicklime and slaked lime have a function of promoting granulation, they are hereinafter referred to as granulating agents. Carbonaceous materials are, for example, coke dust and anthracite.

ついで、配合原料の造粒物を焼結機の焼結パレットに層状に装入する。ついで、原料充填層の表面から原料充填層中の固体燃料に着火し、原料充填層の上から下の厚み方向に吸引通風する。これによって、原料充填層の燃焼ゾーンを順次下層側に移行させ、焼結反応を進行させる。焼成後の焼結パレット内の焼結ケーキは高炉用焼結鉱として適した所定粒度となるように解砕、整粒される。以上の工程により、焼結鉱が作製される。 Next, the granules of the blended raw material are charged in layers on a sintering pallet of a sintering machine. Next, the solid fuel in the raw material packed bed is ignited from the surface of the raw material packed bed, and the raw material packed bed is sucked and ventilated from the top to the bottom in the thickness direction. As a result, the combustion zone of the raw material packed bed is sequentially shifted to the lower layer side, and the sintering reaction proceeds. The sintered cake in the sintering pallet after sintering is pulverized and sized so as to have a predetermined particle size suitable for blast furnace sintered ore. A sintered ore is produced by the above process.

ところで、焼結鉱を製造する焼結機からは、燃料として利用される炭材由来の窒素酸化物(NO)が発生するため、その削減は重要な課題である。特許文献1、2には、窒素酸化物の削減を目的とした技術が開示されている。具体的には、特許文献1、2では、Ca系物質を含む被覆材で炭材を被覆する。特許文献1、2では、Ca系物質の好ましい例として水酸化カルシウムが挙げられている。 By the way, a sintering machine for producing sintered ore generates carbonaceous-derived nitrogen oxides (NO x ) that are used as a fuel, and the reduction thereof is an important issue. Patent Documents 1 and 2 disclose techniques aimed at reducing nitrogen oxides. Specifically, in Patent Documents 1 and 2, a carbonaceous material is coated with a coating material containing a Ca-based substance. Patent Documents 1 and 2 mention calcium hydroxide as a preferable example of the Ca-based substance.

特許第4870247号Patent No. 4870247 特開2015-86419号公報JP 2015-86419 A 特開2016-125125号公報JP 2016-125125 A

しかし、Ca系物質を含む被覆材で炭材を被覆する場合、窒素酸化物を十分に削減するためには、比較的多量の被覆材が必要であった。例えば、特許文献1には、炭材に対する被覆材の質量%を10~40質量%とすることで窒素酸化物の発生をより抑えることができることが記載されている。 However, when the carbonaceous material is coated with a coating material containing a Ca-based substance, a relatively large amount of the coating material is required in order to sufficiently reduce nitrogen oxides. For example, Patent Document 1 describes that the generation of nitrogen oxides can be further suppressed by setting the mass % of the covering material to the carbon material to 10 to 40 mass %.

ここで、特許文献1、2に記載された被覆材は、上述した造粒材に相当するものである。特許文献1、2では、炭材を多量の被覆材で被覆するので、造粒材の使用量が多くなる。つまり、焼結用原料中の炭材の一部または全部を特許文献1、2に記載された被覆炭材(被覆材で被覆された炭材)で単純に置換した場合、被覆炭材の分だけ配合原料全体の造粒材が多くなる。つまり、造粒材の使用量が増加するので、コスト(ランニングコスト、設備コスト)が増加する。 Here, the coating materials described in Patent Documents 1 and 2 correspond to the granulating material described above. In Patent Documents 1 and 2, since the carbonaceous material is covered with a large amount of the coating material, the amount of the granulating material used increases. That is, when part or all of the carbon material in the raw material for sintering is simply replaced with the coated carbon material (carbon material coated with the coating material) described in Patent Documents 1 and 2, the coated carbon material The amount of granulating material in the entire blended raw material increases. That is, since the amount of granulating material used increases, costs (running costs, facility costs) increase.

この問題を解決するための方法として、造粒材の使用量を一定とすることが挙げられる。つまり、被覆材の分だけ元の焼結用原料中の造粒材を減らす。しかし、この方法では、造粒材の多くが被覆材に使用されることになるので、残りの原料を造粒する際の造粒材の割合が減少し、配合原料全体の造粒性が低下する。すなわち、造粒物の粒度が小さくなる。このため、原料充填層の通気性が低下し、ひいては、焼結鉱の生産性が低下する可能性があった。 One way to solve this problem is to use a constant amount of granulating material. In other words, the amount of granulated material in the original raw material for sintering is reduced by the amount of the coating material. However, in this method, most of the granulating material is used for the coating material, so the ratio of the granulating material when granulating the remaining raw materials is reduced, and the granulation properties of the entire blended raw material are reduced. do. That is, the particle size of the granules becomes smaller. For this reason, there is a possibility that the permeability of the raw material packed bed is lowered, and that the productivity of the sintered ore is lowered.

一方、特許文献3には、MgO含有粉及び鉄鉱石粉を含む被覆材で炭材を被覆する技術が開示されている。しかし、この技術では、被覆材に占めるMgO含有粉の割合が非常に低く(1~3質量%)、窒素酸化物を十分に削減することができなかった。 On the other hand, Patent Document 3 discloses a technique of coating a carbonaceous material with a coating material containing MgO-containing powder and iron ore powder. However, with this technique, the proportion of MgO-containing powder in the coating material is very low (1 to 3% by mass), and nitrogen oxides could not be sufficiently reduced.

このように、焼結鉱の生産性を維持しつつ、窒素酸化物を削減することができる技術は未だ提案されていなかった。 Thus, no technology has been proposed yet that can reduce nitrogen oxides while maintaining the productivity of sintered ore.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、焼結鉱の生産性を維持しつつ、窒素酸化物を削減することが可能な、新規かつ改良された焼結鉱の製造方法を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to reduce nitrogen oxides while maintaining the productivity of sintered ore. To provide an improved method for producing sintered ore.

上記課題を解決するために、本発明のある観点によれば、覆材で炭材の表面の少なくとも一部を被覆するために、被覆材と炭材とを造粒する炭材処理工程と、被覆材で表面の少なくとも一部が被覆された被覆炭材と他の焼結用原料とを配合した後造粒することで配合原料の造粒物を作製する造粒物作製工程と、配合原料の造粒物を焼成することで、焼結鉱を作製する焼結鉱作製工程と、を含み、被覆材は含MgO副原料を被覆材の総質量に対し90質量%以上含むものであり、被覆材に含まれる含MgO副原料の質量は、炭材に対して5質量%以上10質量%未満であることを特徴とする、焼結鉱の製造方法が提供される。 In order to solve the above problems, according to one aspect of the present invention, a carbon material treatment step of granulating the coating material and the carbon material in order to coat at least part of the surface of the carbon material with the coating material. , a granule preparation step of preparing granules of the blended raw materials by blending the coated carbon material having at least a portion of the surface coated with the coating material and other raw materials for sintering and then granulating them; A sintered ore preparation step of preparing sintered ore by firing granules of the raw material , and the coating material contains 90% by mass or more of the MgO-containing auxiliary raw material with respect to the total mass of the coating material. There is provided a method for producing sintered ore, wherein the mass of the MgO-containing auxiliary raw material contained in the coating material is 5% by mass or more and less than 10% by mass with respect to the carbonaceous material .

ここで、炭材処理工程では、含MgO副原料のみで構成される被覆材と炭材とを造粒してもよい。 Here, in the carbon material treatment step, the coating material and the carbon material, which are composed only of the MgO-containing auxiliary raw material, may be granulated.

さらに、含MgO副原料は、カンラン岩及び蛇紋岩のいずれか一種以上であってもよい。Furthermore, the MgO-containing auxiliary material may be one or more of peridotite and serpentinite.

また、含MgO副原料の粒径は250μm以下であってもよい。
Also, the particle size of the MgO-containing auxiliary material may be 250 μm or less .

以上説明したように本発明によれば、炭材の燃焼開始~燃焼中期の温度域で分解しにくい含MgO副原料で炭材を被覆する。このため、炭材の燃焼開始~燃焼中期の温度域で炭材を鉄鉱石から安定して隔離することができ、ひいては、窒素酸化物を削減することができる。さらに、含MgO副原料は、Ca系物質よりも炭材の燃焼開始~燃焼中期の温度域で分解しにくいので、少量であっても炭材を鉄鉱石から隔離することができる。つまり、少量であっても窒素酸化物を削減することができる。したがって、焼結鉱の生産性を維持することができる。 As described above, according to the present invention, the carbonaceous material is coated with the MgO-containing auxiliary material that is difficult to decompose in the temperature range from the start of combustion to the middle period of combustion of the carbonaceous material. Therefore, the carbonaceous material can be stably isolated from the iron ore in the temperature range from the start of combustion of the carbonaceous material to the middle period of combustion, and as a result, nitrogen oxides can be reduced. Furthermore, since the MgO-containing auxiliary material is more difficult to decompose than the Ca-based material in the temperature range from the start of combustion to the middle period of combustion of the carbonaceous material, it is possible to separate the carbonaceous material from the iron ore even if the amount is small. In other words, nitrogen oxides can be reduced even if the amount is small. Therefore, the productivity of sintered ore can be maintained.

本発明者が行った基礎実験の結果を示すグラフである。It is a graph which shows the result of the basic experiment which this inventor performed.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.

<1.本発明者による検討>
本発明者は、窒素酸化物の発生原因を明確にするために、示差熱天秤-質量分析計(TG/DTA-MS)を用いた基礎実験を行った。基礎実験の概要は以下のとおりである。まず、試験サンプル1として、粉コークス13.5mg、試験サンプル2として、粉コークス13.5mg及びFe試薬7.4mgの混合物を準備した。各サンプルの粒径は250μm以下とした。ついで、各試験サンプルをTG/DTA-MS(ブルカー・エイエックスエス社製/TG-DTA2000SA+MS-9610)にセットし、Air50ml/min流通下において50℃/minの昇温速度で1400℃まで試験サンプルを昇温した。そして、昇温中に発生したガスの一部を四重極型質量分析計にてサンプリングし、燃焼時に発生した質量数30のガス(主としてNO)をモニタリングした。すなわち、窒素酸化物の発生量をモニタリングした。図1にその結果を示す。
<1. Examination by the present inventor>
The present inventor conducted a basic experiment using a differential thermal balance-mass spectrometer (TG/DTA-MS) in order to clarify the cause of the generation of nitrogen oxides. The outline of the basic experiment is as follows. First, as test sample 1, a mixture of 13.5 mg of coke breeze and as test sample 2, a mixture of 13.5 mg of coke breeze and 7.4 mg of Fe 2 O 3 reagent was prepared. The grain size of each sample was 250 μm or less. Then, each test sample is set in TG/DTA-MS (manufactured by Bruker AXS / TG-DTA2000SA + MS-9610), and the test sample is heated to 1400 ° C. at a heating rate of 50 ° C./min under air flow of 50 ml / min. was heated. A part of the gas generated during the temperature rise was sampled with a quadrupole mass spectrometer, and the gas with a mass number of 30 (mainly NO) generated during combustion was monitored. That is, the amount of nitrogen oxides generated was monitored. The results are shown in FIG.

図1の横軸は試験サンプルの温度を示し、縦軸は試験サンプルの質量減少量(TG質量減少)(mg)または質量数30のガスの検出強度(Intensity)(A)を示す。検出強度が強いほど、質量数30のガスの発生量が多いことを示す。グラフL1は、試験サンプル1の温度と質量減少量との相関を示し、グラフL2は、試験サンプル2の温度と質量減少量との相関を示す。グラフL3は、試験サンプル1の温度と質量数30のガスの検出強度との相関を示し、グラフL4は、試験サンプル2の温度と質量数30のガスの検出強度との相関を示す。 The horizontal axis of FIG. 1 indicates the temperature of the test sample, and the vertical axis indicates the amount of mass reduction (TG mass reduction) (mg) of the test sample or the detection intensity (Intensity) (A) of the gas with a mass number of 30. A stronger detection intensity indicates a larger amount of gas with a mass number of 30 generated. A graph L1 shows the correlation between the temperature of the test sample 1 and the amount of mass reduction, and the graph L2 shows the correlation between the temperature of the test sample 2 and the amount of mass reduction. A graph L3 shows the correlation between the temperature of the test sample 1 and the detected intensity of the gas with a mass number of 30, and the graph L4 shows the correlation between the temperature of the test sample 2 and the detected intensity of the gas with a mass number of 30.

図1に示すように、約550℃から試験サンプルの質量減少(すなわち燃焼)が始まる。これと同時に、質量数30のガスが発生し始めた。炭材の燃焼後期(焼結用原料の溶融開始温度超、ここでは950℃超)では、試験サンプル2(Fe添加有り)からの窒素酸化物の発生量が試験サンプル1からの窒素酸化物の発生量よりも少なくなっている。これは、従来からよく言われるように、酸化鉄の存在で窒素酸化物が削減されることを示している。 As shown in Figure 1, the test sample begins to lose mass (ie, burn) at about 550°C. At the same time, a gas with a mass number of 30 began to be generated. In the latter stage of combustion of the carbonaceous material (above the melting start temperature of the raw material for sintering, here above 950 ° C.), the amount of nitrogen oxides generated from test sample 2 (with Fe 2 O 3 added) is less than that from test sample 1. It is less than the amount of oxides generated. This indicates that the presence of iron oxide reduces nitrogen oxides, as has often been said.

一方、炭材の燃焼開始(質量減少開始後=約550℃)~燃焼中期(約950℃)までの温度域(概ね焼結用原料の溶融開始温度以下)では、試験サンプル2からの窒素酸化物の発生量が試験サンプル1からの窒素酸化物の発生量よりも大幅に増加している。この結果、炭材の燃焼開始~燃焼中期の温度域では、粉コークスにFeが共存することで窒素酸化物が大幅に増加することが新たに判明した。 On the other hand, in the temperature range from the start of combustion of the carbon material (after mass reduction = about 550 ° C.) to the middle period of combustion (about 950 ° C.) (generally below the melting start temperature of the raw material for sintering), nitrogen oxidation from test sample 2 The amount of nitrogen oxides generated from test sample 1 is greatly increased. As a result, it was newly found that the coexistence of Fe 2 O 3 in coke breeze significantly increases nitrogen oxides in the temperature range from the start of combustion to the middle period of combustion of the carbonaceous material.

原料充填層内では、炭材はFeを主成分とする鉄鉱石と常に接触した状態であり、炭材の燃焼場にはFeが存在していることが普通である。上記の知見は、炭材の燃焼開始~燃焼中期の温度域で炭材を鉄鉱石と可能な限り接触しないようにすれば、さらに窒素酸化物を削減することができることを示している。 In the raw material packed bed, the carbonaceous material is always in contact with iron ore containing Fe 2 O 3 as a main component, and Fe 2 O 3 is usually present in the combustion field of the carbonaceous material. The above findings show that nitrogen oxides can be further reduced by avoiding contact between the carbonaceous material and the iron ore as much as possible in the temperature range from the start of combustion of the carbonaceous material to the middle period of combustion.

そこで、本発明者は、炭材の燃焼開始~燃焼中期の温度域で炭材を鉄鉱石から隔離可能な技術、具体的には炭材の被覆材について鋭意検討した。被覆材としては様々な物質が考えられるが、通常の焼結鉱の製造に極力影響を及ぼすことのないよう、また焼結鉱の使用先である高炉の操業を妨げることのないよう、焼結用原料(配合原料)として通常使用される副原料を使用することが望ましい。 Therefore, the present inventors diligently studied a technology capable of isolating the carbonaceous material from the iron ore in the temperature range from the start of combustion of the carbonaceous material to the middle period of combustion thereof, specifically, a coating material for the carbonaceous material. Various substances can be considered as coating materials, but sintering should be done so as not to affect the normal production of sintered ore as much as possible and not to interfere with the operation of the blast furnace where the sintered ore is used. It is desirable to use auxiliary raw materials that are commonly used as raw materials for use (raw materials for blending).

被覆材としてCa系物質を使用することは特許文献1、2に開示されている。特許文献1、2では、Ca系物質の中でも特に水酸化カルシウムを用いることが望ましいと述べられている。しかし、上述したように、窒素酸化物を十分に削減するためには、比較的多くのCa系物質で炭材を被覆する必要がある。この理由の1つとして以下のものが考えられる。すなわち、特許文献1、2で好ましいCa系物質として挙げられる水酸化カルシウムは、比較的低温(400~600℃)で分解し、HOを放出する。水酸化カルシウムが分解する温度域は、炭材の燃焼開始~燃焼中期の温度域に重複する。 Patent Documents 1 and 2 disclose the use of a Ca-based substance as a coating material. Patent Documents 1 and 2 state that it is particularly desirable to use calcium hydroxide among Ca-based substances. However, as described above, in order to sufficiently reduce nitrogen oxides, it is necessary to coat the carbonaceous material with a relatively large amount of Ca-based material. One of the reasons for this is as follows. That is, calcium hydroxide, which is cited as a preferable Ca-based substance in Patent Documents 1 and 2, decomposes at a relatively low temperature (400 to 600° C.) to release H 2 O. The temperature range in which calcium hydroxide decomposes overlaps with the temperature range from the start of combustion to the middle period of combustion of carbonaceous material.

したがって、水酸化カルシウムで炭材を被覆した場合、当初緻密であった炭材周囲の被覆層が炭材の燃焼開始~燃焼中期の温度域で多孔質となり、また被覆層の一部が分解時の衝撃で剥離する。このため、炭材の燃焼開始~燃焼中期の温度域において炭材とその周囲に存在する鉄鉱石との接触を妨げる(言い換えれば、これらを隔離する)効果はそれほど大きくないものと推定される。このため、窒素酸化物を十分に削減するためには、比較的多くのCa系物質で炭材を被覆する必要があり、結果として副原料の使用量が多くなる。この問題を解決するための方法として、副原料の使用量を一定とする方法が挙げられる。しかし、この方法では、造粒材として使用できる副原料が減少するので、焼結鉱の生産性が低下する可能性がある。特許文献1、2には、Ca系物質以外の被覆材は開示されていない。 Therefore, when the carbonaceous material is coated with calcium hydroxide, the initially dense coating layer around the carbonaceous material becomes porous in the temperature range from the start of combustion to the middle period of combustion of the carbonaceous material, and part of the coating layer decomposes. It peels off with the impact of Therefore, it is presumed that the effect of preventing contact between the carbonaceous material and the iron ore existing around it (in other words, isolating them) in the temperature range from the start of combustion of the carbonaceous material to the middle period of combustion is not so great. Therefore, in order to sufficiently reduce nitrogen oxides, it is necessary to coat the carbonaceous material with a relatively large amount of Ca-based material, resulting in an increase in the amount of auxiliary materials used. As a method for solving this problem, there is a method in which the amount of the auxiliary raw material used is kept constant. However, this method reduces the amount of auxiliary raw materials that can be used as a granulating material, so there is a possibility that the productivity of sintered ore will decrease. Patent Documents 1 and 2 do not disclose coating materials other than Ca-based substances.

そこで、本発明者は、被覆材として新たにMg系の副原料(含MgO副原料)を使用することに着想した。そして、実際に焼結実験(実施例で述べる)を行って、その効果を確認し、本実施形態に係る焼結鉱の製造方法を完成させた。なお、含MgO副原料以外の物質、例えばAl系、SiO系物質などで炭材を被覆することも一応可能である。しかし、これらの方法では、余分なスラグ成分を焼結鉱に新たに導入することになり、高炉スラグの増大を招くので好ましくない。以下、本実施形態について詳細に説明する。 Therefore, the present inventors came up with the idea of using a new Mg-based auxiliary raw material (MgO-containing auxiliary raw material) as a coating material. Then, a sintering experiment (described in Examples) was actually conducted to confirm the effect, and the method for producing sintered ore according to the present embodiment was completed. It is also possible to cover the carbonaceous material with substances other than the MgO-containing auxiliary material, such as Al 2 O 3 -based and SiO 2 -based substances. However, these methods are not preferable because they newly introduce an extra slag component into the sintered ore, leading to an increase in blast furnace slag. The present embodiment will be described in detail below.

<2.含MgO副原料>
本実施形態に係る焼結鉱の製造方法では、炭材の表面に含MgO副原料を含む被覆材を被覆する。そこで、含MgO副原料について説明する。含MgO副原料は、焼結用原料として使用される副原料うち、MgO成分を含むものを意味する。
<2. MgO-containing auxiliary raw material>
In the method for producing sintered ore according to the present embodiment, the surface of the carbonaceous material is coated with the coating material containing the MgO-containing auxiliary raw material. Therefore, the MgO-containing auxiliary material will be explained. The MgO-containing auxiliary raw material means one containing an MgO component among the auxiliary raw materials used as raw materials for sintering.

上述したように、炭材の燃焼場では、炭材の燃焼開始~燃焼中期の温度域で多くの窒素酸化物が発生する。本発明者が含MgO副原料と従来被覆材として使用されていたCa系物質とを比較したところ、含MgO副原料は炭材の燃焼開始~燃焼中期の温度域で分解しにくいことが判明した。したがって、含MgO副原料で炭材を被覆した場合、炭材の燃焼開始~燃焼中期の温度域で炭材を鉄鉱石から安定して隔離することができ、ひいては、窒素酸化物をさらに削減することができる。さらに、含MgO副原料は、Ca系物質よりも炭材の燃焼開始~燃焼中期の温度域で分解しにくいので、少量であっても炭材を鉄鉱石から隔離することができる。つまり、少量であっても窒素酸化物を削減することができる。したがって、炭材を被覆材で被覆したとしても、副原料の使用量の増加を抑えることができるので、焼成時に炭材を十分に燃焼させることができる。したがって、焼結鉱の生産性を維持することができる。 As described above, in the carbon material combustion field, a large amount of nitrogen oxides are generated in the temperature range from the start of carbon material combustion to the middle period of combustion. When the present inventor compared the MgO-containing auxiliary raw material with a Ca-based material conventionally used as a coating material, it was found that the MgO-containing auxiliary raw material is difficult to decompose in the temperature range from the start of carbon material combustion to the middle period of combustion. . Therefore, when the carbonaceous material is coated with the MgO-containing auxiliary raw material, the carbonaceous material can be stably isolated from the iron ore in the temperature range from the start of combustion of the carbonaceous material to the middle period of combustion of the carbonaceous material, thereby further reducing nitrogen oxides. be able to. Furthermore, since the MgO-containing auxiliary material is more difficult to decompose than the Ca-based material in the temperature range from the start of combustion to the middle period of combustion of the carbonaceous material, it is possible to separate the carbonaceous material from the iron ore even if the amount is small. In other words, nitrogen oxides can be reduced even if the amount is small. Therefore, even if the carbonaceous material is coated with the coating material, it is possible to suppress an increase in the amount of auxiliary raw material used, so that the carbonaceous material can be sufficiently burned during firing. Therefore, the productivity of sintered ore can be maintained.

本実施形態で使用可能な含MgO副原料は特に制限されず、焼結用原料として使用されるものであればよい。含MgO副原料としては、例えば、ドロマイト、マグネサイト、ブルーサイト、カンラン岩、及び蛇紋岩等が挙げられる。これらを単独で使用してもよいし、混合して使用してもよい。 The MgO-containing auxiliary material that can be used in this embodiment is not particularly limited as long as it can be used as a raw material for sintering. Examples of MgO-containing auxiliary materials include dolomite, magnesite, brucite, peridotite, and serpentinite. These may be used alone or in combination.

上記の含MgO副原料のうち、900℃灼熱減量(LOI)が15質量%以下である含MgO副原料を使用することが好ましい。ここで、LOIは、JIS-A-6206に準拠した方法で測定した(加熱温度700±25℃)。LOIが15質量%以下である含MgO副原料としては、カンラン岩及び蛇紋岩が挙げられる。つまり、本実施形態では、カンラン岩及び蛇紋岩のいずれか1種以上を使用することが好ましい。カンラン岩及び蛇紋岩は、炭材の燃焼開始~燃焼中期の温度域で特に分解しにくい。このため、カンラン岩及び蛇紋岩のいずれか1種以上で炭材を被覆することで、窒素酸化物をさらに削減することができる。以下の表1にいくつかの含MgO副原料の分析値を示す。 Among the above MgO-containing auxiliary materials, it is preferable to use an MgO-containing auxiliary material having a loss on ignition (LOI) at 900° C. of 15% by mass or less. Here, LOI was measured by a method conforming to JIS-A-6206 (heating temperature 700±25° C.). Examples of the MgO-containing auxiliary material having an LOI of 15% by mass or less include peridotite and serpentinite. That is, in this embodiment, it is preferable to use at least one of peridotite and serpentinite. Peridotite and serpentinite are particularly difficult to decompose in the temperature range from the start of burning of carbonaceous materials to the middle stage of burning. Therefore, by coating the carbonaceous material with one or more of peridotite and serpentinite, nitrogen oxides can be further reduced. Table 1 below shows analytical values for some MgO-containing auxiliary materials.

Figure 0007187971000001
Figure 0007187971000001

表1に示される通り、カンラン岩及び蛇紋岩のLOIは15質量%以下となっているのに対し、ドロマイトのLOIは15質量%を超えている。 As shown in Table 1, the LOI of peridotite and serpentinite is 15% by mass or less, while the LOI of dolomite exceeds 15% by mass.

<3.焼結鉱の製造方法>
つぎに、本実施形態に係る焼結鉱の製造方法について説明する。焼結鉱の製造方法は、炭材処理工程、造粒物作製工程、及び焼結鉱作製工程を含む。
<3. Method for producing sintered ore>
Next, a method for producing sintered ore according to the present embodiment will be described. The method for producing sintered ore includes a carbon material treatment step, a granule preparation step, and a sintered ore preparation step.

(3-1.炭材処理工程)
炭材処理工程では、含MgO副原料を90質量%以上含む被覆材炭材の表面の少なくとも一部を被覆するために、被覆材と炭材とを造粒する工程である。これにより、焼結用原料の焼成時、特に炭材の燃焼開始~燃焼中期で炭材を鉄鉱石から安定して隔離することができ、ひいては、窒素酸化物を削減することができる。なお、被覆材による被覆には、炭材の表面の全体を被覆材で被覆することの他、炭材の表面の一部のみに被覆材が付着することも含まれる。つまり、被覆材が炭材の表面の少なくとも一部を被覆することも含まれる。
(3-1. Carbon material treatment process)
The carbon material treatment step is a step of granulating the coating material and the carbon material in order to cover at least a part of the surface of the coating material carbon material containing 90% by mass or more of the MgO-containing auxiliary raw material. As a result, the carbonaceous material can be stably isolated from the iron ore during the firing of the raw material for sintering, particularly from the start of combustion of the carbonaceous material to the middle period of combustion of the carbonaceous material, thereby reducing nitrogen oxides. The coating with the coating material includes coating the entire surface of the carbon material with the coating material, as well as attaching the coating material only to a part of the surface of the carbon material. That is, covering at least part of the surface of the carbonaceous material with the covering material is also included.

炭材の種類は特に制限されず、焼結用原料として使用される炭材を特に制限なく使用することができる。炭材は、例えば粉コークス及び無煙炭等である。これらを単独又は混合して使用すればよい。炭材の粒径も特に制限されず、焼結用原料として使用される炭材の一般的な粒径(例えば10mm以下)であってもよい。なお、本実施形態における粒径は篩の目開きで区分される。例えば、目開き10mmの篩から落下した物質の粒径は10mm以下であり、篩に残った物質の粒径は10mm超である。 The type of carbonaceous material is not particularly limited, and any carbonaceous material used as a raw material for sintering can be used without particular limitation. Carbonaceous materials are, for example, coke dust and anthracite. These may be used singly or in combination. The particle size of the carbonaceous material is also not particularly limited, and may be a general particle size (for example, 10 mm or less) of carbonaceous material used as a raw material for sintering. It should be noted that the particle size in the present embodiment is classified by the opening of the sieve. For example, the particle size of a substance dropped from a sieve with an opening of 10 mm is 10 mm or less, and the particle size of a substance remaining on the sieve is greater than 10 mm.

含MgO副原料は、被覆材に90質量%(被覆材の総質量に対する質量%)以上含まれていることが必要である。これにより、炭材を鉄鉱石から十分に隔離することができる。被覆材は含MgO副原料のみで構成されていることが好ましい。この場合、より安定して炭材を鉄鉱石から隔離することができる。 The MgO-containing auxiliary material must be contained in the coating material in an amount of 90% by mass or more (% by mass with respect to the total mass of the coating material). This allows the carbonaceous material to be sufficiently isolated from the iron ore. It is preferable that the coating material is composed only of the MgO-containing auxiliary raw material. In this case, the carbonaceous material can be more stably isolated from the iron ore.

被覆材に含MgO副原料以外の物質が含まれる場合、通常の焼結鉱の製造に極力影響を及ぼすことのないよう、また焼結鉱の使用先である高炉の操業を妨げることのないよう、当該物質は焼結用原料を構成するものであることが好ましい。当該物質は、鉄鉱石以外の原料であることがより好ましい。被覆材に鉄鉱石が含まれている場合、炭材に鉄鉱石が接触しやすくなるからである。 If the coating material contains substances other than MgO-containing auxiliary raw materials, it should not affect the production of ordinary sintered ore as much as possible, and should not interfere with the operation of the blast furnace where the sintered ore is used. Preferably, the substance constitutes a raw material for sintering. More preferably, the substance is a raw material other than iron ore. This is because when the covering material contains iron ore, the iron ore tends to come into contact with the carbonaceous material.

上述したように、含MgO副原料は分解しにくいので、少量であっても炭材を鉄鉱石から十分に隔離することができる。このため、副原料の使用量の増加を抑えることができ、ひいては、焼結鉱の生産性が維持される。具体的には、被覆材に含まれる含MgO副原料の質量は、炭材に対して10質量%未満であることが好ましい。この場合、窒素酸化物を削減するだけでなく、焼結鉱の生産性をより確実に維持することができる。LOIが15質量%以下となる含MgO副原料を使用した場合、窒素酸化物が特に削減される。 As described above, since the MgO-containing auxiliary material is difficult to decompose, even a small amount can sufficiently separate the carbon material from the iron ore. For this reason, it is possible to suppress an increase in the amount of the auxiliary raw material used, thereby maintaining the productivity of the sintered ore. Specifically, the mass of the MgO-containing auxiliary material contained in the coating material is preferably less than 10% by mass with respect to the carbonaceous material. In this case, it is possible not only to reduce nitrogen oxides, but also to more reliably maintain the productivity of sintered ore. Nitrogen oxides are particularly reduced when a MgO-containing auxiliary material with an LOI of 15% by mass or less is used.

含MgO副原料の粒径は特に制限されないが、炭材の粒径よりも小さいことが好ましい。炭材表面に含MgO副原料を効率的に被覆させることができるからである。例えば、含MgO副原料の粒径は250μm以下であってもよい。この場合、炭材の表面に空隙をなるべく生じないように含MgO副原料を被覆させることができる。 Although the particle size of the MgO-containing auxiliary material is not particularly limited, it is preferably smaller than the particle size of the carbonaceous material. This is because the surface of the carbonaceous material can be efficiently coated with the MgO-containing auxiliary material. For example, the particle size of the MgO-containing auxiliary material may be 250 μm or less. In this case, the surface of the carbonaceous material can be coated with the MgO-containing auxiliary material so as to minimize voids.

炭材及び含MgO副原料の造粒はドラムミキサーやパンペレタイザーなどの造粒機を単独または直列で使用して行えばよい。例えば、混練機にて炭材、含MgO副原料を水などのバインダーとともに混練した後、混練物をこれらの造粒機に投入して造粒を行えばよい。 Pelletization of the carbonaceous material and the MgO-containing auxiliary raw material may be performed by using a granulator such as a drum mixer or a pan pelletizer alone or in series. For example, after the carbonaceous material and the MgO-containing auxiliary raw material are kneaded together with a binder such as water in a kneader, the kneaded material may be fed into these granulators for granulation.

(3-2.造粒物作製工程)
造粒物作製工程では、被覆材で表面の少なくとも一部が被覆された被覆炭材と他の焼結用原料とを配合した後造粒することで配合原料の造粒物を作製する。他の焼結用原料は、鉄含有原料、副原料、及び返鉱等で構成される。鉄含有原料は、例えば粉鉱石、微粉鉱石等の鉄鉱石、及び製鉄ダスト(製鉄ダスト、製鋼ダスト、スケール等)等である。副原料は、石灰石、上述した含MgO副原料、転炉スラグ、及び珪石等である。
(3-2. Granule preparation step)
In the granule production step, a granule of the blended raw material is produced by blending the coated carbonaceous material having at least a portion of the surface coated with the coating material and another raw material for sintering and then granulating the mixture. Other raw materials for sintering are composed of iron-containing raw materials, auxiliary raw materials, return ores, and the like. Iron-containing raw materials are, for example, iron ore such as fine ore and fine ore, ironmaking dust (ironmaking dust, steelmaking dust, scale, etc.), and the like. The auxiliary materials are limestone, the above-mentioned MgO-containing auxiliary materials, converter slag, silica stone, and the like.

他の焼結用原料と共に造粒される炭材は、全て本実施形態に係る被覆炭材であることが好ましい。この場合、窒素酸化物の削減効果が最大となる。被覆炭材の一部を通常の炭材(すなわち、被覆材で被覆されていない炭材)としてもよいが、被覆炭材の使用量があまりに少ないと窒素酸化物の低減効果が十分に得られない可能性がある。このため、被覆炭材の使用量は、全炭材の10質量%以上であることが好ましい。 All of the carbonaceous materials granulated together with other raw materials for sintering are preferably coated carbonaceous materials according to the present embodiment. In this case, the effect of reducing nitrogen oxides is maximized. A part of the coated carbon material may be a normal carbon material (that is, a carbon material not coated with a coating material), but if the amount of the coated carbon material used is too small, a sufficient effect of reducing nitrogen oxides cannot be obtained. may not. Therefore, the amount of the coated carbonaceous material used is preferably 10% by mass or more of the total carbonaceous material.

なお、被覆材に含まれる含MgO副原料の質量は少ないので、他の焼結用原料と造粒される炭材を単純に本実施形態に係る被覆炭材に置き換えても、造粒物中の副原料の質量はそれほど増加しない。したがって、焼結鉱の生産性にほとんど影響を与えない。 In addition, since the mass of the MgO-containing auxiliary raw material contained in the coating material is small, even if the carbon material to be granulated with other sintering raw materials is simply replaced with the coated carbon material according to the present embodiment, The mass of secondary raw materials in Therefore, it hardly affects the productivity of sintered ore.

また、他の焼結用原料中の副原料を被覆材中の含MgO副原料の分だけ減少させてもよい。この場合であっても、多くの副原料を造粒材として使用できるので、焼結鉱の生産性は維持される。 In addition, the amount of auxiliary materials in other raw materials for sintering may be reduced by the amount of MgO-containing auxiliary materials in the coating material. Even in this case, the productivity of the sintered ore is maintained because many auxiliary raw materials can be used as the granulating material.

造粒の具体的な方法は特に制限されず、従来の造粒方法と同様であればよい。例えば、被覆炭材と他の焼結用原料とを所定の割合(この割合は焼結鉱に求められる特性等に応じて調整される)で配合して配合原料とした後、水とともに造粒する。造粒機は、例えばドラムミキサー及びパンペレタイザー等を特に制限なく使用できる。これらの造粒機を単独または直列で使用して造粒を行えばよい。しかし、被覆炭材と他の焼結用原料を最初から配合した場合、その後の造粒工程において被覆炭材の被覆物が剥離してしまう可能性も否定できないことから、被覆炭材を造粒工程の中盤以降に添加するいわゆる後添加を採用してもよい。被覆炭材と通常炭材(被覆材で被覆されていない炭材)を混合して使用する場合には、被覆炭材のみを後添加しても被覆炭材を含むすべての炭材を後添加してもどちらでも構わない。 A specific granulation method is not particularly limited, and may be the same as a conventional granulation method. For example, after blending the coated carbonaceous material and other raw materials for sintering in a predetermined ratio (this ratio is adjusted according to the characteristics required for the sintered ore) to form a mixed raw material, granulate it with water. do. Granulators such as drum mixers and pan pelletizers can be used without particular limitations. Granulation may be performed by using these granulators alone or in series. However, when the coated carbon material and other raw materials for sintering are blended from the beginning, the possibility that the coating of the coated carbon material will peel off in the subsequent granulation process cannot be denied. A so-called post-addition, which is added after the middle stage of the process, may be employed. When using a mixture of coated carbonaceous materials and normal carbonaceous materials (uncoated carbonaceous materials), even if only the coated carbonaceous materials are post-added, all the carbonaceous materials including the coated carbonaceous materials are post-added. Either way is fine.

(3-3.焼結鉱作製工程)
焼結鉱作製工程では、配合原料の造粒物を焼成することで、焼結鉱を作製する。この工程は従来と同様に行われればよい。
(3-3. Sintered ore preparation process)
In the sintered ore preparation step, the sintered ore is prepared by firing the granules of the mixed raw material. This step may be performed in a conventional manner.

このように、本実施形態によれば、炭材の燃焼開始~燃焼中期の温度域で分解しにくい含MgO副原料で炭材を被覆する。このため、炭材の燃焼開始~燃焼中期の温度域で炭材を鉄鉱石から安定して隔離することができ、ひいては、窒素酸化物をより削減することができる。さらに、含MgO副原料は、Ca系物質よりも炭材の燃焼開始~燃焼中期の温度域で分解しにくいので、少量であっても炭材を鉄鉱石から隔離することができる。つまり、少量であっても窒素酸化物を削減することができる。したがって、他の焼結用原料と造粒される炭材を単純に本実施形態に係る被覆炭材に置き換えても、造粒物中の副原料の質量はそれほど増加しない。また、他の焼結用原料中の副原料を被覆材中の含MgO副原料の分だけ減少させた場合であっても、多くの副原料を造粒材として使用できる。したがって、焼結鉱の生産性を維持することができる。 As described above, according to the present embodiment, the carbonaceous material is coated with the MgO-containing auxiliary material that is difficult to decompose in the temperature range from the start of combustion to the middle period of combustion of the carbonaceous material. Therefore, the carbonaceous material can be stably isolated from the iron ore in the temperature range from the start of combustion to the middle period of combustion of the carbonaceous material, and as a result, nitrogen oxides can be further reduced. Furthermore, since the MgO-containing auxiliary material is more difficult to decompose than the Ca-based material in the temperature range from the start of combustion to the middle period of combustion of the carbonaceous material, it is possible to separate the carbonaceous material from the iron ore even if the amount is small. In other words, nitrogen oxides can be reduced even if the amount is small. Therefore, even if the other sintering raw material and the carbonaceous material to be granulated are simply replaced with the coated carbonaceous material according to the present embodiment, the mass of the auxiliary material in the granules does not increase so much. Further, even when the amount of auxiliary materials in other raw materials for sintering is reduced by the amount of the MgO-containing auxiliary materials in the coating material, many auxiliary materials can be used as the granulating material. Therefore, the productivity of sintered ore can be maintained.

<1.実施例1>
次に、本実施形態の実施例について説明する。実施例1では、以下に示す焼結実験を行い、本実施形態の効果を確認した。まず、表2に示す焼結用原料を準備した。実施例1では、含MgO副原料をカンラン岩(LOI=1.3質量%)とした。また、粉コークスは表3に示す粒径分布を有する。表3中、粒径の「A-B」はB超A以下を示す。
<1. Example 1>
Next, an example of this embodiment will be described. In Example 1, the following sintering experiment was conducted to confirm the effects of the present embodiment. First, raw materials for sintering shown in Table 2 were prepared. In Example 1, peridotite (LOI=1.3% by mass) was used as the MgO-containing auxiliary material. Also, the coke breeze has the particle size distribution shown in Table 3. In Table 3, "AB" of the particle size indicates more than B and less than or equal to A.

Figure 0007187971000002
Figure 0007187971000002

Figure 0007187971000003
Figure 0007187971000003

(1-1.炭材処理工程)
炭材処理工程では、表2に示す焼結用原料のうち、粉コークスの全量及びカンラン岩の一部を造粒した。具体的には、粉コークスの全量と粉コークスの総質量に対して5質量%(外数)のカンラン岩とを万能混練機に投入した。ついで、目標水分値が15質量%(外数)となるように水分を添加しながら粉コークス及びカンラン岩を3分間混練した。ついで、混練物をパンペレタイザーに投入して5分間造粒した。これにより、被覆炭材を作製した。
(1-1. Carbon material treatment process)
In the carbon material treatment step, of the raw materials for sintering shown in Table 2, all of the coke fines and part of the peridotite were granulated. Specifically, the total amount of coke breeze and 5% by mass (outside number) of peridotite with respect to the total mass of coke breeze were put into a universal kneader. Next, coke fine and peridotite were kneaded for 3 minutes while adding water such that the target water content was 15% by mass (external number). Then, the kneaded product was put into a pan pelletizer and granulated for 5 minutes. Thus, a coated carbonaceous material was produced.

(1-2.造粒物作製工程)
ついで、炭材処理工程で使用した粉コークス及びカンラン岩以外の他の焼結用原料(カンラン岩の残りあり)をドラムミキサー(直径1m、23rpm)に投入し、1分間混合した。ついで、ドラムミキサーに目標水分が7.5質量%(外数)となるように水を添加しつつ、ドラムミキサー内の混合物を3.5分間造粒した。ついで、ドラムミキサーに上記で作製した被覆炭材を添加し、ドラムミキサー内の混合物をさらに0.5分間混合(造粒)した。以上の工程により、配合原料の造粒物を作製した。
(1-2. Granule preparation step)
Next, raw materials for sintering other than the coke fines and peridotite used in the carbon material treatment step (peridotite remains) were put into a drum mixer (diameter 1 m, 23 rpm) and mixed for 1 minute. Then, the mixture in the drum mixer was granulated for 3.5 minutes while adding water to the drum mixer so that the target moisture content was 7.5% by mass (external number). Then, the coated carbon material prepared above was added to the drum mixer, and the mixture in the drum mixer was further mixed (granulated) for 0.5 minutes. Through the above steps, granules of the blended raw material were produced.

(1-3.焼結鉱作製工程)
直径300mmの試験鍋に配合原料の造粒物を充填することで、試験鍋中に原料充填層を形成した。原料充填層の層厚は600mmとした。試験鍋の底面はメッシュ状となっており、ブロワが連結されている。ついで、原料充填層の表面を90秒間点火した後、吸引負圧1530kPaで試験鍋内の空気を吸引した。そして、吸引ガス温度をモニタリングし、吸引ガス温度が最大となった時点を焼結終了(バーンスルー)時点とした。ついで、作製された焼結ケーキを破砕することで、焼結鉱を作製した。ここで、粒径が5mm超となる焼結鉱を成品とした。
(1-3. Sintered ore preparation process)
By filling a test pot with a diameter of 300 mm with granules of blended raw materials, a raw material packed layer was formed in the test pot. The layer thickness of the raw material packed layer was 600 mm. The bottom surface of the test pot is mesh-shaped, and a blower is connected to it. Then, after igniting the surface of the raw material packed bed for 90 seconds, the air in the test pot was sucked under a negative suction pressure of 1530 kPa. Then, the temperature of the sucked gas was monitored, and the time when the temperature of the sucked gas reached its maximum was defined as the end of sintering (burn-through). Subsequently, the sintered ore was produced by crushing the produced sintered cake. Here, the sintered ore having a particle size of more than 5 mm was used as the product.

ここで、点火開始から焼結終了までの間(焼結時間)に排ガスをモニタリングし、排ガス中に含まれるNO(NO+NO)量を測定した。NOの測定は島津製作所社製の連続ガス分析計(CLM-108)を使用して行った。そして、NO量を窒素質量(酸素を含まない値)に換算した値をNO排出量とした。さらに、成品の質量及び焼結時間等に基づいて、焼結鉱の生産率(生産性)(t/24h/m)を算出した。結果を表4にまとめて示す。 Here, the exhaust gas was monitored from the start of ignition to the end of sintering (sintering time), and the amount of NO x (NO+NO 2 ) contained in the exhaust gas was measured. NO x was measured using a continuous gas analyzer (CLM-108) manufactured by Shimadzu Corporation. Then, a value obtained by converting the NOx amount into nitrogen mass (a value that does not contain oxygen) was taken as the NOx emission amount. Furthermore, the production rate (productivity) (t/24h/m 2 ) of the sintered ore was calculated based on the mass of the product, the sintering time, and the like. The results are summarized in Table 4.

<2.比較例>
炭材処理工程を行わず、造粒物作製工程を以下のように行った他は、実施例1と同様の処理を行った。結果を表4にまとめて示す。
<2. Comparative example>
The same treatment as in Example 1 was performed except that the granule preparation step was performed as follows without performing the carbon material treatment step. The results are summarized in Table 4.

(2-1.造粒物作製工程)
表2に示す焼結用原料の全量をドラムミキサー(直径1m、23rpm)に投入し、1分間造粒した。ついで、ドラムミキサーに目標水分が7.5質量%(外数)となるように水を添加しつつ、ドラムミキサー内の混合物を4分間造粒した。以上の工程により、配合原料の造粒物を作製した。
(2-1. Granule preparation step)
All the raw materials for sintering shown in Table 2 were put into a drum mixer (1 m diameter, 23 rpm) and granulated for 1 minute. Then, the mixture in the drum mixer was granulated for 4 minutes while adding water to the drum mixer so that the target moisture content was 7.5% by mass (external number). Through the above steps, granules of the blended raw material were produced.

<3.参考例1>
参考例1では、炭材処理工程及び造粒物作製工程を以下のように行った他は、実施例1と同様の処理を行った。概略的には、参考例1では、炭材を20質量%の消石灰で被覆した。含MgO副原料は実施例1と同様とした。結果を表4にまとめて示す。
<3. Reference example 1>
In Reference Example 1, the same treatment as in Example 1 was performed, except that the carbon material treatment step and the granule production step were performed as follows. Schematically, in Reference Example 1, the carbonaceous material was coated with 20% by mass of slaked lime. The MgO-containing auxiliary material was the same as in Example 1. The results are summarized in Table 4.

(3-1.炭材処理工程)
炭材処理工程では、表2に示す焼結用原料のうち、粉コークスの全量及び消石灰の一部を造粒した。具体的には、粉コークスの全量と粉コークスの総質量に対して20質量%(外数)の消石灰とを万能混練機に投入した。ついで、目標水分値が15質量%(外数)となるように水分を添加しながら粉コークス及び消石灰を3分間混練した。ついで、混練物をパンペレタイザーに投入して5分間造粒した。これにより、被覆炭材を作製した。
(3-1. Carbon material treatment process)
In the carbon material treatment step, of the raw materials for sintering shown in Table 2, all of the coke fines and part of the hydrated lime were granulated. Specifically, the total amount of coke breeze and 20% by mass (outside number) of slaked lime with respect to the total mass of coke breeze were put into a universal kneader. Next, coke dust and hydrated lime were kneaded for 3 minutes while adding water such that the target water content was 15% by mass (external number). Then, the kneaded product was put into a pan pelletizer and granulated for 5 minutes. Thus, a coated carbonaceous material was produced.

(3-2.造粒物作製工程)
ついで、炭材処理工程で使用した粉コークス及び消石灰以外の他の焼結用原料(消石灰の残りあり)をドラムミキサー(直径1m、23rpm)に投入し、1分間混合した。ついで、ドラムミキサーに目標水分が7.5質量%となるように水を添加しつつ、ドラムミキサー内の混合物を3.5分間造粒した。ついで、ドラムミキサーに上記で作製した被覆炭材を添加し、ドラムミキサー内の混合物をさらに0.5分間混合(造粒)した。以上の工程により、配合原料の造粒物を作製した。
(3-2. Granule preparation step)
Next, raw materials for sintering other than the coke fine and slaked lime used in the carbon material treatment step (with remaining slaked lime) were put into a drum mixer (diameter 1 m, 23 rpm) and mixed for 1 minute. Then, the mixture in the drum mixer was granulated for 3.5 minutes while adding water to the drum mixer so that the target moisture content was 7.5% by mass. Then, the coated carbon material prepared above was added to the drum mixer, and the mixture in the drum mixer was further mixed (granulated) for 0.5 minutes. Through the above steps, granules of the blended raw material were produced.

<4.参考例2>
参考例2では、炭材を被覆する消石灰の質量%を粉コークスの総質量に対して5質量%とした他は参考例1と同様の処理を行った。結果を表4にまとめて示す。
<4. Reference example 2>
In Reference Example 2, the same treatment as in Reference Example 1 was performed, except that the mass% of slaked lime coating the carbonaceous material was 5% by mass with respect to the total mass of coke breeze. The results are summarized in Table 4.

<5.実施例2>
含MgO副原料を蛇紋岩(LOI=13.9質量%)とした他は実施例1と同様の処理を行った。結果を表4にまとめて示す。
<5. Example 2>
The same treatment as in Example 1 was performed except that serpentinite (LOI = 13.9% by mass) was used as the MgO-containing auxiliary material. The results are summarized in Table 4.

<6.実施例3>
含MgO副原料をドロマイト(LOI=46.9質量%)とした他は実施例1と同様の処理を行った。結果を表4にまとめて示す。
<6. Example 3>
The same treatment as in Example 1 was performed except that dolomite (LOI = 46.9% by mass) was used as the MgO-containing auxiliary material. The results are summarized in Table 4.

<7.実施例4>
含MgO副原料を実施例1のカンラン岩と実施例2の蛇紋岩との混合物(カンラン岩30質量%+蛇紋岩70質量%の混合物、LOI=10質量%)とした他は実施例1と同様の処理を行った。結果を表4にまとめて示す。
<7. Example 4>
Same as Example 1 except that the MgO-containing auxiliary raw material was a mixture of peridotite of Example 1 and serpentinite of Example 2 (mixture of 30% by mass of peridotite + 70% by mass of serpentinite, LOI = 10% by mass). A similar treatment was performed. The results are summarized in Table 4.

<8.実施例5>
含MgO副原料を実施例2の蛇紋岩と実施例3のドロマイトとの混合物(蛇紋岩90質量%+ドロマイト10質量%の混合物、LOI=17質量%)とした他は実施例1と同様の処理を行った。結果を表4にまとめて示す。
<8. Example 5>
The same procedure as in Example 1 was performed except that the MgO-containing auxiliary raw material was a mixture of the serpentinite of Example 2 and the dolomite of Example 3 (mixture of 90% by mass of serpentinite + 10% by mass of dolomite, LOI = 17% by mass). processed. The results are summarized in Table 4.

Figure 0007187971000004
Figure 0007187971000004

参考例1では、多くの消石灰で炭材が被覆されたために、窒素酸化物が大幅に削減された。しかし、造粒材に使用される消石灰が減少したために、配合原料の造粒性が低下し、焼結鉱の生産性が低下した。参考例2では、炭材を被覆する消石灰の質量が減ったため、窒素酸化物の削減量が参考例1に及ばなかった。しかし、造粒材となる消石灰が増加したため、焼結鉱の生産性が比較例と同等レベルに回復した。これらの結果、消石灰で炭材を被覆した場合、窒素酸化物の削減と焼結鉱の生産性との両立ができないことが確認できた。 In Reference Example 1, since the carbonaceous material was covered with a large amount of slaked lime, nitrogen oxides were greatly reduced. However, since the amount of slaked lime used in the granulating agent decreased, the granulation properties of the blended raw material deteriorated, and the productivity of the sintered ore decreased. In Reference Example 2, the amount of slaked lime covering the carbonaceous material was reduced, so the reduction amount of nitrogen oxides was not as high as in Reference Example 1. However, since the amount of slaked lime used as a granulating agent increased, the productivity of sintered ore recovered to the same level as in the comparative example. As a result, it was confirmed that both the reduction of nitrogen oxides and the productivity of sintered ore cannot be achieved when the carbonaceous material is coated with slaked lime.

一方、すべての実施例において、窒素酸化物の削減量は参考例2よりも大きく、焼結鉱の生産性は比較例と大差ないレベルであった。特にLOIが15質量%以下となる実施例1、実施例2、実施例4において窒素酸化物の削減は顕著であった。このように、含MgO副原料で炭材を被覆した場合、少量の被覆であっても窒素酸化物を十分に削減することができた。この理由として、含MgO副原料は炭材の燃焼開始~燃焼中期の温度域で消石灰よりも分解しにくいことが考えられる。被覆材として使用する含MgO副原料が少量となることから、生産性も維持できた。 On the other hand, in all the examples, the amount of reduction of nitrogen oxides was larger than that of Reference Example 2, and the productivity of sintered ore was at a level not much different from that of Comparative Examples. In particular, in Examples 1, 2, and 4 in which the LOI was 15% by mass or less, the reduction in nitrogen oxides was remarkable. Thus, when the carbonaceous material was coated with the MgO-containing auxiliary raw material, nitrogen oxides could be sufficiently reduced even with a small amount of coating. A possible reason for this is that the MgO-containing auxiliary material is more difficult to decompose than slaked lime in the temperature range from the start of combustion of the carbonaceous material to the middle period of combustion. Since the amount of the MgO-containing auxiliary material used as the coating material was small, the productivity was also maintained.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。

Although the preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also naturally belong to the technical scope of the present invention.

Claims (4)

覆材で炭材の表面の少なくとも一部を被覆するために、前記被覆材と炭材とを造粒する炭材処理工程と、
前記被覆材で表面の少なくとも一部が被覆された被覆炭材と他の焼結用原料とを配合した後造粒することで配合原料の造粒物を作製する造粒物作製工程と、
前記配合原料の造粒物を焼成することで、焼結鉱を作製する焼結鉱作製工程と、を含み、
前記被覆材は含MgO副原料を前記被覆材の総質量に対し90質量%以上含むものであり、
前記被覆材に含まれる前記含MgO副原料の質量は、前記炭材に対して5質量%以上10質量%未満であることを特徴とする、焼結鉱の製造方法。
a carbon material treatment step of granulating the coating material and the carbon material in order to coat at least part of the surface of the carbon material with the coating material;
a granule producing step of producing granules of the blended raw materials by blending the coated carbonaceous material having at least a portion of the surface coated with the coating material and other sintering raw materials and then granulating them;
A sintered ore producing step of producing sintered ore by firing the granules of the blended raw materials ,
The coating material contains 90% by mass or more of the MgO-containing auxiliary raw material with respect to the total mass of the coating material,
A method for producing sintered ore , wherein the mass of the MgO-containing auxiliary raw material contained in the coating material is 5% by mass or more and less than 10% by mass with respect to the carbonaceous material .
前記炭材処理工程では、前記含MgO副原料のみで構成される前記被覆材と前記炭材とを造粒することを特徴とする、請求項1記載の焼結鉱の製造方法。 2. The method for producing sintered ore according to claim 1, wherein in the carbon material treatment step, the coating material and the carbon material composed only of the MgO-containing auxiliary raw material are granulated. 前記含MgO副原料は、カンラン岩及び蛇紋岩のいずれか一種以上であることを特徴とする、請求項1または2に記載の焼結鉱の製造方法。 The method for producing sintered ore according to claim 1 or 2, wherein the MgO-containing auxiliary raw material is at least one of peridotite and serpentinite . 前記含MgO副原料の粒径は250μm以下であることを特徴とする、請求項1~3の何れか1項に記載の焼結鉱の製造方法。 The method for producing sintered ore according to any one of claims 1 to 3, wherein the particle size of the MgO-containing auxiliary material is 250 µm or less .
JP2018199832A 2018-10-24 2018-10-24 Method for producing sintered ore Active JP7187971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018199832A JP7187971B2 (en) 2018-10-24 2018-10-24 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018199832A JP7187971B2 (en) 2018-10-24 2018-10-24 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2020066770A JP2020066770A (en) 2020-04-30
JP7187971B2 true JP7187971B2 (en) 2022-12-13

Family

ID=70389682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018199832A Active JP7187971B2 (en) 2018-10-24 2018-10-24 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP7187971B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241575A (en) 2005-03-07 2006-09-14 Nippon Steel Corp Method for pretreating raw material for sintering
WO2011129388A1 (en) 2010-04-14 2011-10-20 新日本製鐵株式会社 Process for production of sintered mineral
JP2015086419A (en) 2013-10-29 2015-05-07 新日鐵住金株式会社 Method of producing sintered ore
JP2015183278A (en) 2014-03-26 2015-10-22 新日鐵住金株式会社 Method of producing sintered ore
JP2016125125A (en) 2015-01-08 2016-07-11 Jfeスチール株式会社 Granulated particle for carbonaceous material inner package for sinter ore production and method for production thereof, and method for production of sinter ore

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144412A (en) * 1977-05-23 1978-12-15 Kobe Steel Ltd Method of producing sintered ore
JPS61266526A (en) * 1985-05-21 1986-11-26 Nippon Steel Corp Manufacture of sintered ore by high temperature firing fuel
JP3555189B2 (en) * 1994-08-12 2004-08-18 株式会社神戸製鋼所 Operating method of iron ore sintering machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241575A (en) 2005-03-07 2006-09-14 Nippon Steel Corp Method for pretreating raw material for sintering
WO2011129388A1 (en) 2010-04-14 2011-10-20 新日本製鐵株式会社 Process for production of sintered mineral
JP2015086419A (en) 2013-10-29 2015-05-07 新日鐵住金株式会社 Method of producing sintered ore
JP2015183278A (en) 2014-03-26 2015-10-22 新日鐵住金株式会社 Method of producing sintered ore
JP2016125125A (en) 2015-01-08 2016-07-11 Jfeスチール株式会社 Granulated particle for carbonaceous material inner package for sinter ore production and method for production thereof, and method for production of sinter ore

Also Published As

Publication number Publication date
JP2020066770A (en) 2020-04-30

Similar Documents

Publication Publication Date Title
JP4870247B2 (en) Method for producing sintered ore
AU2017388174B2 (en) Sintered ore manufacturing method
JP2014214334A (en) Method for manufacturing sintered ore
JP5817629B2 (en) Method for producing sintered ore using finely granulated carbon
JP7187971B2 (en) Method for producing sintered ore
JP2704673B2 (en) Method for producing semi-reduced sintered ore
JP5703913B2 (en) Method for producing sintered ore
JP2000256731A (en) Production of calcium ferrite for refining molten iron
JP2001348623A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP6477167B2 (en) Method for producing sintered ore
JP4241285B2 (en) Method for producing semi-reduced sintered ore
JP5621653B2 (en) A modified coal for producing sintered ore and a method for producing a sintered ore using the modified coal.
JP6885164B2 (en) Sintered ore manufacturing method
EP4303329A1 (en) Iron ore pellet production method
WO2017221774A1 (en) Method for manufacturing carbon-material-incorporated sintered ore
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JP4599736B2 (en) Granulation method of sintering raw material
JP7424339B2 (en) Raw material particles for producing agglomerates, method for producing raw material particles for producing agglomerates, agglomerates, method for producing agglomerates, and method for producing reduced iron
JP3678034B2 (en) Method for producing partially reduced iron
JP2008088533A (en) Method for manufacturing sintered ore
JP5434340B2 (en) Method for producing sintered ore
JP2015168851A (en) Method for manufacturing dust agglomerate
JP2021161529A (en) Method for producing carbonaceous material for sintering, and method for producing sintered ore
RU2430979C2 (en) Procedure for preparation of charge for manufacture of metallised product
JP2007291455A (en) Method for manufacturing sintered ore

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190419

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221114

R151 Written notification of patent or utility model registration

Ref document number: 7187971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151