JP2015086419A - Method of producing sintered ore - Google Patents

Method of producing sintered ore Download PDF

Info

Publication number
JP2015086419A
JP2015086419A JP2013224563A JP2013224563A JP2015086419A JP 2015086419 A JP2015086419 A JP 2015086419A JP 2013224563 A JP2013224563 A JP 2013224563A JP 2013224563 A JP2013224563 A JP 2013224563A JP 2015086419 A JP2015086419 A JP 2015086419A
Authority
JP
Japan
Prior art keywords
cao
nox
feo
coke
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013224563A
Other languages
Japanese (ja)
Other versions
JP6167852B2 (en
Inventor
松村 勝
Masaru Matsumura
勝 松村
一昭 片山
Kazuaki Katayama
一昭 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013224563A priority Critical patent/JP6167852B2/en
Publication of JP2015086419A publication Critical patent/JP2015086419A/en
Application granted granted Critical
Publication of JP6167852B2 publication Critical patent/JP6167852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress generation of NOx in the low-temperature region and reduce sinter NOx by combustion control of fine coal without impairing productivity of a sintering machine.SOLUTION: A method of producing a sintered ore comprises adding a granulating agent and water to a raw material consisting of iron ore, sinter dust, return ore and auxiliary material and mixing and granulating to prepare a raw material and sintering by using surface-coated carbonaceous material surface-coated with a coating, and the composition of the coating of the surface-coated carbonaceous material includes 0.1-0.6 of CaO/(CaO+FeO), where the content of FeO is based on FeO converted from the content of metal Fe.

Description

本発明は、焼結鉱の製造方法に関する。特に、生産性を確保または改善しながら排ガス
に含まれるNOxを低減可能な焼結鉱の製造方法に関する。
The present invention relates to a method for producing a sintered ore. In particular, the present invention relates to a method for producing sintered ore that can reduce NOx contained in exhaust gas while ensuring or improving productivity.

製鉄所の焼結鉱製造においては、燃料として使用する炭材の燃焼により排ガス中に窒素酸化物(NOx)が発生する。このNOxの低減は、大気汚染の改善において、重要な課題である。当該NOxを低減する手段として、アンモニアを還元剤とする排ガス脱硝技術がある。
しかし、当該技術に係る排ガス脱硝設備は建設費が高額で、またアンモニアが高価である為に操業費が高くなる。また、窒素の含有量が少ない無煙炭を使用する手段もあるが、窒素の含有量が少ない無煙炭は、資源枯渇により採掘環境が劣化してきており、その使用は制限をうける。
In the production of sintered ore at an ironworks, nitrogen oxides (NOx) are generated in exhaust gas due to combustion of carbonaceous materials used as fuel. This reduction of NOx is an important issue in improving air pollution. As means for reducing the NOx, there is an exhaust gas denitration technique using ammonia as a reducing agent.
However, the exhaust gas denitration equipment according to the technology has a high construction cost, and the operation cost is high because ammonia is expensive. There is also a means to use anthracite with a low nitrogen content, but anthracite with a low nitrogen content has deteriorated in the mining environment due to resource depletion, and its use is limited.

一方、燒結鉱の製造に用いられる固体燃料の表面を、CaO等を含む被覆材で被覆し、排ガス中のNOxの低減を図る技術が開示されている。
被覆材が触媒として機能し、触媒によりNOxを除去する技術が開示されている。CaO含有量が5〜50重量%であるCaO−FexO系複合酸化物を主成分とする触媒であり、窒素酸化物を還元または分解して窒素酸化物を除去する技術である(特許文献1)。
また、炭材表面に、石灰系原料由来のCaを36質量%以上含有する被覆物を前記炭材に対して2質量%超かつ50質量%未満の割合で被覆した表面被覆炭材を、焼結燃料として配合炭中に含める技術が開示されている(特許文献2)。
また、焼結鉱の製造方法において、固体燃料の表面を、CaO成分系を30質量%以上含有する製鋼スラグ微粉で、厚さ50μm以上250μm以下に覆った状態で、該固体燃料を焼結パレット上に装入することにより、焼結時に前記焼結パレット上で前記固体燃料が燃焼する際のNOx発生を抑制する技術が開示されている(特許文献3)。
On the other hand, a technique is disclosed in which the surface of a solid fuel used in the production of sintered ore is coated with a coating material containing CaO or the like to reduce NOx in exhaust gas.
A technique has been disclosed in which the coating material functions as a catalyst and the catalyst removes NOx. A catalyst CaO content is composed mainly of CaO-Fe x O composite oxide is 5 to 50 wt%, is a technique for nitrogen oxide reduction or decomposition to remove nitrogen oxides (JP 1).
Moreover, the surface covering carbon material which coat | covered the coating material containing 36 mass% or more of Ca derived from lime-type raw material on the carbon material surface in the ratio of more than 2 mass% and less than 50 mass% with respect to the said carbon material is baked. A technique to be included in blended coal as a fuel is disclosed (Patent Document 2).
In the method for producing sintered ore, the solid fuel is covered with a steelmaking slag fine powder containing at least 30% by mass of a CaO component system, and the solid fuel is covered with a sintered pallet with a thickness of 50 μm to 250 μm. A technique for suppressing generation of NOx when the solid fuel is burned on the sintering pallet during sintering by being charged on top is disclosed (Patent Document 3).

特開平8−60257号公報JP-A-8-60257 特許第4870247号公報Japanese Patent No. 4870247 特開2012−36464号公報JP 2012-36464 A

しかしながら、特許文献1では、上記微細コークス粒体と上記微粉末触媒とを混合した
造粒体(P型)によるNOxの除去技術の場合、1,000℃以下の低温領域でのNOx
の低減効果が小さいという問題がある。後述するように、コークスの燃焼によるNOxは
、低温領域で多く発生する。そのため、造粒体(P型)の中の微細コークス粒体が低温領
域で燃焼してNOxが多量に発生し、NOx除去の効果が小さくなると考えられる。一方
、粗コークス粒体の表面に上記触媒を被覆した造粒体(S型)によるNOxの除去技術の
場合、コークス表面を触媒で十分に被覆してしまうと、コークスの燃焼速度が遅くなり、焼結機の生産性を阻害する。このため、コークスの表面の一部が露出するようにコークスに触媒を被覆せざるを得ず、NOx除去の効果が低下するという問題がある。
特許文献2に記載の発明は、粗コークス粒体の表面被覆材は、Caを36質量%以上含有することに特徴があり、表面被覆材のFexOの組成については記載がない。
特許文献3に記載の発明は、固体燃料の表面を、製鋼スラグ微粉で被覆する効果を以下のようにしている。即ち、焼結原料の焼結時に、固体燃料の近傍でカルシウムフェライト(CaO−Fe)を生成でき、このカルシウムフェライトには、固体燃料の燃焼時に発生するNOxの還元作用がある。NOxの一部をNに分解できるため、焼結原料の焼結時に発生する排ガス中のNOx量を低減できるとする。しかし、カルシウムフェライトを生成するための製鋼スラグ微粉の組成(CaOとFexO)についての言及がなく、適切な製鋼スラグの組成が不明であるという問題がある。適切な製鋼スラグの組成は、粗コークス粒体の表面被覆材の溶融温度の観点からの検討が必要であり、この記載がない。
However, in Patent Document 1, in the case of a NOx removal technique using a granulated body (P-type) in which the fine coke granules and the fine powder catalyst are mixed, NOx in a low temperature region of 1,000 ° C. or less.
There is a problem that the reduction effect is small. As will be described later, a large amount of NOx due to the combustion of coke is generated in a low temperature region. Therefore, it is considered that the fine coke granules in the granulated body (P type) burn in a low temperature region and a large amount of NOx is generated, and the effect of removing NOx is reduced. On the other hand, in the case of the NOx removal technique using the granulated body (S type) with the catalyst coated on the surface of the coarse coke particles, if the surface of the coke is sufficiently covered with the catalyst, the combustion rate of the coke becomes slow, Impairs the productivity of the sintering machine. For this reason, there is a problem that the coke must be coated with a catalyst so that a part of the surface of the coke is exposed, and the effect of removing NOx is reduced.
The invention described in Patent Document 2, the surface dressing of the coarse coke granules is characterized in that it contains Ca 36 wt% or more, is not described composition of Fe x O of the surface covering material.
In the invention described in Patent Document 3, the effect of coating the surface of the solid fuel with the steelmaking slag fine powder is as follows. That is, when the sintering raw material is sintered, calcium ferrite (CaO—Fe 3 O 4 ) can be generated in the vicinity of the solid fuel, and this calcium ferrite has a reducing action of NOx generated during combustion of the solid fuel. Since a part of NOx can be decomposed into N 2, it is assumed that the amount of NOx in the exhaust gas generated during sintering of the sintering raw material can be reduced. However, no mention of the composition of the steelmaking slag in order to produce calcium ferrite (CaO and Fe x O), there is a problem that the composition of a suitable steel slag is unknown. An appropriate steelmaking slag composition needs to be examined from the viewpoint of the melting temperature of the surface coating material of coarse coke granules, and is not described here.

本発明の目的は、(1)低温領域でのNOxの発生を抑制し、かつ、(2)焼結機の生産性を阻害することのない焼結鉱の製造方法を提供することである。   An object of the present invention is to provide a method for producing sintered ore which (1) suppresses the generation of NOx in a low temperature region and (2) does not hinder the productivity of the sintering machine.

(1)鉄鉱石、焼結ダスト、返鉱及び副原料から成る原料に造粒剤及び水を加えて混合・造粒し、造粒した原料を、被覆物で表面被覆した表面被覆炭材を用いて焼成する焼結鉱の製造方法であって、
前記表面被覆炭材の被覆物の組成は、CaO/(CaO+FeO)が0.1以上0.6以下であることを特徴とする焼結鉱の製造方法。
但し、FeO含有量は、金属Fe含有量をFeOに換算したものを含む。
(2)前記表面被覆炭材の被覆物は、CaO/(CaO+FeO)が0.6以下の製鋼スラグが含まれることを特徴とする(1)に記載の焼結鉱の製造方法。
(3)前記製鋼スラグが、脱硫スラグであることを特徴とする(2)に記載の焼結鉱の製造方法。
(1) A surface-coated carbon material obtained by adding a granulating agent and water to a raw material consisting of iron ore, sintered dust, return ore and auxiliary raw materials, mixing and granulating the raw material, and coating the granulated raw material with a coating. A method for producing a sintered ore that is fired using,
The composition of the coating of the surface-coated carbonaceous material is CaO / (CaO + FeO) being 0.1 or more and 0.6 or less, the method for producing a sintered ore.
However, the FeO content includes the metal Fe content converted to FeO.
(2) The method for producing a sintered ore according to (1), wherein the coating of the surface-coated carbon material includes steelmaking slag having a CaO / (CaO + FeO) of 0.6 or less.
(3) The method for producing a sintered ore according to (2), wherein the steelmaking slag is desulfurization slag.

低温領域でのNOxの発生を抑制し、焼結機の生産性を阻害することのない炭材燃焼制御による焼結NOxの低減を図ることができる。   The generation of NOx in the low temperature region can be suppressed, and the reduction of sintered NOx by the carbonaceous material combustion control without impeding the productivity of the sintering machine can be achieved.

NOx転換率と温度の関係を示す図。The figure which shows the relationship between NOx conversion rate and temperature. コークス粒径とNOx発生量の関係を示す図。The figure which shows the relationship between a coke particle size and NOx generation amount. 表面被覆コークスのNOx低減メカニズムを説明する図。The figure explaining the NOx reduction mechanism of surface coating coke. CaO-FeO系状態図。CaO-FeO system phase diagram. 本願発明のフローを示す図。The figure which shows the flow of this invention. 実施例における表面被覆コークスの製造工程を示す図。The figure which shows the manufacturing process of the surface coating coke in an Example. 焼結鍋試験装置の概略図.Schematic diagram of sintering pot test equipment.

以下、添付図面を参照しながら本発明の好適な実施形態について説明する。
コークス燃焼によるNOx転換率と温度の関係を図1に示す。ここで、NOx転換率は、燃焼した燃料中の窒素原子がNOxに転換した割合(モル百分率)である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows the relationship between the NOx conversion rate and temperature due to coke combustion. Here, the NOx conversion rate is a ratio (molar percentage) at which nitrogen atoms in the burned fuel are converted to NOx.

NOxは、主に炭材中の窒素が焼結時に酸化して生成する。特に、図1に示されるよう
に、NOxは、1,000℃以下の低温で多く生成することが確認されている。したがって、NOxの生成を抑制するためには、炭材を極力、高温で燃焼させることが重要である。
ここで、炭材は、コークス、無煙炭及びその他の焼結鉱製造に用いられる固体燃料を示す。
NOx is generated mainly by oxidation of nitrogen in the carbonaceous material during sintering. In particular, as shown in FIG. 1, it has been confirmed that a large amount of NOx is produced at a low temperature of 1,000 ° C. or less. Therefore, in order to suppress the generation of NOx, it is important to burn the carbonaceous material at a high temperature as much as possible.
Here, a carbon material shows the solid fuel used for coke, anthracite, and other sintered ore manufacture.

また、炭材中の微粉は、粒径が小さいので低温で燃焼し、NOxを増大させる。炭材粒度(コークス粒径)とNOx発生量との関係を図2に示す。炭材中の微粉は、燃焼速度が速く、低温で燃焼が完了するため、NOxを増大させると考えられる。そのため、粒径が0.5mm以下の微粉炭材を除去することができれば、NOx発生量を低減できると考えられる。   Moreover, since the fine powder in the carbonaceous material has a small particle size, it burns at a low temperature and increases NOx. The relationship between the carbonaceous material particle size (coke particle size) and the amount of NOx generated is shown in FIG. The fine powder in the carbonaceous material is considered to increase NOx because the combustion speed is high and combustion is completed at a low temperature. Therefore, it is considered that the amount of NOx generated can be reduced if the fine carbonaceous material having a particle size of 0.5 mm or less can be removed.

具体的には、焼結工程のNOx発生量をより低減するために、粒径0mm超0.5mm未満の炭材(粒子)が20質量%以下であることが望ましい。一方、炭材の粒径が大きくなりすぎると、燃焼速度が低下し、低温領域での燃焼時間が長くなりやすく、NOx低減効果が飽和する。   Specifically, in order to further reduce the amount of NOx generated in the sintering step, it is desirable that the carbonaceous material (particles) having a particle size of more than 0 mm and less than 0.5 mm is 20% by mass or less. On the other hand, if the particle size of the carbon material becomes too large, the combustion rate decreases, the combustion time in the low temperature region tends to be long, and the NOx reduction effect is saturated.

炭材中から微粉(例えば、0.5mm未満)を除去したとしても、NOx発生を抑制するためには、炭材をできる限り高温燃焼させる必要がある。そのため、炭材の表面を高温領域で溶融する被覆物層(被覆物)で覆い、低温領域で周囲の大気中の酸素を遮断できれば、NOx発生を抑制することができる。   Even if fine powder (for example, less than 0.5 mm) is removed from the carbonaceous material, it is necessary to burn the carbonaceous material as high as possible in order to suppress the generation of NOx. Therefore, if the surface of the carbon material is covered with a coating layer (coating material) that melts in a high temperature region and oxygen in the surrounding atmosphere can be blocked in the low temperature region, NOx generation can be suppressed.

特許文献1には、CaO含有量が5〜50重量%のCaO−FexO系複合酸化物を表面に被覆した炭材を用いて、CaO−FexO系複合酸化物の触媒作用により炭材の燃焼時に生成するNOxを還元または分解して除去することが開示されている。しかしながら、CaO−FexO系複合酸化物は、石灰系原料と鉄鉱石とを溶融し成型して製造されるため、通常の焼結で副原料として使用される石灰系原料に比べて高価である。   In Patent Document 1, using a carbonaceous material having a CaO-FexO-based composite oxide having a CaO content of 5 to 50% by weight coated on the surface, the catalytic action of the CaO-FexO-based composite oxide causes the combustion of the carbonaceous material. It is disclosed that the produced NOx is removed by reduction or decomposition. However, the CaO-FexO-based composite oxide is manufactured by melting and molding a lime-based raw material and iron ore, and thus is more expensive than a lime-based raw material used as an auxiliary material in normal sintering.

本実施形態では、上記のような高価な酸化物を用いずに、石灰系原料と製鉄所内の精錬工程で発生する製鋼スラグを用いる。製鋼スラグの中に、CaO−FeOが含まれており、炭材の被覆材として安価に入手できる。   In the present embodiment, a lime-based raw material and steelmaking slag generated in the refining process in the steelworks are used without using the expensive oxide as described above. CaO-FeO is contained in the steelmaking slag and can be obtained at a low cost as a coating material for carbonaceous materials.

製鋼スラグは、製鉄所の製鋼工程で、転炉等に溶銑、屑鉄及び副原料(生石灰、ドロマイト、酸化鉄、ほたる石等)を装入し、酸素を吹き込み、銑鉄から、C,Si,Mn,P,S等の不純物を除去し、溶鋼を製造する際に発生するスラグである。転炉等の精錬炉は、精錬時間が短いため、生石灰の一部は、滓化することなくスラグ中に残存する。   Steelmaking slag is a steelmaking process in a steelworks, and hot metal, scrap iron, and auxiliary materials (quick lime, dolomite, iron oxide, firefly stone, etc.) are charged into a converter, etc., and oxygen is blown from the pig iron to C, Si, Mn , Slag, P, S, etc. are removed to produce molten steel. Since a refining furnace such as a converter has a short refining time, a part of quick lime remains in the slag without hatching.

転炉等の精錬炉の負荷を軽減し、生産性を向上させるために、溶銑を転炉等で精錬する前に脱珪、脱硫及び脱燐等の予備処理が行われることがある。製鋼スラグには、溶銑の予備処理で発生する脱珪スラグ、脱硫スラグ及び脱燐スラグ等も含まれる。また、溶銑の予備処理が十分に行われると、転炉等は、脱炭が主となり、この場合は、脱炭スラグが発生する。また、転炉等の精錬工程で、脱硫・脱燐した後にスラグを排滓することもあり、この場合のスラグは、脱硫、脱燐スラグとなる。   In order to reduce the load on a refining furnace such as a converter and improve productivity, pretreatment such as desiliconization, desulfurization, and dephosphorization may be performed before refining the hot metal in the converter. Steelmaking slag includes desiliconized slag, desulfurized slag, dephosphorized slag and the like generated in the hot metal pretreatment. Moreover, if the hot metal preliminary treatment is sufficiently performed, the converter or the like mainly performs decarburization, and in this case, decarburization slag is generated. Further, in a refining process such as a converter, slag may be discharged after desulfurization / dephosphorization. In this case, the slag becomes desulfurization and dephosphorization slag.

脱珪スラグは、製鉄所の高炉から出銑した溶銑に集塵ダスト、粉鉄鉱石等を吹き込み、粉鉄鉱石等に含まれる酸素により銑鉄中の珪素を酸化して除去する脱珪工程で発生する。CaOは少なく、SiO、Fe等が多く含まれている。
脱硫スラグは、ソーダ灰(NaCo)、カーバイド(CaC)、生石灰(CaO)等を溶銑に吹き込み、銑鉄中の硫黄(S)を除去する脱硫工程で発生するスラグである。
CaOは多く、金属鉄(M.Fe)も多く含まれている。硫黄(S)と共に脱燐(P)を行う場合には、生石灰(CaO)等の他に、集塵ダスト、粉鉄鉱石等も同時に吹き込む。
脱炭スラグは、予備処理が行われた溶銑を転炉等の精錬炉に入れ、酸素を吹き込んで主に銑鉄中の炭素を除去する精錬工程で発生するスラグである。未滓化のCaOを多く含んでいる。
以上のように、製鋼スラグには、精錬工程により、さまざまな組成のさまざまなスラグが発生し、これらスラグをうまく利用することが重要である。
表1に代表的な製鋼スラグの成分例と、他のCaO、FeO源との成分の比較を示す。
Desiliconization slag is generated in the desiliconization process, in which dust collection dust, fine iron ore, etc. are blown into the hot metal discharged from the blast furnace at the ironworks, and the silicon in the pig iron is oxidized and removed by oxygen contained in the fine iron ore. To do. CaO is small and SiO 2 , Fe 2 O 3 and the like are contained in a large amount.
The desulfurization slag is slag generated in a desulfurization process in which soda ash (Na 2 Co 3 ), carbide (CaC 2 ), quicklime (CaO) or the like is blown into the molten iron to remove sulfur (S) in the pig iron.
CaO is abundant and metallic iron (M.Fe) is also contained a lot. When dephosphorization (P) is performed together with sulfur (S), dust collection dust, iron ore and the like are simultaneously blown in addition to quick lime (CaO) and the like.
Decarburization slag is slag generated in a refining process in which hot metal that has been pretreated is put into a refining furnace such as a converter and oxygen is blown to mainly remove carbon in pig iron. Contains a lot of unhatched CaO.
As described above, various slags having various compositions are generated in steelmaking slag by a refining process, and it is important to use these slags well.
Table 1 shows a comparison of components between typical steelmaking slag components and other CaO and FeO sources.

Figure 2015086419
Figure 2015086419

FeOは、化学分析で計測されるFeOと金属鉄からのFeO変換を考慮した。即ち、金属鉄は、焼結過程の液相生成段階ではFeOまで酸化されるので、金属鉄由来のFeO量を下記の式(1)で計算し、この金属由来のFeOと初めからFeOとして存在していた量を加算した。
(数式1)
換算FeO(%)=M-Fe(%)×(55.8+16)/55.8+FeO(%)・・・(1)
For FeO, FeO conversion from FeO and metallic iron measured by chemical analysis was considered. That is, since metallic iron is oxidized to FeO in the liquid phase generation stage of the sintering process, the amount of FeO derived from metallic iron is calculated by the following formula (1), and this metal-derived FeO and FeO from the beginning are present. The amount that was being added was added.
(Formula 1)
Conversion FeO (%) = M-Fe (%) × (55.8 + 16) /55.8+FeO (%) (1)

本発明においては、炭材の表面被覆材として安価な製鋼スラグを用いるが、融点の低い表面被覆材を用いることを特徴としている。その目的は、(1)低温領域(1200℃未満)では、コークスの表面被覆層によりコークス燃焼を阻止し、NOxの発生を抑制すること、(2)高温領域(1200℃以上)では、融点の低い表面被覆層を溶解させ、露出したコークスのソリューションロス反応により生成したCOガスによりNOxを還元し、NOxの発生を抑制すること、である。
図3により、表面被覆コークスのNOx低減メカニズムを説明する。
表面被覆コークスの効果は、図3に示す被覆効果と剥離効果に大別される。焼結プロセスで発生するNOxはFuel/NOxとされ、サーマルNOxとは逆に、高温域においてNOx発生が抑制される。この基本的な機構は次のように考えられている。
図3において、低温領域(1200℃未満)では、コークスをCaO系原料とFeOから成る被覆層で被覆しておくと、表面被覆材がコークスと酸素との接触を妨害してコークス燃焼そのものを抑制するので、NOxの生成も抑制される。これが、被覆効果である。
一方、高温領域(概ね1200℃以上)では、被覆材は、融点に近ずき液相の生成を開始する。液相生成により、被覆層は流動化して剥離し、本格的なコークス燃焼が開始するが、すでに高温領域であるので、ソリューションロス反応が活発化しているため、NOx生成は抑制される。すなわち、高温域では、コークス表層部においてソリューションロス反応(C+CO2⇒2CO)が活発になり、多量に発生したCOガスがコークス粒子の近傍でコークス燃焼にともなって生成する窒素化合物を還元することで、NOx生成が抑制される。ここに、ソリューションロス反応は、概ね1000℃以上で活発になる。
本願発明においては、CaOの一部をFeOに置換して、液層化の温度を約1200℃から約1100℃へ低下させる(図4)。この被覆剥離開始温度が1100℃に低下しても、すでにソリューションロス反応が活発化しており、NOx還元効果が低下することはない。逆に、被覆層をFeO-CaO系とすることで、被覆層の液相比率と流動性が高まり、被覆層の剥離速度が上昇する。コークスの急激な燃焼を促進して、よりコークス粒近傍のCO/CO比を高め、さらにNOxが低減すると考えられる。これが、剥離効果であり、本願発明の骨子である。
In the present invention, inexpensive steelmaking slag is used as the surface covering material of the carbonaceous material, but a surface covering material having a low melting point is used. The objectives are (1) in the low temperature region (below 1200 ° C), to prevent coke combustion by the coke surface coating layer and to suppress the generation of NOx, (2) in the high temperature region (1200 ° C or higher) The lower surface coating layer is dissolved, and NOx is reduced by the CO gas generated by the solution loss reaction of the exposed coke, thereby suppressing the generation of NOx.
The NOx reduction mechanism of the surface-coated coke will be described with reference to FIG.
The effect of the surface coating coke is roughly divided into a coating effect and a peeling effect shown in FIG. NOx generated in the sintering process is Fuel / NOx, and contrary to thermal NOx, NOx generation is suppressed in a high temperature range. This basic mechanism is considered as follows.
In FIG. 3, in the low temperature region (below 1200 ° C.), if the coke is coated with a coating layer composed of a CaO-based raw material and FeO, the surface coating material prevents the contact between the coke and oxygen and suppresses the coke combustion itself. Therefore, the generation of NOx is also suppressed. This is the covering effect.
On the other hand, in the high temperature region (approximately 1200 ° C. or higher), the coating material approaches the melting point and starts generating a liquid phase. Due to the liquid phase generation, the coating layer is fluidized and separated, and full-scale coke combustion starts. However, since the solution loss reaction is activated because it is already in the high temperature region, NOx generation is suppressed. That is, in the high temperature range, the solution loss reaction (C + CO2⇒2CO) becomes active in the coke surface layer, and a large amount of generated CO gas reduces the nitrogen compounds produced by coke combustion near the coke particles. Thus, NOx generation is suppressed. Here, the solution loss reaction becomes active at about 1000 ° C. or more.
In the present invention, a part of CaO is replaced with FeO, and the temperature of liquid formation is lowered from about 1200 ° C. to about 1100 ° C. (FIG. 4). Even when the coating peeling start temperature is lowered to 1100 ° C., the solution loss reaction has already been activated, and the NOx reduction effect is not lowered. On the contrary, when the coating layer is made of FeO—CaO, the liquid phase ratio and fluidity of the coating layer are increased, and the peeling rate of the coating layer is increased. It is considered that the rapid combustion of coke is promoted to further increase the CO / CO 2 ratio in the vicinity of the coke grains and further reduce NOx. This is a peeling effect and is the gist of the present invention.

図4にCaO-FeO系状態図を示す。表面被覆材としては、溶融温度が低いことが望ましい。図4において、共晶点Pは、CaO/(CaO+FeO)が0.26であり、共晶点の溶融温度は最も低く、表面被覆材の組成として最も好ましい。CaO/(CaO+FeO)がQ点の10質量%より小さい場合、固相線Aが急上昇し固相が多くなる。したがって、表面被覆材のCaO/(CaO+FeO)は、0.1以上が好ましい。
また、CaO/(CaO+FeO)の上限は、固相と液相の共存範囲が広く、判断が難しい。そこで、後述する焼結鍋試験を実施し、0.6が好ましいことが分かった。
FIG. 4 shows a CaO—FeO system phase diagram. The surface coating material preferably has a low melting temperature. In FIG. 4, the eutectic point P is CaO / (CaO + FeO) of 0.26, the eutectic point has the lowest melting temperature, and is most preferable as the composition of the surface coating material. When CaO / (CaO + FeO) is smaller than 10% by mass of the Q point, the solidus A rapidly rises and the solid phase increases. Therefore, CaO / (CaO + FeO) of the surface covering material is preferably 0.1 or more.
Also, the upper limit of CaO / (CaO + FeO) is difficult to judge because the coexistence range of the solid phase and the liquid phase is wide. Then, the sintering pot test mentioned later was implemented and it turned out that 0.6 is preferable.

本発明に係る表面被覆炭材の被覆物の組成は、CaO/(CaO+FeO)が0.1以上0.6以下であり、0.26が最も好ましいが、前記製鋼スラグは、各種の異なるプロセスにより発生するため、CaO/(CaO+FeO)はそれぞれのスラグで変動する。CaO/(CaO+FeO)が、0.1未満の場合は、製鋼スラグに石灰系原料を加えることにより、0.1以上にすることができる。また、0.26以下の場合も、石灰系原料を加えることで、CaO/(CaO+FeO)が0.26の最適の表面被覆炭材を得ることができる。一方、CaO/(CaO+FeO)が0.6を超える場合は、CaO含有量が多すぎ、表面被覆炭材として利用することはできない。
製鋼スラグは、0.1mm以下に粉砕するのが好ましい。表面被覆材として効率的に作用させるためである。
The composition of the coating of the surface-coated carbon material according to the present invention is such that CaO / (CaO + FeO) is 0.1 or more and 0.6 or less, and most preferably 0.26. However, the steelmaking slag is produced by various different processes. As a result, CaO / (CaO + FeO) varies with each slag. When CaO / (CaO + FeO) is less than 0.1, it can be made 0.1 or more by adding a lime-based raw material to steelmaking slag. Moreover, also in the case of 0.26 or less, the optimal surface covering carbon | charcoal material of CaO / (CaO + FeO) 0.26 can be obtained by adding a lime-type raw material. On the other hand, when CaO / (CaO + FeO) exceeds 0.6, the CaO content is too large and cannot be used as a surface-coated carbon material.
The steelmaking slag is preferably pulverized to 0.1 mm or less. It is for making it act efficiently as a surface covering material.

製鋼スラグに加える石灰系原料としては、生石灰の他に水酸化カルシウムが、より好ましい。水酸化カルシウムはバインダーとなり炭材表面に密着した被覆層を形成するため、配合原料との混合時や、焼結機への原料装入までの搬送過程での炭材表面の被覆物の脱離が抑制できるためである。   As the lime-based raw material added to the steelmaking slag, calcium hydroxide is more preferable in addition to quick lime. Calcium hydroxide acts as a binder to form a coating layer that adheres closely to the surface of the carbonaceous material, so that the coating on the surface of the carbonaceous material is detached during mixing with the blended raw materials and during the conveyance process until the raw material is charged into the sintering machine. It is because it can suppress.

本願発明のフローを図5に示す。
配合原料を原料槽14から切り出し、一次ミキサー15及び二次ミキサー16で順次混合、造粒を行う。ここで、配合原料とは、表面被覆炭材の製造に用いられる原料を除いた原料であり、床敷鉱は除く。
次に、表面被覆コークスは、コークス槽11より切り出した粒径0.5mm以上の粗粒コークスを核粒子として、消石灰槽12及び製鋼スラグ槽20から切り出された消石灰及び製鋼スラグを造粒機13に投入し、さらに、パンペレタイザー18で造粒し表面被覆コークス19を製造する。表面被覆コークス19は、二次ミキサー16の後半で、一次ミキサー15及び二次ミキサー16で混合、造粒された原料に添加、混合される。この場合は、表面被覆コークス19の混合を他原料の混合、造粒後に行う後添加である。配合原料を混合、造粒する際に表面被覆炭材を添加すると、炭材表面の被覆層が崩壊、剥離されてしまうことを避けるために、表面被覆コークスは、後添加が好ましい。
The flow of the present invention is shown in FIG.
The blended raw material is cut out from the raw material tank 14, and sequentially mixed and granulated by the primary mixer 15 and the secondary mixer 16. Here, the blended raw material is a raw material excluding the raw material used for the production of the surface-coated carbonaceous material, and excludes the bedding ore.
Next, the surface-coated coke uses coarse coke having a particle diameter of 0.5 mm or more cut out from the coke tank 11 as core particles, and granulates the slaked lime and steel slag cut out from the slaked lime tank 12 and the steelmaking slag tank 20. And granulated with a pan pelletizer 18 to produce a surface-coated coke 19. The surface-coated coke 19 is added to and mixed with the raw material mixed and granulated by the primary mixer 15 and the secondary mixer 16 in the latter half of the secondary mixer 16. In this case, the surface coating coke 19 is added after the other raw materials are mixed and granulated. In order to prevent the coating layer on the surface of the carbonaceous material from collapsing and peeling when the surface-coated carbonaceous material is added when mixing and granulating the blended raw materials, the surface-coated coke is preferably added afterwards.

上記で、石灰系原料を消石灰として説明したが、生石灰の場合は、消化機により水を加え水和反応後の消石灰を用いることが、好ましい。生石灰の水和反応促進と発塵防止のためである。石灰系原料の生石灰又は消石灰は、バインダー機能を有しているので、炭材表面に密着した被覆層が形成され、配合原料との混合時や、焼結機への原料装入までの搬送過程で炭材表面の被覆物の脱離を抑制し、焼結時に発生するNOxをより安定的に低減することができる。
粗粒コークスを製鋼スラグ及び石灰系原料と混合、造粒する方法は、ドラムミキサー、遠心力利用造粒機その他の混合、造粒機であればよい。
In the above description, the lime-based raw material has been described as slaked lime. However, in the case of quicklime, it is preferable to use slaked lime after hydration reaction by adding water by a digester. This is to accelerate the hydration reaction of quicklime and prevent dust generation. Since the lime-based raw quicklime or slaked lime has a binder function, a coating layer that is in close contact with the surface of the carbonaceous material is formed, and the mixing process with the compounding raw material and the conveyance process until the raw material is charged into the sintering machine Thus, desorption of the coating on the surface of the carbon material can be suppressed, and NOx generated during sintering can be more stably reduced.
The method for mixing and granulating coarse coke with steelmaking slag and lime-based raw material may be any drum mixer, centrifugal granulator and other mixing and granulating machines.

次に、本発明の実施例について説明するが、本発明は、これに限られるものではない。
(被覆炭材の準備)
脱硫スラグ、脱炭スラグ、脱珪スラグ及び生石灰を用い、粉コークスに対し10質量%の被覆層を形成した。いずれのスラグも0.1mm以下に微粉砕されている。そして、被覆層のCaO/(CaO+FeO)を変更し、被覆層の組成によるNOx低減効果を調査した。
実験に用いた表面被覆コークスの製造フローを図6に示す。粉コークスと生石灰を万能混練機21により3分間混練し、その後小型ドラムミキサー22により3分間造粒し、水分13.5%の表面被覆コークスを製造した。
(焼結鍋試験)
実施に用いた焼結鍋試験装置の概略図を図7に示す。
この焼結鍋試験装置は、点火炉1、焼結鍋2、風箱3、ブロアー4及び分析計5を備える。
この焼結鍋試験装置では、焼結鍋2に試験体となる表面被覆炭材を装入し、点火炉1で点火して表面被覆炭材を加熱する。同時にブロアー4を起動して、風箱3を介して焼結鍋2で生じた排気ガスを排出し、この排気ガスを分析計5で分析する。
焼結鍋2の直径は、300mm、層高600mmであり、排ガスはCO,CO,O,NOx,SOxを分析した。鉱石とコークス等に水分7.5質量%を外添し、直径1,000mmのドラムミキサーを用いて4分間、混合、造粒した。
混合、造粒した配合原料を焼結鍋試験装置に充填し、点火90秒、吸引負圧15kPa一定の条件で焼成した。焼成中は、層高の異なる3ヶ所で焼結層内の温度測定と排ガス中のNOxの濃度を測定した。試験に用いた原料配合を表2に示し、コークスの粒度分布を表3に示す。
Next, examples of the present invention will be described, but the present invention is not limited thereto.
(Preparation of coated carbon material)
A desulfurization slag, decarburization slag, desiliconization slag and quicklime were used to form a coating layer of 10% by mass with respect to the powdered coke. Any slag is finely pulverized to 0.1 mm or less. And the CaO / (CaO + FeO) of the coating layer was changed, and the NOx reduction effect by the composition of the coating layer was investigated.
A production flow of the surface-coated coke used in the experiment is shown in FIG. Powdered coke and quicklime were kneaded for 3 minutes with the universal kneader 21 and then granulated for 3 minutes with the small drum mixer 22 to produce surface-coated coke with a moisture content of 13.5%.
(Sintering pot test)
A schematic view of the sintering pot test apparatus used for the implementation is shown in FIG.
The sintering pot test apparatus includes an ignition furnace 1, a sintering pot 2, an air box 3, a blower 4, and an analyzer 5.
In this sintering pot test apparatus, the surface covering carbon material used as a test body is inserted into the sintering pot 2 and ignited in the ignition furnace 1 to heat the surface covering carbon material. At the same time, the blower 4 is started, exhaust gas generated in the sintering pot 2 is exhausted through the wind box 3, and the exhaust gas is analyzed by the analyzer 5.
The diameter of the sintering pot 2 was 300 mm and the bed height was 600 mm, and the exhaust gas was analyzed for CO, CO 2 , O 2 , NOx, and SOx. Water of 7.5% by mass was externally added to ore and coke, and mixed and granulated for 4 minutes using a drum mixer having a diameter of 1,000 mm.
The blended raw materials mixed and granulated were filled in a sintering pot test apparatus and fired under conditions of ignition for 90 seconds and suction negative pressure of 15 kPa. During firing, the temperature in the sintered layer and the concentration of NOx in the exhaust gas were measured at three locations with different layer heights. The raw material composition used in the test is shown in Table 2, and the particle size distribution of coke is shown in Table 3.

Figure 2015086419
Figure 2015086419

Figure 2015086419
Figure 2015086419

鍋試験によるテスト結果を表4に示す。
ベースは、粉コークスに表面被覆をしない場合である。
実施例1及び比較例1、比較例2は、粉コークスに対し被覆層厚を一定(10質量%)とし、被覆層の組成を変更した。被覆層の組成は、生石灰由来のCaOと製鋼スラグ由来のCaO質量を50:50の一定とし、FeO質量を調整して、CaO/(CaO+FeO)を変えた。被覆層のCaO/(CaO+FeO)は、0.566(実施例1)、0.889(比較例1)及び0.701(比較例2)である。
鍋試験の結果、CaO/(CaO+FeO)が0.566の実施例では、排ガス中のNOx濃度は、109.3ppmで、低く、目標値(110ppm)を達成したが、比較例1及び比較例2は、目標値をクリアーすることができなかった。
Table 4 shows the results of the pan test.
The base is a case where the powder coke is not surface-coated.
In Example 1, Comparative Example 1, and Comparative Example 2, the coating layer thickness was constant (10% by mass) with respect to the powder coke, and the composition of the coating layer was changed. The composition of the coating layer was such that CaO derived from quick lime and CaO derived from steelmaking slag were fixed at 50:50, and FeO mass was adjusted to change CaO / (CaO + FeO). CaO / (CaO + FeO) of the coating layer is 0.566 (Example 1), 0.889 (Comparative Example 1), and 0.701 (Comparative Example 2).
As a result of the pan test, in the example in which CaO / (CaO + FeO) was 0.566, the NOx concentration in the exhaust gas was 109.3 ppm, which was low and achieved the target value (110 ppm). Comparative Example 1 and Comparative Example 2 Could not clear the target value.

Figure 2015086419
Figure 2015086419

低温領域でのNOxの発生を抑制し、焼結機の生産性を阻害することのない炭材燃焼制御による焼結NOxの低減を図ることができる。   The generation of NOx in the low temperature region can be suppressed, and the reduction of sintered NOx by the carbonaceous material combustion control without impeding the productivity of the sintering machine can be achieved.

1…点火炉、2…焼結鍋、3…風箱、4…ブロアー、5…分析計、11…コークス槽、12…消石灰槽、13…造粒機、14…原料槽、15…一次ミキサー、16…二次ミキサー、18…パンペレタイザー、19…表面被覆コークス槽、20…製鋼スラグ槽、21…万能混練機、22…小型ドラムミキサー。 DESCRIPTION OF SYMBOLS 1 ... Ignition furnace, 2 ... Sintering pan, 3 ... Wind box, 4 ... Blower, 5 ... Analyzer, 11 ... Coke tank, 12 ... Slaked lime tank, 13 ... Granulator, 14 ... Raw material tank, 15 ... Primary mixer , 16 ... secondary mixer, 18 ... pan pelletizer, 19 ... surface-coated coke tank, 20 ... steelmaking slag tank, 21 ... universal kneader, 22 ... small drum mixer.

Claims (3)

鉄鉱石、焼結ダスト、返鉱及び副原料から成る原料に造粒剤及び水を加えて混合・造粒し、造粒した原料を、被覆物で表面被覆した表面被覆炭材を用いて焼成する焼結鉱の製造方法であって、
前記表面被覆炭材の被覆物の組成は、CaO/(CaO+FeO)が0.1以上0.6以下であることを特徴とする焼結鉱の製造方法。
但し、FeO含有量は、金属Fe含有量をFeOに換算したものを含む。
A granulated material and water are added to a raw material consisting of iron ore, sintered dust, return mineral, and auxiliary materials, mixed and granulated, and the granulated raw material is calcined using a surface-coated carbon material that is coated with a coating. A method for producing a sintered ore comprising:
The composition of the coating of the surface-coated carbonaceous material is CaO / (CaO + FeO) being 0.1 or more and 0.6 or less, the method for producing a sintered ore.
However, the FeO content includes the metal Fe content converted to FeO.
前記表面被覆炭材の被覆物は、CaO/(CaO+FeO)が0.6以下の製鋼スラグが含まれることを特徴とする請求項1に記載の焼結鉱の製造方法。   2. The method for producing a sintered ore according to claim 1, wherein the coating of the surface-coated carbon material includes steelmaking slag having a CaO / (CaO + FeO) of 0.6 or less. 前記製鋼スラグが、脱硫スラグであることを特徴とする請求項2に記載の焼結鉱の製造方法。   The method for producing a sintered ore according to claim 2, wherein the steelmaking slag is desulfurization slag.
JP2013224563A 2013-10-29 2013-10-29 Method for producing sintered ore Active JP6167852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013224563A JP6167852B2 (en) 2013-10-29 2013-10-29 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013224563A JP6167852B2 (en) 2013-10-29 2013-10-29 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2015086419A true JP2015086419A (en) 2015-05-07
JP6167852B2 JP6167852B2 (en) 2017-07-26

Family

ID=53049552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013224563A Active JP6167852B2 (en) 2013-10-29 2013-10-29 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP6167852B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020066770A (en) * 2018-10-24 2020-04-30 日本製鉄株式会社 Manufacturing method of sintered ore

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860257A (en) * 1994-08-12 1996-03-05 Kobe Steel Ltd Method for operating iron ore sintering machine
JP2012036464A (en) * 2010-08-09 2012-02-23 Nippon Steel Corp Method of manufacturing sintered ore
JP2012255189A (en) * 2011-06-08 2012-12-27 Nippon Steel & Sumitomo Metal Corp Reforming apparatus for carbon material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860257A (en) * 1994-08-12 1996-03-05 Kobe Steel Ltd Method for operating iron ore sintering machine
JP2012036464A (en) * 2010-08-09 2012-02-23 Nippon Steel Corp Method of manufacturing sintered ore
JP2012255189A (en) * 2011-06-08 2012-12-27 Nippon Steel & Sumitomo Metal Corp Reforming apparatus for carbon material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020066770A (en) * 2018-10-24 2020-04-30 日本製鉄株式会社 Manufacturing method of sintered ore
JP7187971B2 (en) 2018-10-24 2022-12-13 日本製鉄株式会社 Method for producing sintered ore

Also Published As

Publication number Publication date
JP6167852B2 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
KR101311575B1 (en) Process for production of sintered mineral
TWI495730B (en) The method of recovering slag from iron and steel phosphorus
JP4683427B2 (en) Lime-based refining flux
JP5343506B2 (en) Hot phosphorus dephosphorization method
RU2669653C2 (en) Method of producing granular metallic iron
JP5817629B2 (en) Method for producing sintered ore using finely granulated carbon
JP6167852B2 (en) Method for producing sintered ore
CN110257626B (en) Method for preparing sinter from steel rolling iron scale and prepared sinter
JP5703913B2 (en) Method for producing sintered ore
JP5061598B2 (en) Hot metal desulfurization method
JP2006290925A (en) Granular fuel for sintering and method for producing the same
JP5621653B2 (en) A modified coal for producing sintered ore and a method for producing a sintered ore using the modified coal.
JP4639943B2 (en) Hot metal desulfurization method
JP6369699B2 (en) Recovery method of refining flux from hot metal desulfurization slag and dephosphorization / desulfurization method of hot metal
JP2007131929A (en) Solid fuel for vertical scrap-melting furnace, and method for operating vertical scrap-melting furnace
CN109181808A (en) A kind of Ore Sintering Process nitrogen oxides discharge-reducing method
JP5995004B2 (en) Sintering raw material manufacturing method
JP5995005B2 (en) Sintering raw material manufacturing method
JP2011058046A (en) Method for dephosphorizing molten iron
JP4768921B2 (en) High pulverized coal injection low Si blast furnace operation method
JP4311098B2 (en) Manufacturing method of molten steel
JP4751010B2 (en) Blast furnace operation method
RU2643292C2 (en) Method for producing steel in arc steel furnace
JP2010255054A (en) Method for dephosphorizing molten iron
CN115786691A (en) Method for reducing sintering fuel consumption by utilizing carbon-containing dust removal ash and iron-containing dust mud

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R151 Written notification of patent or utility model registration

Ref document number: 6167852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350