JPH0860257A - Method for operating iron ore sintering machine - Google Patents

Method for operating iron ore sintering machine

Info

Publication number
JPH0860257A
JPH0860257A JP6190685A JP19068594A JPH0860257A JP H0860257 A JPH0860257 A JP H0860257A JP 6190685 A JP6190685 A JP 6190685A JP 19068594 A JP19068594 A JP 19068594A JP H0860257 A JPH0860257 A JP H0860257A
Authority
JP
Japan
Prior art keywords
coke
pseudo particles
iron ore
amount
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6190685A
Other languages
Japanese (ja)
Other versions
JP3555189B2 (en
Inventor
Koichi Morioka
耕一 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19068594A priority Critical patent/JP3555189B2/en
Publication of JPH0860257A publication Critical patent/JPH0860257A/en
Application granted granted Critical
Publication of JP3555189B2 publication Critical patent/JP3555189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: To effectively lower the amt. of the NOx to be generated by a small amt. of CF and to attain an additional cost reduction without lowering the combustion rate of coke at this time. CONSTITUTION: Pseudo particles consisting of fine powder catalysts contg. CaO-Fet O based multi component oxide (Fet O signifies iron oxide) and fuel coke are used and are sintered. The content of the fine powder catalysts in these pseudo particles is <=20% (excluding 0%). The pseudo particles are in the form (S type) coated with CF2 on the surfaces of the powder and granular materials l of the fuel coke or granules (P type) formed by mixing the powder and granular materials of the fuel coke and the CF.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鉄鉱石焼結機排ガス中の
窒素酸化物を減少する鉄鉱石焼結機操業方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating an iron ore sintering machine for reducing nitrogen oxides in the exhaust gas of the iron ore sintering machine.

【0002】[0002]

【従来の技術】窒素酸化物(NOx )の低減は大気汚染
の改善において最重要課題の1つとなっている。各種排
ガス中のNOx を低減する手段としては、触媒を用い
る接触還元脱硝法、触媒を用いる接触分解脱硝法とい
った触媒使用による脱硝法が用いられている。
2. Description of the Related Art Reduction of nitrogen oxides (NO x ) is one of the most important issues in improving air pollution. As means for reducing NO x in various exhaust gases, catalytic denitration methods such as catalytic reduction denitration method using a catalyst and catalytic decomposition denitration method using a catalyst are used.

【0003】銑・鋼一貫製鉄所におけるNOx 排出量の
半分近くは鉄鉱石焼結機(以下、焼結機と称す)から排
出されている。そこでいくつかの製鉄所では、環境排出
規制を守る為に、アンモニアを還元剤とする排ガス脱硝
設備を設置しているところもある。
Nearly half of the NO x emissions at the integrated pig and steel mill are emitted from iron ore sintering machines (hereinafter referred to as sintering machines). Therefore, some steel mills are equipped with exhaust gas denitration equipment that uses ammonia as a reducing agent in order to comply with environmental emission regulations.

【0004】しかしながら該排ガス脱硝設備は建設費が
燃焼機本体よりも嵩み、またアンモニアが高価である為
に操業費が高くついたり、稼働中にアンモニウムが漏洩
して新たな公害源になる可能性があることから、安全且
つ効率の良い操業が困難である。この様な状況から上記
排ガス脱硝設備はあまり普及していない。
However, the exhaust gas denitration equipment is more expensive to construct than the main body of the combustor, and the operating cost is high because ammonia is expensive, and ammonium leaks during operation and can become a new pollution source. Therefore, it is difficult to operate safely and efficiently. Under such circumstances, the exhaust gas denitration equipment is not widely used.

【0005】他にも多くのNOx 低減技術が開発されて
きており、例えば、燃焼機から排出されるNOx の大部
分が燃料中窒素由来のNOx であることから、この点に
着目した脱窒法も検討されている。該脱窒法は、燃料中
の窒素が高温になると分離気化し易いという性質を利用
して、燃料中窒素を除く方法である。この処理を行った
コークス等の燃料を焼結機で使うと、NOx 発生量が低
下すると考えられ、例えば特開昭50−1101,特開
昭50−14701等の様に多くの技術が開発された。
しかしこれらの技術は設備及び操業コストが高価なた
め、広く実用化されるには至らなかった。
[0005] A have also been many developments NO x reduction techniques to other, for example, most of the NO x discharged from the combustion unit is because it is NO x from fuel nitrogen, focused on this point A denitrification method is also being considered. The denitrification method is a method of removing nitrogen in fuel by utilizing the property that nitrogen in fuel is easily separated and vaporized when the temperature becomes high. It is considered that the amount of NO x generated is reduced when a fuel such as coke which has been subjected to this treatment is used in a sintering machine, and many technologies have been developed such as those disclosed in Japanese Patent Laid-Open Nos. 50-1101 and 50-14701. Was done.
However, these technologies have not been widely put into practical use because of high equipment and operation costs.

【0006】[0006]

【発明が解決しようとする課題】上述のような状況から
本発明者は、材料的にも製造工程的にも安価に済み、且
つ還元反応、分解反応のいずれによっても窒素酸化物を
効率良く除去することができる窒素酸化物除去触媒及び
その除去方法を発明し、既に特許出願している(特開平
6−15174:以下、先の出願と称すことがある)。
この窒素酸化物除去触媒は、CaO含有量が5〜50重量
%であるCaO−Fet O系複合酸化物(Fet Oは酸
化鉄を示す)を主成分とするものであり、排ガス中に共
存若しくは添加した還元剤によって窒素酸化物を還元除
去する働き、或は窒素酸化物を分解除去する働きを助け
るものである(以下、この窒素酸化物除去触媒をCFと
称することがある)。即ち、CaO−Fet O系複合酸
化物の脱硝作用を利用し、CaO−Fet O系複合酸化
物を含む鉱物を原料鉱石中に装入することで、脱硝効果
を上げるというものである。
In view of the above situation, the present inventor has made the material and the manufacturing process inexpensive and efficiently removes nitrogen oxides by both reduction reaction and decomposition reaction. The inventors have invented a nitrogen oxide removing catalyst and a method for removing the same, and have already filed a patent application (Japanese Patent Laid-Open No. 6-15174: hereinafter referred to as the previous application).
The nitrogen oxide removing catalyst, CaO-Fe t O composite oxide CaO content of 5 to 50 wt% (Fe t O represents an oxide of iron) is mainly composed of, in the exhaust gas It serves to reduce and remove nitrogen oxides by coexisting or added reducing agents, or to decompose and remove nitrogen oxides (hereinafter, this nitrogen oxide removing catalyst may be referred to as CF). That is, by using the denitration of CaO-Fe t O composite oxide, by charging the mineral containing CaO-Fe t O-based composite oxide in the raw material ore, is that increasing the denitration effect.

【0007】このCFの利用によって従来に比べて低コ
ストとはなったが、単に原料鉱石中にCFを装入するの
みでは、多量のCFを必要とし、コストが嵩む。図9は
CFを原料鉱石中に単に混合した場合の、CF混合比と
NOx 転換率との関係を表したグラフである。尚CF混
合比とは、CF重量/(鉱石重量+コークス重量+CF
重量)である。図9から分かる様に、NOx を有効に低
くするには20重量%(以下、単に%と称す)より多く
のCF添加が必要である。従って本発明は、CF量を低
くし、更なるコストダウンを進めることを目的とする。
Although the cost of CF is lower than that of the conventional one, a large amount of CF is required and the cost is increased simply by charging CF into the raw material ore. FIG. 9 is a graph showing the relationship between the CF mixing ratio and the NO x conversion rate when CF is simply mixed in the raw ore. The CF mixture ratio is CF weight / (ore weight + coke weight + CF
Weight). As can be seen from FIG. 9, in order to effectively reduce the NO x , it is necessary to add CF in an amount of more than 20% by weight (hereinafter, simply referred to as “%”). Therefore, an object of the present invention is to reduce the amount of CF and to further reduce the cost.

【0008】[0008]

【課題を解決するための手段】本発明に係る鉄鉱石焼結
機操業方法は、CaO−Fet O系複合酸化物(Fe t
Oは酸化鉄を意味する)を含有する微粉末触媒(上記C
Fと同様の物質である)と燃料コークスとからなる擬似
粒子を用いて焼結するものであり、上記擬似粒子中の上
記微粉末触媒を20%以下(0%を含まない)としたも
のである。
Means for Solving the Problems Iron ore sintering according to the present invention
The machine operation method is CaO-Fet O-based complex oxide (Fe t 
O means iron oxide) and a fine powder catalyst (C above).
Fake), which is a substance similar to F) and fuel coke
The particles are sintered using the above pseudo particles.
Even if the fine powder catalyst is set to 20% or less (not including 0%)
Of.

【0009】また上記擬似粒子は、燃料コークス粉粒体
の表面にCFが被覆した形態(以下、この形態をS型と
称す)、或は燃料コークス粉粒体とCFが混合された造
粒体(以下、この造粒体の形態をP型と称す)であるこ
とが好ましい。更に、上記S型擬似粒子の場合に、CF
の被覆量が5%以下(0%を含まない)であることが好
ましく、また上記P型擬似粒子の場合に、CFの混合量
が15%以下(0%を含まない)であることが好まし
い。
The above pseudo particles have a form in which the surface of a fuel coke powder granule is coated with CF (hereinafter, this form is referred to as S type), or a granulated product in which the fuel coke powder granule and CF are mixed. (Hereinafter, the form of this granule is referred to as P type). Further, in the case of the S-type pseudo particles, CF
Is preferably 5% or less (not including 0%), and in the case of the P-type pseudo particles, the amount of CF is preferably 15% or less (not including 0%). .

【0010】[0010]

【作用及び実施例】先の出願を更に発展させるという趣
旨からCFについて詳細に検討したところ、CFの単位
表面積当たりの能力は、温度が高く、酸素濃度が低い環
境において特に強められるということが今回見い出され
た。しかるに焼結層内においてこの様な好適環境が形成
されるのはコークス近傍である。そこで本発明ではCF
をコークス周囲に配置することに想到した。CFの配置
形態の例を図1に示す。図1の(a)は上記S型を表
し、コークス1の表面にCF2が被覆されている。図1
の(b)は上記P型を表し、コークスとCFが混合した
造粒体となっている。
[Operations and Examples] A detailed examination of CF in order to further develop the previous application shows that the ability of CF per unit surface area is particularly strengthened in an environment where the temperature is high and the oxygen concentration is low. Was found. However, it is in the vicinity of coke that such a suitable environment is formed in the sintered layer. Therefore, in the present invention, CF
Was conceived to be placed around the coke. An example of the arrangement form of CF is shown in FIG. FIG. 1A shows the above S-type, and the surface of the coke 1 is coated with CF2. FIG.
(B) represents the P type, and is a granulated body in which coke and CF are mixed.

【0011】図1の例に示す様に、CFを燃料コークス
に近接させる様に配置して擬似粒子とすれば、CFの効
果を最大限に発揮させることができ、少量のCFで有効
に脱硝することができる。
As shown in the example of FIG. 1, if CF is placed close to the fuel coke to form pseudo particles, the effect of CF can be maximized, and a small amount of CF can effectively remove NOx. can do.

【0012】尚、上記先の出願に開示した様に、CFは
CaOの含有を必須とし、その含有量は該CaO−Fe
t O系複合酸化物中の5〜50%である。Fet Oは酸化
鉄であり、その種類についてはFeO,Fe34 (F
eO・Fe23 ),Fe23 等の如何は問わない
が、一般にFeとOの原子比は0.67〜1.05であることが
好ましい。CFを製造する際には、原料として鉄鉱石と
石灰石を用いる場合が多い。
[0012] As disclosed in the above-mentioned application, CF essentially contains CaO, and the content thereof is CaO-Fe.
It is 5 to 50% in the t 2 O-based composite oxide. Fe t O is iron oxide, and its types are FeO, Fe 3 O 4 (F
eO.Fe 2 O 3 ), Fe 2 O 3 and the like may be used, but it is generally preferable that the atomic ratio of Fe and O is 0.67 to 1.05. When producing CF, iron ore and limestone are often used as raw materials.

【0013】以下に、先ずS型擬似粒子の場合について
詳細に説明する。図5はS型擬似粒子の実験において用
いた実験装置を示す図である。反応チューブ8内の試料
(S型擬似粒子及び鉄鉱石)7をヒーター9で加熱し、
発生したガスを吸入ポンプ3により吸入し、ガス流量計
5によってガスの流量を測り、またガス分析装置4によ
ってNOx 等の成分を分析した。その際の試料7の温度
は熱電対6によって測定した。
First, the case of S-type pseudo particles will be described in detail below. FIG. 5 is a view showing an experimental apparatus used in the experiment of S-type pseudo particles. The sample (S-type pseudo particles and iron ore) 7 in the reaction tube 8 is heated by a heater 9,
The generated gas was inhaled by the inhalation pump 3, to measure the flow rate of the gas by the gas flow meter 5, also was analyzed components such as NO x by gas analyzer 4. The temperature of the sample 7 at that time was measured by the thermocouple 6.

【0014】図2は、S型擬似粒子におけるコークスに
対するCF付着量の比(CF/コークス)と、NOx
換率との関係を表したグラフである。また横軸には、全
原料(鉄鉱石+コークス+CF)に対するCFの割合
(%)を併せて付した。尚本実験に用いたCFは石灰石
40%+鉄鉱石60%の割合のものである。
FIG. 2 is a graph showing the relationship between the ratio of the amount of CF attached to coke in S-type pseudo particles (CF / coke) and the NO x conversion rate. Further, the horizontal axis also shows the ratio (%) of CF to all raw materials (iron ore + coke + CF). The CF used in this experiment is 40% limestone + 60% iron ore.

【0015】図2から分かる様に、CFが少量、例えば
5%存在するだけでNOx が有効に低くなる。そして、
CF量が増えるほどNOx 排出率が低くなるが、10%
を超えて存在してもその効果はほぼ飽和し、更に20%
を超えるとそれ以上のNOx量低下効果は期待できな
い。
As can be seen from FIG. 2, NO x is effectively reduced even if a small amount of CF, for example, 5% is present. And
The NO x emission rate decreases as the CF amount increases, but it is 10%
The effect is almost saturated even if it exists over 20%, and further 20%
If it exceeds, no further effect of reducing the amount of NO x can be expected.

【0016】図3は、全てのコークスが燃え尽きるのに
必要な時間(燃焼時間:コークス1gを燃焼するのに要
する時間(秒))と、コークスに対するCF付着量の比
(CF/コークス)の関係を表したグラフである。
FIG. 3 shows the relationship between the time required for all coke to burn out (combustion time: the time (second) required to burn 1 g of coke) and the ratio of the amount of CF adhered to coke (CF / coke). It is a graph showing.

【0017】図3から分かる様に、CF付着量が5%以
下の場合は燃焼時間は変わらないが、5%を超えた場合
はコークス燃焼時間が長くなる。コークスの燃焼に時間
を要するということは、生産速度の低下に結びつく。従
ってS型擬似粒子の場合ではコークスに対するCF量
は、5%重量以下であることが望ましい。
As can be seen from FIG. 3, when the CF deposit amount is 5% or less, the burning time does not change, but when it exceeds 5%, the coke burning time becomes long. The time required for the coke to burn leads to a decrease in production rate. Therefore, in the case of S-type pseudo particles, the amount of CF with respect to coke is preferably 5% by weight or less.

【0018】尚、生産速度は多少低下することもある
が、NOx 量低下効果の飽和する20%以下であっても
良く(図2参照)、この点から本発明における擬似粒子
のCF付着量の上限を20%とした。
Although the production rate may decrease to some extent, it may be 20% or less at which the NO x amount lowering effect is saturated (see FIG. 2). From this point, the CF adhesion amount of the pseudo particles in the present invention may be reduced. Was set to 20%.

【0019】5%超になると燃焼時間が遅くなってしま
う(図3)理由について調べる目的で、コークス粒子を
観察した。図4はコークス1にCF微粉末2を付着させ
たときの模式断面図であり、図4(a)は5%より多く
のCF微粉末2をコークス1に付着させた状態を模式的
に示し、図4(b)は5%以下のCF微粉末2をコーク
ス1に付着させた状態を模式的に示す。
Coke particles were observed for the purpose of investigating the reason why the burning time was delayed when the content exceeded 5% (FIG. 3). FIG. 4 is a schematic cross-sectional view when CF fine powder 2 is attached to coke 1, and FIG. 4A schematically shows a state where more than 5% of CF fine powder 2 is attached to coke 1. FIG. 4 (b) schematically shows a state in which 5% or less of CF fine powder 2 is attached to coke 1.

【0020】図4(a)に示す様に、CFが5%を超え
るあたりから、コークス1をCF2が全て覆ってしまう
状態となり、コークス1への酸素供給を阻害してしまう
為に燃焼速度が落ちるのではないかと推定される。一方
CFが5%以下の場合は、コークス表面全体を一様に覆
うのではなく、図4(b)に示す様にコークス1の角部
分においては、CF2に覆われず露出している部分があ
るから(図中の矢印部分)、コークス1が外気に触れる
ことになり燃焼速度が落ちないものと推定される。
As shown in FIG. 4 (a), from the point where CF exceeds 5%, the coke 1 is completely covered with CF2, and the oxygen supply to the coke 1 is obstructed, so that the combustion speed is increased. It is estimated that it will fall. On the other hand, when CF is 5% or less, the entire surface of the coke is not uniformly covered, but as shown in FIG. 4B, in the corner portion of the coke 1, the exposed portion that is not covered by CF2 is exposed. Therefore, it is estimated that the coke 1 comes into contact with the outside air and the combustion speed does not decrease.

【0021】種々のコークス(粒径1〜5mm)を用い
てCF被覆(5%以下)によるコークスの燃焼速度の影
響について実験をしてみたところ、いずれも同様に燃焼
速度の低下がなく、上述の如き露出角部が常に存在する
ということを裏づけた。即ち通常用いられるコークスは
全て凹凸を有する。従って、粒径1〜5mmのコークス
粒子を用いる場合は、CFを5%以下とすることでコー
クスの燃焼阻害は避けられる。該5%以下という条件
を、コークス粒径から算出されるコークス表面積に対す
る値として規定すると、粒径250μm以下のCFが
8.4×10-3g/cm2 以下付着する場合となる。
Experiments were carried out on the influence of the coke burning rate due to CF coating (5% or less) using various cokes (particle size 1 to 5 mm). This proves that there is always an exposed corner like this. That is, all coke normally used has irregularities. Therefore, when coke particles having a particle size of 1 to 5 mm are used, the inhibition of coke combustion can be avoided by setting the CF to 5% or less. When the condition of 5% or less is defined as a value for the coke surface area calculated from the coke particle size, CF having a particle size of 250 μm or less is attached in an amount of 8.4 × 10 −3 g / cm 2 or less.

【0022】次にP型擬似粒子の場合について詳細に説
明する。図8はP型擬似粒子の実験において用いた実験
装置を示す図である。実験において、空気吸入口17か
ら、ガス流量計15により流量を調節しつつ空気を反応
チューブ18内に送り込み、試料(P型擬似粒子+鉄鉱
石)10を赤外線加熱炉13によって加熱した。発生し
たガスをガス流量計11及びNOx メーター12によっ
てガス量と成分を分析した。その際の試料10の重量減
少量を天秤14によって測り、また温度を熱電対16に
よって測った。
Next, the case of P-type pseudo particles will be described in detail. FIG. 8 is a diagram showing an experimental apparatus used in the experiment of P-type pseudo particles. In the experiment, air was sent into the reaction tube 18 from the air inlet 17 while adjusting the flow rate by the gas flow meter 15, and the sample (P-type pseudo particle + iron ore) 10 was heated by the infrared heating furnace 13. The generated gas was analyzed for gas amount and components by a gas flow meter 11 and a NO x meter 12. The weight reduction amount of the sample 10 at that time was measured by the balance 14, and the temperature was measured by the thermocouple 16.

【0023】図6はコークスに対するCF混合比と、N
x 転換率との関係を示すグラフである。図6から分か
る様に、コークス粉に混ぜるCFの量が多くなればなる
ほど、NOx の転換率が低下するが、10%を超える辺
りからNOx 転換率の低下効果が飽和する。従ってP型
擬似粒子において、NOx 転換率を確実に低減するには
15%以下が好ましい。
FIG. 6 shows the CF mixture ratio to coke and N.
It is a graph which shows the relationship with Ox conversion rate. As can be seen from FIG. 6, the greater the amount of CF mixed in the coke powder, the lower the NO x conversion rate becomes, but the NO x conversion rate lowering effect saturates from around 10%. Therefore, in order to surely reduce the NO x conversion rate in the P-type pseudo particle, 15% or less is preferable.

【0024】図7は、P型擬似粒子またはコークスのみ
を燃焼させた場合の、それぞれの重量の減少量とNOx
排出率を測定した実験の結果を表したグラフであり、そ
の実験の際において昇温速度を一定に調整して行った。
昇温速度が一定であることから、時間(分)と温度
(℃)が同期するので、図の横軸においてはそれら両方
を記載している。図中、実線は10%のCFを含むP型
擬似粒子の場合のNOx 排出率(Nμl/min.)を、一
点鎖線はコークスのみの場合のNOx 排出率を、点線は
10%のCFを含むP型擬似粒子の場合の鉱石重量の減
少量(mg)を、二点鎖線はコークスのみの場合の鉱石重
量の減少量を示す。
FIG. 7 shows the weight reduction amount and NO x when only P-type pseudo particles or coke are burned.
It is a graph showing the result of the experiment measuring the discharge rate, and the temperature rising rate was adjusted to be constant during the experiment.
Since the rate of temperature increase is constant, the time (minutes) and the temperature (° C) are synchronized, so both are shown on the horizontal axis of the figure. In the figure, the solid line indicates the NO x emission rate (Nμl / min.) In the case of P-type pseudo particles containing 10% CF, the dashed line indicates the NO x emission rate in the case of only coke, and the dotted line indicates the CF of 10%. The amount of reduction of the ore weight (mg) in the case of the P-type pseudo particle containing is shown, and the two-dot chain line shows the amount of reduction of the ore weight in the case of only coke.

【0025】図7から分かる様に、800℃以上ではコ
ークスのみを用いた場合に比べ、P型擬似粒子を用いた
場合の方がNOx 排出率が低く、図中の斜線部分だけN
x排出が減ったということが分かる。理論的にはP型
擬似粒子を用いた場合は燃焼が遅くなってしまうと考え
られたが、図7で見られる重量減少を比較すると、P型
擬似粒子の重量減少が方がむしろ大きく、P型擬似粒子
を用いても燃焼は遅くならないということが分かる。即
ちNOx 排出が少なくなるという効果を発現しながらも
生産性を悪くしない。
As can be seen from FIG. 7, when the temperature is 800 ° C. or higher, the NO x emission rate is lower when the P-type pseudo particles are used than when only the coke is used.
It can be seen that the O x emissions have decreased. Theoretically, it was thought that combustion would be delayed when P-type pseudo particles were used, but when comparing the weight reductions seen in FIG. 7, the P-type pseudo particle weight reduction was rather large, and It can be seen that the combustion does not slow down with the use of type pseudo particles. That is, the productivity is not deteriorated while the effect of reducing NO x emission is exhibited.

【0026】次に、CFを原料(コークス+鉄鉱石)中
に単に混合するという場合と、本発明の擬似粒子を鉄鉱
石に添加する場合について、CF必要量を比較する。C
Fを単に原料中に混合する場合であれば、図9に見られ
る様に、NOx 転換率が十分に低いレベル、例えばNO
x 転換率40%とするには、5%の燃料コークスを用い
た場合では全原料に対するCF混合比が20%以上であ
ることが必要であり、4%の燃料コークスを用た場合で
はCF混合比が40%以上であることが必要である。尚
NOx 転換率が40%になるということは、従来の様に
CFを用いない場合のNOx 転換率約53%に比べる
と、25%(=(53%−40%)÷53%)のNOx
が低減したことになる。従って焼結鉱を1t生産するに
は、燃料コークス5%使用のときはCFが200kg、燃
料コークス4%使用のときはCFが400kg必要とな
る。
Next, the required amount of CF will be compared between the case where CF is simply mixed in the raw material (coke + iron ore) and the case where the pseudo particles of the present invention are added to the iron ore. C
When F is simply mixed in the raw material, as shown in FIG. 9, the NO x conversion rate is at a sufficiently low level, for example, NO.
In order to achieve x conversion of 40%, it is necessary that the CF mixing ratio for all raw materials be 20% or more when 5% fuel coke is used, and CF mixing is used when 4% fuel coke is used. It is necessary that the ratio is 40% or more. The NO x conversion rate of 40% means 25% (= (53% -40%) ÷ 53%) as compared with the NO x conversion rate of about 53% when CF is not used as in the conventional case. NO x
Will be reduced. Therefore, to produce 1 ton of sinter, 200 kg of CF is required when 5% of fuel coke is used, and 400 kg of CF is required when 4% of fuel coke is used.

【0027】これに対し本発明のS型擬似粒子の場合
は、上記と同様にCFを用いない場合に比べNOx を2
5%低くさせるには、即ち図2よりNOx 転換率を50
%から37.5%まで低くさせるには(25%=(50
%−37.5%)÷50%)、全原料に対するCF量は
約0.3%必要なだけである。従って焼結鉱を1t生産
するには、3kgのCFでよい。
On the other hand, in the case of the S-type pseudo particles of the present invention, NO x is 2 as compared with the case where CF is not used as in the above case.
To lower it by 5%, that is, the NO x conversion rate is 50
% To 37.5% (25% = (50
% -37.5%) ÷ 50%), and the amount of CF with respect to all the raw materials is about 0.3%. Therefore, to produce 1 t of sinter, 3 kg of CF is sufficient.

【0028】本発明のP型擬似粒子の場合は、上記と同
様にCFを用いない場合に比べNO x を25%低くさせ
るには、即ち図6よりNOx 転換率を48%から36%
まで低減させるには(25%=(48%−36%)÷4
8%)、全原料に対するCF量は約0.25%必要なだ
けである。従って焼結鉱を1t生産するには2.5kgの
CFでよい。
In the case of the P-type pseudo particles of the present invention, the same as above.
NO compared to when CF is not used x 25% lower
In other words, NO from Figure 6x Conversion rate from 48% to 36%
To reduce to (25% = (48% -36%) / 4
8%), about 0.25% CF amount is required for all raw materials
It is injured. Therefore, to produce 1 ton of sinter, 2.5 kg of
CF can be used.

【0029】次に燃料コークスへのCFの付着方法につ
いて説明する。250μm以下のCFを用い、水の存在
下に燃料コークスとCFを混和し、燃料コークスへCF
を付着させるのが、最も平易で良好な方法である。上記
の様にCFの表面積を250μm以下と大きくすること
で、NOx 量低下効果を高めることができる。付着方法
としてはこの他に、付着剤として低温で揮発する有機バ
インダーを使ったり、ベントナイトやセメント系の鉱物
を少量用いて付着させる等の方法で行っても良く、付着
にはコークスの燃焼を阻害したり、コークスを変性させ
るものでなければ、どの様なものでも良い。尚、上記実
験においては水のみを用いて付着させたが、水はコーク
スの変性や燃焼阻害を起こさないばかりでなく、安価で
もある。
Next, a method of attaching CF to the fuel coke will be described. Use CF of 250 μm or less, mix the fuel coke and CF in the presence of water, and add CF to the fuel coke.
Is the simplest and best method. By increasing the surface area of CF to 250 μm or less as described above, the effect of reducing the amount of NO x can be enhanced. In addition to this, it is also possible to use an organic binder that volatilizes at low temperature as an adhesive, or use a small amount of bentonite or cement-based minerals to adhere, and to prevent the coke from burning. Any material may be used as long as it does not modify the coke or modify the coke. In the above experiment, only water was used for the attachment. However, not only does water not cause coke denaturation or combustion inhibition, but it is also inexpensive.

【0030】また上記の様にCFを予め調製してからコ
ークスに付着させる方法に限るものではなく、例えばC
F原料となる石灰源粉末(石灰石や生石灰等)と酸化鉄
源粉末(鉄鉱石等)を直接コークスへ混和し、高温とす
ることでCFの合成反応を起こし、同時にコークスへ付
着するようにして擬似粒子を作製する方法を用いても良
い。尚上記各CF原料の配合量は前記CF配合量の規定
の通りである。
The method of preparing CF as described above and then adhering it to coke is not limited to the method described above.
The lime source powder (limestone, quick lime, etc.), which is the F raw material, and the iron oxide source powder (iron ore, etc.) are directly mixed into the coke, and a high temperature causes a CF synthesis reaction, and at the same time, adheres to the coke. A method for producing pseudo particles may be used. The compounding amount of each CF raw material is as specified in the CF compounding amount.

【0031】前述の如く鉄鉱石焼結を行う際には、以上
の様なCFとコークスの擬似粒子を鉄鉱石に添加して行
うが、S型擬似粒子とP型擬似粒子といった形態は、コ
ークスの粒径に従って自動的に決まり、コークスの粒径
がCF微粉末より大きい場合はS型擬似粒子となり、同
じ粒径以下の場合はP型擬似粒子となる。尚、CFをよ
り少ない量で効果をより良く上げるには、S型擬似粒子
のみであることが理想的である。
As described above, when the iron ore is sintered, the pseudo particles of CF and coke as described above are added to the iron ore, but the forms such as S type pseudo particles and P type pseudo particles are coke. When the coke particle size is larger than the CF fine powder, it becomes an S-type pseudo particle, and when it is the same or smaller, it becomes a P-type pseudo particle. In order to improve the effect with a smaller amount of CF, it is ideal that only S-type pseudo particles are used.

【0032】[0032]

【発明の効果】本発明に係る鉄鉱石焼結機操業方法にお
いては、CaO−Fet O系複合酸化物を主成分とする
微粉末触媒(CF)を20%以下、燃料コークスに付着
させて擬似粒子とし、焼結を行う様にしたから、コーク
スの燃焼速度を低下させることなく、少量のCFにより
有効にNOx 発生量を低くすることができる。従って先
願発明(特開平6−5174)よりも更なるコストダウ
ンを達成することができる。
In the iron ore sintering machine operating method according to the present invention, CaO-Fe t O based powder catalyst (CF) as a main component a complex oxide of 20% or less, by adhering to the fuel coke Since the pseudo particles are used and the sintering is performed, the NO x generation amount can be effectively reduced by a small amount of CF without reducing the coke burning rate. Therefore, further cost reduction can be achieved as compared with the prior invention (Japanese Patent Laid-Open No. 6-5174).

【図面の簡単な説明】[Brief description of drawings]

【図1】CFの配置形態を示す図。FIG. 1 is a diagram showing an arrangement form of CFs.

【図2】S型擬似粒子における、コークスに対するCF
付着量比または全原料に対するCFの割合と、NOx
換率との関係を表すグラフ。
FIG. 2 CF for coke in S-type pseudo particles
3 is a graph showing the relationship between the amount of deposition or the ratio of CF to all raw materials and the NO x conversion rate.

【図3】コークスに対するCF付着量の比と燃焼時間の
関係を表したグラフ。
FIG. 3 is a graph showing the relationship between the ratio of the amount of CF attached to coke and the burning time.

【図4】S型擬似粒子におけるコークスにCF微粉末を
付着させたときの模式断面図。
FIG. 4 is a schematic cross-sectional view when CF fine powder is attached to coke in S-type pseudo particles.

【図5】S型擬似粒子の実験において用いた実験装置を
示す図。
FIG. 5 is a view showing an experimental device used in an experiment of S-type pseudo particles.

【図6】P型擬似粒子におけるコークスに対するCF混
合比とNOx 転換率との関係を表すグラフ。
FIG. 6 is a graph showing the relationship between the CF mixing ratio with respect to coke and the NO x conversion rate in P-type pseudo particles.

【図7】P型擬似粒子またはコークスのみを燃焼させた
場合の、それぞれの重量の減少量及びNOx 排出率と、
時間及び温度との関係を表すグラフ。
FIG. 7 is a graph showing the weight reduction amount and the NO x emission rate when only P-type pseudo particles or coke are burned,
The graph showing the relationship with time and temperature.

【図8】P型擬似粒子の実験において用いた実験装置を
示す図。
FIG. 8 is a view showing an experimental apparatus used in an experiment of P-type pseudo particles.

【図9】CFを原料中に単に混合した場合の、CF混合
比とNOx 転換率との関係を表したグラフ。
FIG. 9 is a graph showing the relationship between the CF mixing ratio and the NO x conversion rate when CF is simply mixed in the raw material.

【符号の説明】[Explanation of symbols]

4 ガス分析装置 5 ガス流量計 6,16 熱電対 7,10 試料 8,18 反応チューブ 12 NOx メーター4 Gas analyzer 5 Gas flow meter 6,16 Thermocouple 7,10 Sample 8,18 Reaction tube 12 NO x meter

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 燃料コークスと、CaO−Fet O系複
合酸化物(Fet Oは酸化鉄を意味する)を含有する微
粉末触媒からなり、該微粉末触媒が20重量%以下(0
%を含まない)である擬似粒子を用いて焼結することを
特徴とする鉄鉱石焼結機操業方法。
1. A fuel coke, CaO-Fe t O composite oxide (Fe t O means iron oxides) a powder catalyst containing, fine powder catalyst is 20 wt% or less (0
% Of the iron ore sinter machine using the pseudo particles.
【請求項2】 上記擬似粒子は、燃料コークス粉粒体の
表面に上記微粉末触媒が被覆した形態である請求項1に
記載の鉄鉱石焼結機操業方法。
2. The method for operating an iron ore sintering machine according to claim 1, wherein the pseudo particles have a form in which the surface of the fuel coke powder is coated with the fine powder catalyst.
【請求項3】 上記擬似粒子は、燃料コークス粉粒体と
上記微粉末触媒が混合した造粒体となっている請求項1
に記載の鉄鉱石焼結機操業方法。
3. The pseudo particles are granules in which fuel coke powder particles and the fine powder catalyst are mixed.
The method for operating an iron ore sintering machine as described in.
【請求項4】 請求項2の擬似粒子における上記微粉末
触媒の被覆量が5重量%(0%を含まない)以下である
請求項2に記載の鉄鉱石焼結機操業方法。
4. The method for operating an iron ore sintering machine according to claim 2, wherein the coating amount of the fine powder catalyst in the pseudo particles of claim 2 is 5% by weight (not including 0%) or less.
【請求項5】 請求項3の擬似粒子における上記微粉末
触媒の混合量が15重量%(0%を含まない)以下であ
る請求項3に記載の鉄鉱石焼結機操業方法。
5. The iron ore sintering machine operating method according to claim 3, wherein the amount of the fine powder catalyst mixed in the pseudo particles according to claim 3 is 15% by weight or less (not including 0%).
JP19068594A 1994-08-12 1994-08-12 Operating method of iron ore sintering machine Expired - Fee Related JP3555189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19068594A JP3555189B2 (en) 1994-08-12 1994-08-12 Operating method of iron ore sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19068594A JP3555189B2 (en) 1994-08-12 1994-08-12 Operating method of iron ore sintering machine

Publications (2)

Publication Number Publication Date
JPH0860257A true JPH0860257A (en) 1996-03-05
JP3555189B2 JP3555189B2 (en) 2004-08-18

Family

ID=16262175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19068594A Expired - Fee Related JP3555189B2 (en) 1994-08-12 1994-08-12 Operating method of iron ore sintering machine

Country Status (1)

Country Link
JP (1) JP3555189B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398278B1 (en) * 2000-12-01 2003-09-19 주식회사 포스코 Method of reducing sinter with Low Oxidation Degree
JP2012036464A (en) * 2010-08-09 2012-02-23 Nippon Steel Corp Method of manufacturing sintered ore
JP2013001924A (en) * 2011-06-14 2013-01-07 Nippon Steel & Sumitomo Metal Corp Carbonaceous material modification equipment
JP2013023730A (en) * 2011-07-20 2013-02-04 Nippon Steel & Sumitomo Metal Corp Method for producing sintered ore
JP2013023729A (en) * 2011-07-20 2013-02-04 Nippon Steel & Sumitomo Metal Corp Method for producing sintered ore
JP2015014462A (en) * 2013-07-03 2015-01-22 新日鐵住金株式会社 Device, method, and system for coating condition assessment and program
JP2015086419A (en) * 2013-10-29 2015-05-07 新日鐵住金株式会社 Method of producing sintered ore
JP2015200007A (en) * 2014-03-31 2015-11-12 新日鐵住金株式会社 Production method of sintered ore
JP2016104901A (en) * 2014-11-21 2016-06-09 新日鐵住金株式会社 Modified carbonaceous material for manufacturing sinter ore and manufacturing method of sinter ore using the same
JP2017179508A (en) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Carbonaceous material interior granulation particle for manufacturing sinter ore and manufacturing method of sinter ore using the same
JP2018172760A (en) * 2017-03-31 2018-11-08 新日鐵住金株式会社 Manufacturing method of sintered ore and manufacturing device of sintered ore
CN109365490A (en) * 2018-12-07 2019-02-22 中南大学 A method of utilizing metallurgy and municipal solid waste preparation sintering NOx inhibitor
JP2019116684A (en) * 2017-12-26 2019-07-18 Jfeスチール株式会社 Manufacturing method of carbonaceous material inner package particle, and manufacturing method of carbonaceous material inner package sintered ore
JP2020066770A (en) * 2018-10-24 2020-04-30 日本製鉄株式会社 Manufacturing method of sintered ore
JP2020084258A (en) * 2018-11-22 2020-06-04 Jfeスチール株式会社 Method for producing carbonaceous material-containing particles and method for producing carbonaceous material-containing sintered ore

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098402A (en) * 1973-12-31 1975-08-05
JPS5333902A (en) * 1976-09-10 1978-03-30 Nippon Steel Corp Sintering operation method with low nox
JPH0615174A (en) * 1992-07-06 1994-01-25 Kobe Steel Ltd Catalyst to remove nitrogen oxide and removing method of nitrogen oxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5098402A (en) * 1973-12-31 1975-08-05
JPS5333902A (en) * 1976-09-10 1978-03-30 Nippon Steel Corp Sintering operation method with low nox
JPH0615174A (en) * 1992-07-06 1994-01-25 Kobe Steel Ltd Catalyst to remove nitrogen oxide and removing method of nitrogen oxide

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398278B1 (en) * 2000-12-01 2003-09-19 주식회사 포스코 Method of reducing sinter with Low Oxidation Degree
JP2012036464A (en) * 2010-08-09 2012-02-23 Nippon Steel Corp Method of manufacturing sintered ore
JP2013001924A (en) * 2011-06-14 2013-01-07 Nippon Steel & Sumitomo Metal Corp Carbonaceous material modification equipment
JP2013023730A (en) * 2011-07-20 2013-02-04 Nippon Steel & Sumitomo Metal Corp Method for producing sintered ore
JP2013023729A (en) * 2011-07-20 2013-02-04 Nippon Steel & Sumitomo Metal Corp Method for producing sintered ore
JP2015014462A (en) * 2013-07-03 2015-01-22 新日鐵住金株式会社 Device, method, and system for coating condition assessment and program
JP2015086419A (en) * 2013-10-29 2015-05-07 新日鐵住金株式会社 Method of producing sintered ore
JP2015200007A (en) * 2014-03-31 2015-11-12 新日鐵住金株式会社 Production method of sintered ore
JP2016104901A (en) * 2014-11-21 2016-06-09 新日鐵住金株式会社 Modified carbonaceous material for manufacturing sinter ore and manufacturing method of sinter ore using the same
JP2017179508A (en) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Carbonaceous material interior granulation particle for manufacturing sinter ore and manufacturing method of sinter ore using the same
JP2018172760A (en) * 2017-03-31 2018-11-08 新日鐵住金株式会社 Manufacturing method of sintered ore and manufacturing device of sintered ore
JP2019116684A (en) * 2017-12-26 2019-07-18 Jfeスチール株式会社 Manufacturing method of carbonaceous material inner package particle, and manufacturing method of carbonaceous material inner package sintered ore
JP2020066770A (en) * 2018-10-24 2020-04-30 日本製鉄株式会社 Manufacturing method of sintered ore
JP2020084258A (en) * 2018-11-22 2020-06-04 Jfeスチール株式会社 Method for producing carbonaceous material-containing particles and method for producing carbonaceous material-containing sintered ore
CN109365490A (en) * 2018-12-07 2019-02-22 中南大学 A method of utilizing metallurgy and municipal solid waste preparation sintering NOx inhibitor
CN109365490B (en) * 2018-12-07 2020-08-25 中南大学 Method for preparing sintering NOx inhibitor by utilizing metallurgy and municipal solid wastes

Also Published As

Publication number Publication date
JP3555189B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
JPH0860257A (en) Method for operating iron ore sintering machine
JP4870247B2 (en) Method for producing sintered ore
JP3772961B2 (en) Method for treating exhaust gas containing dioxin and composite catalyst for dioxin suppression
CN105543471B (en) A kind of NOx control methods based on suppression Ore Sintering Process fuel bound nitrogen conversion
CN112779418B (en) Preparation method of pellet containing SCR (Selective catalytic reduction) waste catalyst
CN112430730B (en) Suppression of SO in sintering process 2 、NO x Multilayer composite pellets of (2)
EP1354646A1 (en) Method of treating heavy metal and/or organic compound
CN109487077B (en) Method for reducing emission of NOx in iron ore sintering process based on coking wastewater modified fuel
JP2674428B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides
EP0875587B1 (en) Iron or sintering process with reduced emissions of toxic gases
CN112725616B (en) Method for reducing emission of sintering flue gas pollutants by utilizing SCR (selective catalytic reduction) containing waste catalyst pellets
CN109181808B (en) Emission reduction method for nitrogen oxides in iron ore sintering process
CN109251779B (en) NOx emission reduction method based on modified fuel iron ore sintering process
JP2946880B2 (en) Sinter production method
CN109181809A (en) A kind of denatured fuel and preparation method thereof based on reduction catalysts Ore Sintering Process emission reduction NOx
JP3294404B2 (en) How to treat incinerator dust
JP3591587B2 (en) Processing method of fly ash containing dioxin
CN109136542A (en) A kind of discharge-reducing method of Ore Sintering Process flue gas pollutant
JP7187971B2 (en) Method for producing sintered ore
CN112501429B (en) SO in sintering process 2 、NO x Synergistic emission reduction method
CN112410549B (en) Multilayer pellet for reducing emission of sintering flue gas pollutants
JP3536311B2 (en) NOx removal method and NOx removal catalyst in automobile exhaust gas
CN108913879B (en) Low NOxSintering process
JP3499713B2 (en) Exhaust gas treatment method
JPS5921374B2 (en) NOx suppression sintering operation method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees