JP6327082B2 - Pretreatment method for sintered aggregates - Google Patents

Pretreatment method for sintered aggregates Download PDF

Info

Publication number
JP6327082B2
JP6327082B2 JP2014189109A JP2014189109A JP6327082B2 JP 6327082 B2 JP6327082 B2 JP 6327082B2 JP 2014189109 A JP2014189109 A JP 2014189109A JP 2014189109 A JP2014189109 A JP 2014189109A JP 6327082 B2 JP6327082 B2 JP 6327082B2
Authority
JP
Japan
Prior art keywords
mass
nox
quicklime
quick lime
coagulant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014189109A
Other languages
Japanese (ja)
Other versions
JP2016060937A (en
Inventor
茂 樫村
茂 樫村
大山 浩一
浩一 大山
健一 八ヶ代
健一 八ヶ代
翼 原田
翼 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014189109A priority Critical patent/JP6327082B2/en
Publication of JP2016060937A publication Critical patent/JP2016060937A/en
Application granted granted Critical
Publication of JP6327082B2 publication Critical patent/JP6327082B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鉄鋼製造に用いる焼結鉱の製造において、窒素酸化物の発生を抑制する焼結用凝結材の事前処理方法に関する。   The present invention relates to a pretreatment method for a sintered coagulant which suppresses the generation of nitrogen oxides in the production of sintered ore used for steel production.

鉄鋼製造に用いる焼結鉱は、原料となる鉄鉱石に焼結用凝結材(以下、単に凝結材ともいう)及び石灰等を混合し造粒した擬似粒子を、焼結機で焼成することにより製造される。このとき、凝結材に含まれる窒素分の一部が、窒素酸化物(以下、NOxともいう)となって排ガス中に混入する。
NOxは大気汚染物質であることから、大気へのNOxの排出についてその濃度及び量に規制が設けられており、操業条件の調整などの制約が発生する。また、NOxを除去する排ガス処理装置の設置なども行われているが、多大な設備投資が必要となる。
Sintered ore used for iron and steel production is obtained by firing, with a sintering machine, pseudo particles obtained by mixing and granulating a sintered coagulant (hereinafter simply referred to as a coagulant) and lime, etc., with iron ore as a raw material. Manufactured. At this time, a part of nitrogen contained in the coagulation material becomes nitrogen oxide (hereinafter also referred to as NOx) and is mixed into the exhaust gas.
Since NOx is an air pollutant, there are restrictions on the concentration and amount of NOx emission to the atmosphere, and restrictions such as adjustment of operating conditions occur. Moreover, although installation of the exhaust gas processing apparatus which removes NOx is also performed, a great capital investment is required.

そのため、操業制約や設備投資の軽減を目的として、凝結材の事前処理によりNOxの発生を抑制する方法が従来より検討されてきた。
なお、凝結材は、主として炭素を含むもので、NOx源になるものを含み、酸化によって発熱する材料である。例えば、石炭やコークス等を指す。
Therefore, for the purpose of reducing operation restrictions and capital investment, methods for suppressing the generation of NOx by pretreatment of the aggregate have been studied.
The aggregating material is a material mainly containing carbon, including a material that becomes a NOx source, and generates heat by oxidation. For example, it refers to coal and coke.

凝結材の事前処理によってNOxの発生を抑制する方法の一つとして、生成したNOxを還元する物質で、凝結材の表面を被覆する方法がある。
例えば、特許文献1には、カルシウムフェライトを含有する微粉末触媒と凝結材(燃料コークス)を並存させ、生成したNOxを還元して抑制する技術が開示されている。
One method of suppressing the generation of NOx by pretreatment of the aggregate is to coat the surface of the aggregate with a substance that reduces the generated NOx.
For example, Patent Document 1 discloses a technique in which a fine powder catalyst containing calcium ferrite and a coagulant (fuel coke) are present side by side, and the generated NOx is reduced and suppressed.

しかし、特許文献1記載の発明は、カルシウムフェライトを使用するため、造粒性が悪く、凝結材へのカルシウムフェライトの被覆効果が十分に高められない。このため、凝結材の表面が露出し、凝結材中の窒素分がNOxに転換した割合を示すNOx転換率は30%以上となり、更に低減したいというニーズがある。なお、NOx転換率とは、凝結材に含まれる窒素分の総量(100%)に対するNOxに転換した窒素分の割合である。   However, since the invention described in Patent Document 1 uses calcium ferrite, the granulation property is poor, and the effect of covering the aggregate with calcium ferrite cannot be sufficiently enhanced. For this reason, the surface of the coagulation material is exposed, and the NOx conversion rate indicating the ratio of the nitrogen content in the coagulation material converted to NOx is 30% or more, and there is a need for further reduction. The NOx conversion rate is the ratio of nitrogen content converted to NOx with respect to the total amount (100%) of nitrogen content contained in the coagulation material.

そこで、凝結材の事前処理によりNOxの発生を抑える他の方法として、生石灰や消石灰を凝結材に被覆し、NOx転換率の低い高温域で凝結材を燃焼させる方法が開示されている。
例えば、特許文献2記載の発明は、生石灰を用いた技術であり、これにより、NOx転換率を20%台まで低減できることが示されている。
また、特許文献3記載の発明は、焼結鉱製造用の凝結材(炭材)を分級し、1mm以下の凝結材に石灰源を混合し造粒して製造した造粒物と、焼結工程で使用する他の原料との接触を抑制することで、高い生産性とNOx低減効果を発現させる技術である。
Therefore, as another method for suppressing the generation of NOx by pretreatment of the coagulation material, a method of covering the coagulation material with quick lime or slaked lime and burning the coagulation material in a high temperature region where the NOx conversion rate is low is disclosed.
For example, the invention described in Patent Document 2 is a technique using quicklime, and it is shown that the NOx conversion rate can be reduced to the 20% level.
In addition, the invention described in Patent Document 3 classifies the aggregate (carbonaceous material) for the production of sintered ore, mixes the lime source with the aggregate of 1 mm or less and granulates, It is a technology that exhibits high productivity and NOx reduction effect by suppressing contact with other raw materials used in the process.

特開平8−60257号公報JP-A-8-60257 特開2012−172067号公報JP 2012-172067 A 特開2013−216938号公報JP 2013-216938 A

しかしながら、前記従来の技術には、未だ解決すべき以下のような問題があった。
特許文献2の段落[0005]には、微粉の凝結材が低温で酸化し、NOxを発生し易いことが記載されている。このため、特許文献2では、凝結材の粒度に応じてCaの付着量を制御することを記載し(例えば、請求項1)、0.25mm以上の凝結材を主として用い、NOx生成を抑制することを記載している(例えば、段落[0023])。
However, the conventional technique still has the following problems to be solved.
In paragraph [0005] of Patent Document 2, it is described that the fine powdered agglomerate is easily oxidized at a low temperature to generate NOx. For this reason, Patent Document 2 describes that the amount of adhesion of Ca is controlled according to the particle size of the agglomerated material (for example, claim 1), and mainly uses a agglomerated material of 0.25 mm or more to suppress NOx generation. (For example, paragraph [0023]).

凝結材は一般に、石炭やコークスを粉砕して製造されるため、微粉の凝結材は定常的に生産される。このため、上記したように、0.25mm以上の凝結材を主として用いると、微粉の凝結材が余剰になるという問題がある。
更に、凝結材の微粉量を17質量%以下と記載(例えば、段落[0023])しているが、粉砕して製造する凝結材は一般に、微粉の量がこの量よりも多くなり、NOxの低減効果は限定的となる。
Since the agglomerate is generally produced by pulverizing coal or coke, the fine agglomerate is constantly produced. For this reason, as described above, when a condensing material of 0.25 mm or more is mainly used, there is a problem that the fine condensing material becomes excessive.
Further, although the amount of fine powder of the coagulation material is described as 17% by mass or less (for example, paragraph [0023]), the coagulation material produced by pulverization generally has an amount of fine powder larger than this amount, The reduction effect is limited.

特許文献3記載の発明は、1mm以下の含有量が73.0質量%以上の凝結材に、1mm以下の含有量が70質量%以上である石灰源を混合し造粒するに際し、石灰源の配合量を、凝結材と石灰源の合計量に対してCaで5〜50%としている。この石灰源の配合量は、生石灰量で換算すると7〜70質量%であり、また、凝結材に対する外掛けの量で換算すると7〜230質量%であるため、範囲が広過ぎる。
本願発明者らの知見では、例えば、石灰源の配合量が多過ぎると、水和した石灰源が凝集し、この凝集した石灰源の周囲に凝結材が付着するという、NOxの低減に不適切な造粒物が発生する場合があり、NOxの低減効果は限定的なものとなる。
When the invention described in Patent Document 3 is granulated by mixing a lime source having a content of 1 mm or less to 70% by mass or more with a coagulating material having a content of 1 mm or less of 73.0% by mass or more, The blending amount is 5 to 50% in Ca with respect to the total amount of the coagulant and the lime source. The amount of the lime source is 7 to 70% by mass when converted by the amount of quick lime, and 7 to 230% by mass when converted by the amount of the outer coating with respect to the condensed material, so that the range is too wide.
According to the knowledge of the inventors of the present application, for example, when the amount of the lime source is too large, the hydrated lime source aggregates, and the condensed material adheres around the aggregated lime source. Granulated material may be generated, and the NOx reduction effect is limited.

本発明はかかる事情に鑑みてなされたもので、微粉の凝結材を余剰とすることなく、従来に比べてNOxの発生を抑制することが可能な焼結用凝結材の事前処理方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a pretreatment method for a sintered coagulant capable of suppressing the generation of NOx as compared with the prior art without making a fine powder coagulant surplus. For the purpose.

前記目的に沿う本発明に係る焼結用凝結材の事前処理方法は、焼結工程で使用する焼結用凝結材を生石灰で造粒する焼結用凝結材の事前処理方法において、
前記焼結用凝結材中の粒径2mm以上の粒子を10質量%以下とし、前記生石灰中の粒径1mm以下の粒子を80質量%以上とし、前記焼結用凝結材に対する前記生石灰の配合量を外掛けで10質量%以上27質量%以下とする。
なお、上記した粒径の数値は、篩い目の大きさであり、この篩い目を備えた篩いを用いて篩い分け(篩選別)を行った際の篩い上を「以上」と記載し、篩い下を「以下」と記載している(以下、同様)。
A pretreatment method for a sintered coagulant according to the present invention that meets the above-described object is a pretreatment method for a sintered coagulant that is granulated with quicklime for use in a sintering step.
The amount of particles of 2 mm or more in the sintered aggregate is 10% by mass or less, and the particle of 1 mm or less in the quicklime is 80% by mass or more. Is 10% by mass or more and 27% by mass or less.
In addition, the numerical value of the above-mentioned particle diameter is the size of the sieve mesh, and the sieve top when sieving (sieving selection) using the sieve equipped with the sieve mesh is described as “above”. The following is described as “below” (hereinafter the same).

本発明に係る焼結用凝結材の事前処理方法において、前記焼結用凝結材と前記生石灰の造粒に、複数の圧密媒体を水平円筒容器に収納した振動造粒機を用いることが好ましい。   In the pretreatment method for a sintered coagulant according to the present invention, it is preferable to use a vibration granulator in which a plurality of compacted media are housed in a horizontal cylindrical container for the granulation of the sintered coagulant and the quicklime.

本発明に係る焼結用凝結材の事前処理方法は、粒径2mm以上の粒子を10質量%以下に低減した焼結用凝結材と、粒径1mm以下の粒子を80質量%以上とした生石灰とを使用し、更に、焼結用凝結材に対する生石灰の配合量を外掛けで10質量%以上27質量%以下とするので、焼結用凝結材が微粉の生石灰に覆われ、微粉の剥離が生じにくい造粒物(即ち、P型造粒物)を選択的に製造でき、緻密な造粒物が得られる。
これにより、造粒物の搬送に際し、微粉の発生を抑制しながら、その形状を維持した状態で焼結機へ装入できるので、微粉の焼結用凝結材の利用も図れ、従来に比べてNOxの発生を抑制できる。
The pre-treatment method for a sintered coagulant according to the present invention includes a sintered coagulant in which particles having a particle size of 2 mm or more are reduced to 10% by mass or less, and quicklime having 80% by mass or more of particles having a particle size of 1 mm or less. In addition, the amount of quick lime with respect to the sintered condensate is 10% by mass to 27% by mass, so that the sintered condensate is covered with fine powder quick lime and the fine powder is peeled off. It is possible to selectively produce a granulated product that is not easily generated (that is, a P-type granulated product), and a dense granulated product is obtained.
As a result, when the granulated product is transported, it can be charged into the sintering machine while maintaining its shape while suppressing the generation of fine powder. Generation of NOx can be suppressed.

また、焼結用凝結材と生石灰の造粒に振動造粒機を用いる場合、造粒物はより緻密な構造となるので、NOxの低減効果を更に向上できる。   In addition, when a vibration granulator is used for granulating the sintered coagulant and quick lime, the granulated product has a denser structure, so that the NOx reduction effect can be further improved.

本発明の一実施の形態に係る焼結用凝結材の事前処理方法に使用する振動造粒機の断面図である。It is sectional drawing of the vibration granulator used for the pre-processing method of the aggregate for sintering which concerns on one embodiment of this invention. コークスの粒度がNOxの低減率に及ぼす影響を示すグラフである。It is a graph which shows the influence which the particle size of coke has on the reduction rate of NOx. 生石灰の粒度がNOxの低減率に及ぼす影響を示すグラフである。It is a graph which shows the influence which the particle size of quicklime has on the reduction rate of NOx. 生石灰の配合量がNOxの低減率に及ぼす影響を示すグラフである。It is a graph which shows the influence which the compounding quantity of quicklime has on the reduction rate of NOx. 造粒方法がNOxの低減率に及ぼす影響を示すグラフである。It is a graph which shows the influence which the granulation method has on the reduction rate of NOx.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明の焼結用凝結材の事前処理方法に想到した経緯について説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, the background that has been conceived of the pretreatment method for a sintered coagulant of the present invention will be described.

本発明者らは、焼結用凝結材と生石灰を混合し造粒することで得られた造粒物を使用するに際し、焼結機への造粒物の搬送時に、以下の事象が起こることを初めて発見した。
粒径2mm以上の粗粒の凝結材を核とした造粒物(以下、C型造粒物ともいう)は、その表層部に存在する微粉の凝結材が剥離するため、NOxの低減効果が限定的になる。一方、粒径2mm以下の凝結材で構成される造粒物(以下、P型造粒物ともいう)は、焼結機に装入されるまで、その状態が保持される。
これは、上記した粗粒の凝結材は、その表層部が複雑な形状となって、多数の凹凸が存在するため、粗粒と、その表面に付着した微粉との間に空孔が生じ、この空孔が起点となって、粗粒表面から微粉が剥離すると考えられることによる。
When using the granulated product obtained by mixing and granulating the sintered coagulant and quick lime, the following events occur when the granulated product is conveyed to the sintering machine. For the first time.
A granulated product with a coarse aggregate having a particle size of 2 mm or more (hereinafter also referred to as a C-type granulated product) has a NOx reduction effect because the fine aggregate present in the surface layer is peeled off. Become limited. On the other hand, a granulated product composed of a coagulant having a particle size of 2 mm or less (hereinafter also referred to as a P-type granulated product) is maintained until it is charged into a sintering machine.
This is because the coarse-grained condensate described above has a complicated surface layer portion and a large number of irregularities, so that voids are generated between the coarse particles and the fine powder adhering to the surface, This is because it is considered that fine particles are separated from the surface of the coarse particles starting from the pores.

また、生石灰については、粒度が粗くなると、又は、多量となると水和した生石灰がダマとなるため、その周囲にコークスが付着することで、適切にNOxを低減できないことを発見した。   Moreover, about quicklime, when the particle size became coarse or when it became large quantity, since the hydrated quicklime became dama, it discovered that NOx could not be reduced appropriately by coke adhering to the circumference | surroundings.

そこで、本発明者らは、微粉を含む凝結材において、粒径2mm以上の粗粒を低減し、この凝結材と共に造粒する生石灰を適切な粒度及び配合量とすることで、剥離の生じないP型造粒物を選択的に製造し、緻密な造粒物にして、搬送中の微粉の発生を防ぐ事前処理方法に想到した。
即ち、本発明の一実施の形態に係る焼結用凝結材の事前処理方法は、焼結工程で使用する凝結材を生石灰で造粒するに際し、凝結材中の粒径2mm以上(篩い目2mmの篩いの篩い上、以下同様)の粒子を10質量%以下とし、生石灰中の粒径1mm以下(篩い目1mmの篩いの篩い下、以下同様)の粒子を80質量%以上とし、凝結材に対する生石灰の配合量を外掛けで10質量%以上27質量%以下としている。
Therefore, the present inventors reduce the coarse particles having a particle size of 2 mm or more in the coagulation material containing fine powder, and the quick lime granulated together with the coagulation material has an appropriate particle size and blending amount so that peeling does not occur. A P-type granulated product was selectively produced, resulting in a dense granulated product, which led to a pretreatment method for preventing the generation of fine powder during transportation.
That is, in the pretreatment method for a sintered coagulant according to an embodiment of the present invention, when the coagulant used in the sintering process is granulated with quick lime, the particle size in the coagulant is 2 mm or more (2 mm sieve mesh). The particle size of the sieving of the sifter is 10% by mass or less, the particle size in the quicklime is 1 mm or less (under the sieving of the 1 mm sieve, the same shall apply hereinafter) and 80% by mass or more of the particles. The blending amount of quicklime is 10% by mass or more and 27% by mass or less as an outer shell.

[凝結材の構成について]
粗粒を含む凝結材を造粒する場合、粗粒の凝結材を核としてその周りに生石灰と微粉の凝結材の混合物が付着した形態の造粒物(即ち、C型造粒物)となる。しかし、このような造粒物は、前記したように、粗粒コークス表面が複雑形状(凹凸)であることに起因して、内部に空孔が生じ易いため、この空孔が起点となって、粗粒表面の微粉が剥離し、低温燃焼によってNOx発生量が増加すると考えられる。
一方、粗粒を含まない又はその比率が低い凝結材の造粒物(即ち、P型造粒物)は、上記した空孔が生じにくく、造粒物の剥離を抑制しながら焼結機へ装入できるため、NOx発生量を効率的に低減でき、前記した特許文献2に記載のように、微粉の凝結材が余剰になることもない。
[Composition of condensate]
When agglomerated material containing coarse particles is granulated, it becomes a granulated product in a form in which a mixture of quicklime and fine powder agglomerated around the coarse agglomerated material (ie, C-type agglomerated material). . However, as described above, since such a granulated product has a complicated shape (unevenness) on the coarse-grained coke surface, voids are likely to be generated inside. The fine powder on the surface of the coarse particles is peeled off, and it is considered that the amount of NOx generated increases due to low temperature combustion.
On the other hand, a granulated product of a coagulation material that does not contain coarse particles or has a low ratio (that is, P-type granulated product) is less likely to cause the above-described pores, and is thus supplied to a sintering machine while suppressing separation of the granulated product. Since it can be charged, the amount of NOx generated can be efficiently reduced, and the fine powder condensate does not become excessive as described in Patent Document 2 described above.

以上のことから、凝結材中の粒径2mm以上の粒子を10質量%以下としたが、上記したP型造粒物を製造するためには、粒径2mm以上の粒子の量が少ない方がよいため、好ましくは5質量%以下、更に好ましくは2質量%以下がよく、0質量%でもよい。
なお、凝結材の粒径調整は、凝結材(例えば、粉炭や粉コークス)を粉砕することで、粒径2mm以上の粗粒量を調整できるが、これに限定されるものではなく、例えば、分級等により、粗粒を除いて調整することもできる。この除去した粗粒は、更に粉砕することで使用できる。
From the above, the particles having a particle diameter of 2 mm or more in the coagulant were set to 10 mass% or less. However, in order to produce the P-type granulated material, the amount of particles having a particle diameter of 2 mm or more should be smaller. Therefore, it is preferably 5% by mass or less, more preferably 2% by mass or less, or 0% by mass.
In addition, the particle size adjustment of the coagulant can adjust the amount of coarse particles having a particle size of 2 mm or more by pulverizing the coagulant (for example, pulverized coal or coke breeze), but is not limited thereto. It can also be adjusted by removing the coarse particles by classification or the like. The removed coarse particles can be used by further grinding.

[凝結材と造粒する原料を生石灰に規定した理由ついて]
凝結材と生石灰を造粒し、生石灰で凝結材を被覆することにより、焼結機パレット内で1000〜1200℃程度までは凝結材の酸化が進行しにくくなる。一方、1000〜1200℃を超えると、造粒物表面の生石灰と造粒物周囲の鉄鉱石が低融点化合物を形成し、造粒物表面から生石灰が溶融して順次流出する。これを受けて、凝結材が高温雰囲気に露出し、凝結材の酸化が顕著に進行する。なお、生石灰の融点は2000℃を超えており、造粒物周囲の鉄鉱石との反応で生成する低融点化合物(生石灰と鉄鉱石の複合酸化物)として、生石灰が消費され流出するまでは、凝結材の被覆効果が有効であるため、高温になって初めて凝結材の酸化が進行する。このため、生石灰による凝結材の被覆は、生石灰と酸化鉄の複合酸化物(組成にもよるが、融点は800〜1000℃)による凝結材の被覆よりも、好適な効果を奏する。
このように、例えば1000〜1200℃を超える高温雰囲気において、凝結材の酸化を進行させることが可能となるため、凝結材と生石灰を造粒するのがよい。
加えて、生石灰はその一部が消化して微細な水酸化カルシウム微粒子(生石灰粒子よりも粒径が大幅に減少し、主として粒径が1μm以下)となって分散が促進され、また、消石灰も一部溶解して水酸化カルシウム微粒子として凝結材粒子間に再析出するため分散が良好となる。また、消化時に発熱し、水分の蒸発を促す。その結果、凝結材粒子、生石灰粒子、及び、これらを結び付ける水酸化カルシウム微粒子の存在で、主として生石灰粒子による凝結材被覆効果を活かしながら、強固で緻密な造粒物となることから、生石灰を造粒時のバインダーとして用いることが好ましい。
以上のことから、凝結材と造粒する原料を生石灰とした。
[Reasons for specifying the condensate and raw material to be granulated]
By granulating the coagulating material and quick lime and coating the coagulating material with quick lime, the oxidation of the coagulating material is difficult to proceed up to about 1000 to 1200 ° C. in the sintering machine pallet. On the other hand, when the temperature exceeds 1000 to 1200 ° C., the quick lime on the surface of the granulated product and the iron ore around the granulated product form a low melting point compound, and the quick lime melts and flows out sequentially from the surface of the granulated product. In response to this, the aggregate is exposed to a high temperature atmosphere, and the oxidation of the aggregate progresses remarkably. In addition, the melting point of quicklime exceeds 2000 ° C, and as a low melting point compound (complex oxide of quicklime and iron ore) generated by the reaction with iron ore around the granulated product, until quicklime is consumed and flows out, Since the coating effect of the aggregate is effective, the oxidation of the aggregate progresses only at a high temperature. For this reason, the coating of the condensate with quicklime has a more favorable effect than the coating of the condensate with a complex oxide of quicklime and iron oxide (melting point is 800 to 1000 ° C., depending on the composition).
Thus, for example, in a high temperature atmosphere exceeding 1000 to 1200 ° C., it becomes possible to advance the oxidation of the coagulation material, and therefore, the coagulation material and quick lime are preferably granulated.
In addition, quick lime is partly digested to form fine calcium hydroxide fine particles (particle size is significantly reduced compared to quick lime particles, mainly having a particle size of 1 μm or less), and dispersion is promoted. Dispersion is improved because a part of it is dissolved and re-precipitated between the coagulant particles as calcium hydroxide fine particles. In addition, it generates heat during digestion and promotes evaporation of moisture. As a result, the presence of the coagulant particles, quicklime particles, and the calcium hydroxide fine particles that bind them, mainly makes use of the effect of covering the coagulant by the quicklime particles, resulting in a strong and dense granulated product. It is preferable to use it as a binder at the time of granulation.
From the above, quick lime was used as the raw material to be granulated with the coagulant.

[生石灰の粒度と配合量を規定した理由について]
被造粒対象である凝結材の表面は疎水性であるため、水との親和性が悪い。一方、生石灰を添加した凝結材の造粒は、バインダーである生石灰が、水と親和した状態で凝結材の周囲に配列され、凝結材の粒子同士を結びつける。
そのため、凝結材は、水溶性バインダーを用いた造粒には適さず、凝結材の造粒機能を高めるには、凝集材の周囲に配列する生石灰の濃度を高める必要がある。
生石灰はその一部が消化して水酸化カルシウムとなり、当該水酸化カルシウムの微粒子(主として粒径が1μm以下)が緻密な造粒物の生成に寄与するが、水酸化カルシウムの生成促進の観点でも、1mm以下の生石灰を多く用いることが好ましい。この作用は生石灰特有のものであり、石灰石や、生石灰と酸化鉄の複合酸化物には、上記した作用は期待できない。
一方、粒径1mm超の生石灰は、造粒時の水との反応性が低く、造粒中に一部がバインダーとして使用されず、微粉の凝結材が未反応の生石灰表面に配列することで、NOx低減効果を発揮しない場合がある。
そのため、使用する生石灰は、微粉量の高いものを使用する必要がある。
[Reason for prescribing the particle size and amount of quicklime]
Since the surface of the agglomerated material to be granulated is hydrophobic, it has poor affinity with water. On the other hand, in the granulation of the agglomerated material to which quicklime has been added, the quicklime as a binder is arranged around the agglomerated material in a state of affinity with water, and the particles of the agglomerated material are linked together.
Therefore, the coagulant is not suitable for granulation using a water-soluble binder, and in order to enhance the granulation function of the coagulant, it is necessary to increase the concentration of quick lime arranged around the aggregate.
A portion of quicklime is digested to form calcium hydroxide, and the fine particles of calcium hydroxide (mainly having a particle size of 1 μm or less) contribute to the formation of dense granules, but also from the viewpoint of promoting the formation of calcium hydroxide. It is preferable to use a lot of quick lime of 1 mm or less. This action is peculiar to quicklime, and the above-mentioned action cannot be expected from limestone or a composite oxide of quicklime and iron oxide.
On the other hand, quick lime with a particle size of more than 1 mm has low reactivity with water at the time of granulation, and part of the quick lime is not used as a binder during granulation, and fine aggregates are arranged on the surface of unreacted quick lime. , NOx reduction effect may not be exhibited.
Therefore, it is necessary to use quick lime to be used with a high fine powder amount.

また、凝結材に対する生石灰の配合量が低位である場合、微粉の凝結材同士を結びつける力が弱くなり、造粒物の崩壊が生じる。更に、高融点の生石灰粒子による凝結材の被覆効果も得られない。
なお、生石灰量換算で同量の石灰石を用いた場合、800℃超で分解して生成する生石灰によって凝結材の被覆効果は得られるが、石灰石は消化せず、凝結材の粒子同士を結び付ける効果が低いため、NOx低減効果が劣る。また、生石灰量換算で同量の複合酸化物(生石灰と酸化鉄の複合酸化物)を用いた場合、複合酸化物は800℃程度で溶融を開始するため、凝結材の被覆効果が得られず、また、消化の効果(水酸化カルシウム微粒子を活用した緻密な造粒物)も期待できないため、NOx低減効果が大きく劣る。
一方、生石灰の配合量が過剰である場合、水和した生石灰が凝集してダマとなることで、上記のような微粉の凝結材が生石灰の凝集体周囲に配列するため、NOxの低減効果を発揮しない。
そのため、凝結材に対する生石灰の配合量を、適切に設定する必要がある。
Moreover, when the compounding quantity of quick lime with respect to a setting material is low, the force which connects the setting materials of a fine powder will become weak, and collapse of a granulated material will arise. Furthermore, the effect of covering the coagulant with high melting point quicklime particles cannot be obtained.
In addition, when the same amount of limestone is used in terms of the amount of quicklime, the effect of covering the coagulant is obtained by quicklime produced by decomposition at over 800 ° C, but the effect of linking the particles of the coagulant without digesting limestone Is low, the NOx reduction effect is poor. In addition, when the same amount of complex oxide (complex oxide of quicklime and iron oxide) is used in terms of the amount of quicklime, the composite oxide starts melting at about 800 ° C., so the coating effect of the coagulant cannot be obtained. In addition, the effect of digestion (dense granulated product utilizing calcium hydroxide fine particles) cannot be expected, so the NOx reduction effect is greatly inferior.
On the other hand, when the amount of quicklime is excessive, the hydrated quicklime is agglomerated and becomes lumps, and the above-mentioned fine aggregates are arranged around the quicklime agglomerates. Does not demonstrate.
Therefore, it is necessary to appropriately set the blending amount of quicklime with respect to the setting material.

以上のことから、生石灰中の粒径1mm以下の粒子を80質量%以上としたが、上記した理由から、粒径1mm以下の粒子の量は、多い方がNOx発生量を低減できるため、好ましくは90質量%以上、更に好ましくは95質量%以上がよく、100質量%でもよい。
また、凝結材に対する生石灰の配合量を、凝結材の量を100質量%として外掛けで10質量%以上27質量%以下としたが、上記した理由から、生石灰の添加効果をより顕著に得るには、下限を12質量%、更には15質量%とすることが好ましく、上限を26質量%、更には25質量%とすることが好ましい。
From the above, particles with a particle size of 1 mm or less in quicklime were set to 80% by mass or more. For the reasons described above, the amount of particles with a particle size of 1 mm or less is preferably larger because the amount of NOx generated can be reduced. Is 90% by mass or more, more preferably 95% by mass or more, or 100% by mass.
Moreover, although the compounding quantity of the quick lime with respect to the coagulating material was 10 mass% or more and 27 mass% or less with the amount of the coagulating material as 100 mass%, the addition effect of quick lime was acquired more notably from the reason mentioned above. The lower limit is preferably 12% by mass, more preferably 15% by mass, and the upper limit is preferably 26% by mass, more preferably 25% by mass.

[NOxの発生を抑制するメカニズム]
本発明者等は、前記した特許文献2に記載されている微粉の凝結材を含む造粒物とNOx発生の関係について調べた。
具体的には、凝結材の造粒方法、特に造粒物に作用させる加速度及び加圧力(圧密度)の影響を調べるため、比較的加速度及び/又は加圧力の小さな造粒装置であるドラムミキサー及びパンペレタイザーに対し、加圧力の大きな造粒装置である振動造粒機及びブリケット製造機、また、加速度の大きな造粒装置であるマルメライザーを比較検討した。
上記した凝結材を含む造粒物を、鉄鉱石を含む焼結原料を造粒するドラムミキサーに添加して擬似粒子を製造し、鍋試験にて焼結鉱を焼成し、焼成時のNOxを調査した。
[Mechanism to suppress NOx generation]
The inventors of the present invention investigated the relationship between the granulated material containing the fine-coagulated material described in Patent Document 2 and the generation of NOx.
Specifically, a drum mixer which is a granulating apparatus having a relatively small acceleration and / or pressing force in order to investigate the effect of the acceleration and pressing force (pressure density) applied to the granulated product, particularly the granulation method of the aggregate. In addition, a vibration granulator and a briquette making machine, which are granulators with a large applied pressure, and a malmerizer, which is a granulator with a large acceleration, were compared with the pan pelletizer.
The above-mentioned granulated material containing the coagulant is added to a drum mixer for granulating a sintering raw material containing iron ore to produce pseudo particles, and the sintered ore is fired in a pan test, and NOx at the time of firing is calculated. investigated.

その結果、ドラムミキサーやパンペレタイザーで造粒した造粒物は、NOx転換率が30%超と高く、NOx発生量の抑制に寄与が少ないことを確認した。また、加速度の大きなマルメライザーも、NOx転換率は30%超と、NOx低減効果が小さいことを確認した。
ドラムミキサーやパンペレタイザーで造粒した造粒物は、造粒時の造粒物にかかる加速度が実質的に1G程度(Gは重力加速度、以下同様)であるのに対し、マルメライザーでは20Gに達するが、NOx低減効果が同等に低位であることから、必ずしも加速度を大きくすることではNOxを十分に低減できないことが判明した。
As a result, it was confirmed that the granulated product granulated with a drum mixer or a pan pelletizer had a high NOx conversion rate of over 30% and contributed little to the suppression of NOx generation. In addition, it was confirmed that the Malmerizer with a large acceleration also has a low NOx reduction effect with a NOx conversion rate exceeding 30%.
The granulated product granulated with a drum mixer or pan pelletizer has an acceleration applied to the granulated product at the time of granulation of about 1G (G is the gravitational acceleration, the same applies hereinafter), whereas in the Malmerizer it is 20G. However, since the NOx reduction effect is equally low, it has been found that it is not always possible to sufficiently reduce NOx by increasing the acceleration.

これに対し、本発明者等は、加速度が例えば1.5G以上である振動造粒機や、線圧1トン/cmのブリケット製造機を用いて製造した造粒物を用いて、焼成時のNOx発生量を調査した。
その結果、ドラムミキサー、パンペレタイザー、マルメライザーで造粒した造粒物に比べて、振動造粒機やブリケット製造機を用いて製造した造粒物を使用した焼成では、NOx転換率が20%台に低下し、NOx発生量を極めて低減できることを発見した。
On the other hand, the present inventors used a granulator manufactured using a vibration granulator having an acceleration of, for example, 1.5 G or more and a briquette manufacturing machine having a linear pressure of 1 ton / cm. The amount of NOx generated was investigated.
As a result, compared with the granulated product granulated with a drum mixer, pan pelletizer, and mulmerizer, the NOx conversion rate is 20% when firing using the granulated product manufactured using a vibration granulator or briquette manufacturing machine. It has been found that the amount of NOx generated can be greatly reduced.

また、ドラムミキサーで造粒した造粒物を数日間、大気で養生し、造粒物の強度を向上させた造粒物を用いた場合についても比較したが、造粒物の強度が高くなったにも関わらず、NOx低減効果は十分ではなかった。   In addition, we compared the case where the granulated product granulated with a drum mixer was cured in the atmosphere for several days to improve the strength of the granulated product, but the strength of the granulated product increased. Nevertheless, the NOx reduction effect was not sufficient.

以上の結果より、造粒物に強い加圧力を作用させ、緻密な造粒物を形成することが、NOxの低減に有効であると推定される。特に、養生によって造粒物強度を確保したにも関わらず、十分なNOx低減が図られなかった一方で、圧密媒体やロールによる強制的な加圧力を造粒物に作用させた場合に、NOx低減効果が発現したことから、加圧することによって造粒物が緻密化して、NOx転換率が抑えられたと推定される。   From the above results, it is presumed that it is effective for reducing NOx to apply a strong pressure to the granulated material to form a dense granulated material. In particular, the NOx is not sufficiently reduced despite securing the strength of the granulated product by curing, but NOx is reduced when a forced pressurizing force by a compacting medium or roll is applied to the granulated product. Since the reduction effect was expressed, it is presumed that the granulated material was densified by pressurization and the NOx conversion rate was suppressed.

上述したNOx発生量の相違は、造粒物内の微粉の凝結材の酸化において、圧密度が小さな造粒物は構成する粒子同士の間を空気が透過するため、比較的低温段階から造粒物内の微粉凝結材が酸化するのに対し、振動造粒機やブリケット製造機で製造した造粒物は、構成する粒子が圧密されて粒子同士の間の空気の透過性が抑制され、低温段階での微粉の凝結材の酸化が進まなかったためと考えられる。
更に、焼結機内で温度が1000℃以上となった段階で、造粒物を構成する生石灰や消石灰が溶融流出し、露出した微粉凝結材が1000℃以上の高温で酸化することで、NOx発生が抑制されたと考えられる。
The difference in the generation amount of NOx described above is that, in the oxidation of the fine aggregated material in the granulated product, the granulated product having a small pressure density allows the air to pass between the constituent particles. While the fine powder condensate in the product oxidizes, the granulated product produced by a vibration granulator or briquette production machine consolidates the particles and suppresses air permeability between the particles. It is thought that the oxidation of the fine powder coagulant did not progress at the stage.
Furthermore, when the temperature reaches 1000 ° C. or higher in the sintering machine, quick lime and slaked lime constituting the granulated material melt and flow out, and the exposed fine powder aggregate is oxidized at a high temperature of 1000 ° C. or higher, thereby generating NOx. Is considered to be suppressed.

以上のことから、凝結材と生石灰との造粒処理には、複数の圧密媒体を備えた振動造粒機を使用することが好ましい。これは、造粒時に、圧密媒体によって造粒物が加圧され、圧密な造粒物を製造できることによる。
また、振動造粒機は、凝結材と生石灰を混練する機能もあるため、好ましい。
更に、振動造粒機は、複数の圧密媒体が収納された水平円筒容器を用いたものであることが好ましい。これは、振動造粒機が、凝結材と生石灰の混練機能に優れ、凝結材と生石灰をより均一に分散させた造粒物を製造することが可能となり、NOx低減効果の向上が望めることによる。
なお、振動造粒機は、圧密媒体に、造粒物以上の密度のものを用いることが好ましい。
From the above, it is preferable to use a vibration granulator equipped with a plurality of compaction media for the granulation treatment of the coagulant and quicklime. This is because the granulated product is pressed by the compacting medium at the time of granulation, and the compacted granulated product can be produced.
Moreover, the vibration granulator is preferable because it has a function of kneading the coagulating material and quicklime.
Furthermore, it is preferable that the vibration granulator uses a horizontal cylindrical container in which a plurality of compaction media are stored. This is because the vibration granulator is excellent in the kneading function of the coagulating material and quick lime, can produce a granulated product in which the coagulating material and quick lime are more uniformly dispersed, and can be expected to improve the NOx reduction effect. .
In the vibration granulator, it is preferable to use a compacted medium having a density higher than that of the granulated product.

ここで、上記した振動造粒機の一例を、図1に示す。
振動造粒機10は、水平円筒容器11と、水平円筒容器11に収納された複数の圧密媒体12と、水平円筒容器11の両側部に配置された一対の重錘回転式振動モータ13とから概略構成されている。
Here, an example of the vibration granulator described above is shown in FIG.
The vibration granulator 10 includes a horizontal cylindrical container 11, a plurality of compacting media 12 accommodated in the horizontal cylindrical container 11, and a pair of weight rotary vibration motors 13 disposed on both sides of the horizontal cylindrical container 11. It is roughly structured.

水平円筒容器11の上部には、水平円筒容器11内に原料を投入するための開口部14と、水平円筒容器11内に水を注入するための注水口15が設けられている。
圧密媒体12には円柱状の鋼製ロッド(鋼球でもよい)が使用され、一対の重錘回転式振動モータ13は同方向に同期回転する。
In the upper part of the horizontal cylindrical container 11, there are provided an opening 14 for introducing the raw material into the horizontal cylindrical container 11 and a water injection port 15 for injecting water into the horizontal cylindrical container 11.
A cylindrical steel rod (a steel ball may be used) is used as the compacting medium 12, and the pair of weight rotary vibration motors 13 are synchronously rotated in the same direction.

一対の重錘回転式振動モータ13が例えば右回転すると、水平円筒容器11が鉛直面内でループを描くように円振動する。これにより、水平円筒容器11に収納された各圧密媒体12が右回転し、水平円筒容器11と接触することにより全体として左方向に回転する。即ち、各圧密媒体12は、水平円筒容器11内を遊星歯車のように自転しながら回転する。
振動に伴って、圧密媒体12と圧密媒体12の間、圧密媒体12と水平円筒容器11との間に、凝結材、生石灰、及び水分が侵入し、衝撃、剪断、混合、混練され、フレーク状の造粒物が形成される。
When the pair of weight rotating vibration motors 13 rotate to the right, for example, the horizontal cylindrical container 11 vibrates circularly so as to draw a loop in the vertical plane. Thereby, each compaction medium 12 accommodated in the horizontal cylindrical container 11 rotates to the right, and rotates in the left direction as a whole by contacting the horizontal cylindrical container 11. That is, each compaction medium 12 rotates while rotating in the horizontal cylindrical container 11 like a planetary gear.
Along with the vibration, the condensed material, quicklime, and moisture enter between the compacted medium 12 and the compacted medium 12 and between the compacted medium 12 and the horizontal cylindrical container 11, and are impacted, sheared, mixed, kneaded, and flaky. A granulated product is formed.

なお、振動造粒機10の振動が他に伝播しないようにするため、振動造粒機10はベース16上に空気バネ17を介して防振支持されている。   In order to prevent the vibration of the vibration granulator 10 from being propagated elsewhere, the vibration granulator 10 is supported on the base 16 via an air spring 17 in an anti-vibration manner.

この振動造粒機を使用して造粒物を製造するに際しては、例えば、造粒時の水分が内掛けで10質量%以上(上限は20質量%程度)となるように水分調整し、造粒時間を1.5G以上の加速度で60秒間以上(造粒物の破壊を抑制する観点から、上限は600秒程度)とするのがよい。   When producing a granulated product using this vibratory granulator, for example, the moisture is adjusted so that the moisture during granulation is 10% by mass or more (upper limit is about 20% by mass). It is preferable to set the granule time at an acceleration of 1.5 G or more for 60 seconds or more (the upper limit is about 600 seconds from the viewpoint of suppressing the destruction of the granulated product).

上記した造粒物を、必要に応じてパンペレタイザー(ドラムミキサーやレディゲミキサーでもよい)に装入し、更に造粒処理した後、貯留槽に貯留する。これにより、造粒物や被覆層の緻密度が向上してNOx低減効果が拡大する。
そして、上記した造粒物を、他の焼結原料(例えば、鉄鉱石や無煙炭)と共に、ドラムミキサーで造粒処理することで、擬似粒子を製造できる。
このドラムミキサーで製造した擬似粒子を、焼結機に装入して焼成することで、焼結鉱となる。なお、焼結時に発生する排ガスは、ブロワにより焼結機から吸引され、電気集塵機により粉塵等が除去された後、煙突から大気中に排出される。
The granulated material described above is charged into a pan pelletizer (may be a drum mixer or a Redige mixer) as necessary, and further granulated, and then stored in a storage tank. Thereby, the density of the granulated product and the coating layer is improved, and the NOx reduction effect is expanded.
And an artificial particle can be manufactured by granulating the above-mentioned granulated material with a drum mixer with other sintering raw materials (for example, iron ore and anthracite).
The pseudo particles produced by this drum mixer are charged into a sintering machine and fired to form a sintered ore. In addition, the exhaust gas generated at the time of sintering is sucked from the sintering machine by a blower, and dust and the like are removed by an electric dust collector, and then discharged from the chimney to the atmosphere.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、凝結材として使用するコークスの粒度、生石灰の粒度、生石灰の配合量(濃度)を種々変化させて製造した造粒物を用い、鍋試験によりNOx低減効果を確認した。
使用したコークスの粒度、生石灰の粒度、及び、焼結原料の配合条件をそれぞれ、表1〜3に示す。なお、表3に記載の配合条件は、コークスと生石灰の造粒物と他の焼結原料とを、ドラムミキサーで処理した後の擬似粒子の配合条件である。
Next, examples carried out for confirming the effects of the present invention will be described.
Here, the NOx reduction effect was confirmed by the pot test using the granulated material manufactured by changing the particle size of coke used as a coagulation material, the particle size of quicklime, and the compounding quantity (concentration) of quicklime.
Tables 1 to 3 show the particle size of the coke used, the particle size of quicklime, and the blending conditions of the sintering raw materials, respectively. The blending conditions shown in Table 3 are blending conditions for pseudo particles after the coke and quicklime granulated product and other sintered raw materials are treated with a drum mixer.

Figure 0006327082
Figure 0006327082

Figure 0006327082
Figure 0006327082

Figure 0006327082
Figure 0006327082

造粒物は、コークスと生石灰を、ドラムミキサーもしくは振動造粒機を用いて造粒することで得た。なお、コークスへの生石灰の配合量は、コークスに対して外掛けで5〜40質量%の範囲で調整した。
使用したドラムミキサーは直径1mの試験機である。使用にあっては、回転数20rpmで5分間造粒処理を行った。
また、振動造粒機は、直径300mmの水平円筒容器に50φの鋼製ロッド(圧密媒体)が6本収納されたものである。使用にあっては、6Gの振動加速度で5分間造粒処理を行った。
試験条件と試験結果を、表4に示す。
The granulated product was obtained by granulating coke and quicklime using a drum mixer or a vibratory granulator. In addition, the compounding quantity of the quick lime to coke was adjusted in the range of 5-40 mass% on the outside with respect to coke.
The drum mixer used is a 1 m diameter tester. In use, granulation was performed at a rotation speed of 20 rpm for 5 minutes.
Moreover, the vibration granulator is one in which six 50φ steel rods (consolidation medium) are housed in a horizontal cylindrical container having a diameter of 300 mm. In use, granulation was performed for 5 minutes at a vibration acceleration of 6G.
Table 4 shows test conditions and test results.

Figure 0006327082
Figure 0006327082

表4に記載の種類(粒度)のうち、コークスの欄の記号A〜Dはそれぞれ、表1の記号A〜Dに対応し、また、生石灰の欄の記号a〜cはそれぞれ、表2の記号a〜cに対応している。
また、表4に記載のNOxの濃度は、鍋試験で得られたNOxの濃度であり、本実施例では、150ppm以下を、NOx低減効果が現れたとした。
そして、表4に記載のNOxの低減率は、表4に記載のベース条件のNOx濃度(180ppm)に対する低減の割合を示している。ここで、ベースとは、生石灰が添加されていない未造粒の凝結材を使用したものである。
以下に、NOxの低減率の計算式を示す。
{(ベース条件のNOx濃度)−(各条件のNOx濃度)}/(ベースのNOx濃度)×100(%)
Of the types (granularity) described in Table 4, symbols A to D in the coke column correspond to symbols A to D in Table 1, respectively, and symbols a to c in the quick lime column respectively Corresponds to symbols a to c.
Moreover, the concentration of NOx shown in Table 4 is the concentration of NOx obtained in the pan test, and in this example, the NOx reduction effect appeared at 150 ppm or less.
The NOx reduction rate described in Table 4 indicates the reduction ratio with respect to the NOx concentration (180 ppm) of the base conditions described in Table 4. Here, the base is a non-granulated coagulant to which quicklime is not added.
The formula for calculating the NOx reduction rate is shown below.
{(NOx concentration of base condition) − (NOx concentration of each condition)} / (NOx concentration of base) × 100 (%)

表4に示す実施例1〜4は、コークスの粒度、生石灰の粒度、及び生石灰の配合量を、それぞれ適正範囲(コークスの粒径:2mm以上を10質量%以下、生石灰の粒径:1mm以下を80質量%以上、生石灰の配合量:10〜27質量%、以下同様)とし、しかも、コークスと生石灰として比較的低粒度のものを使用した結果である。この条件では、NOx低減効果が大きかった(NOx濃度:150ppm以下)。
また、実施例5〜8は、コークスの粒度、生石灰の粒度、及び生石灰の配合量を、それぞれ適正範囲とし、特に、生石灰の配合量を、適正範囲の下限と上限に調整した結果である。この条件でも、高いNOx低減効果が得られた。
更に、実施例9は、コークスの粒度、生石灰の粒度、及び生石灰の配合量を、それぞれ適正範囲とし、更に、振動造粒機を使用した結果である。この条件では、最も高いNOx低減効果が得られた(NOx濃度:132ppm)。
In Examples 1 to 4 shown in Table 4, the coke particle size, the quick lime particle size, and the quick lime compounding amount are respectively in appropriate ranges (coke particle size: 2 mm or more, 10 mass% or less, quick lime particle size: 1 mm or less. 80 mass% or more, quick lime blending amount: 10 to 27 mass%, the same applies hereinafter), and a coke and quick lime having a relatively low particle size. Under these conditions, the NOx reduction effect was great (NOx concentration: 150 ppm or less).
In addition, Examples 5 to 8 are the results of adjusting the coke particle size, the quick lime particle size, and the quick lime blending amount to appropriate ranges, and particularly adjusting the quick lime blending amount to the lower limit and the upper limit of the proper range. Even under these conditions, a high NOx reduction effect was obtained.
Furthermore, Example 9 is the result of setting the coke particle size, the quick lime particle size, and the quick lime compounding amount to appropriate ranges, respectively, and using a vibrating granulator. Under these conditions, the highest NOx reduction effect was obtained (NOx concentration: 132 ppm).

一方、比較例1〜3は、コークスの粒度を適正範囲外(2mm以上を10質量%超)とし、コークス中の粗粒を多くした結果である。この条件では、NOx低減効果が限定的であった(NOx濃度:150ppm超)。
また、比較例3、4は、生石灰の粒度を適正範囲外(1mm以下を80質量%未満)とし、生石灰中の微粉を少なくした結果である。この条件では、生石灰が反応性に乏しいことから、NOx低減効果が限定的であった。
そして、比較例5は、生石灰の配合量を適正範囲の下限値未満(10質量%未満)とし、生石灰の配合量を少なくした結果であるが、この条件では、微粒のコークスを造粒できないため、NOx低減効果が限定的であった。一方、比較例6は、生石灰の配合量を適正範囲の上限値超(27質量%超)とし、生石灰の配合量を多くした結果であるが、生石灰が凝集し、その周囲へ微粒コークスが配列するため、NOx低減効果が限定的であった。
On the other hand, Comparative Examples 1 to 3 are the results of increasing the coarse particles in the coke by setting the coke particle size outside the proper range (2 mm or more exceeding 10 mass%). Under these conditions, the NOx reduction effect was limited (NOx concentration: over 150 ppm).
Moreover, the comparative examples 3 and 4 are the results of making the particle size of quick lime out of an appropriate range (1 mm or less is less than 80 mass%) and reducing the fine powder in quick lime. Under these conditions, quick lime is poor in reactivity, so the NOx reduction effect was limited.
And the comparative example 5 is the result which made the compounding quantity of quick lime less than the lower limit of an appropriate range (less than 10 mass%), and decreased the compounding quantity of quick lime, but since it cannot granulate a fine coke on these conditions. The NOx reduction effect was limited. On the other hand, Comparative Example 6 is the result of setting the amount of quick lime to exceed the upper limit (over 27% by mass) of the appropriate range and increasing the amount of quick lime, but quick lime aggregates and fine coke is arranged around it. Therefore, the NOx reduction effect was limited.

以上の結果を用い、コークスの粒度、生石灰の粒度、生石灰の配合量、及び、造粒方法が、NOxの低減率に及ぼす影響をそれぞれ整理した結果について説明する。
まず、コークスの粒度がNOxの低減率に及ぼす影響について、図2を参照しながら説明する。
図2は、生石灰の種類をa(粒径1mm以下を100質量%)にし、生石灰の配合量を20質量%にして、コークスの粒径2mm以上を5〜30質量%(A〜D)の範囲で変化させた場合のグラフである。即ち、図2の横軸のA〜Dはそれぞれ、表4中の実施例1、実施例2、比較例1、比較例2に対応する。なお、造粒機には、ドラムミキサーを使用した。
図2に示すように、コークスの種類をBからCへ変更することで、粒径2mm以上の粗粒が10質量%超となるため、NOx低減率が大きく低下した。
従って、粒径2mm以上の粗粒が10質量%以下のコークスを使用することが好ましいと考えられる。
The results of arranging the effects of the coke particle size, quick lime particle size, quick lime blending amount, and granulation method on the NOx reduction rate will be described using the above results.
First, the influence of the coke particle size on the NOx reduction rate will be described with reference to FIG.
FIG. 2 shows that the type of quicklime is a (particle size of 1 mm or less is 100% by mass), the amount of quicklime is 20% by mass, and the coke particle size is 2 to 30% by mass (AD). It is a graph at the time of making it change in a range. That is, A to D on the horizontal axis in FIG. 2 correspond to Example 1, Example 2, Comparative Example 1, and Comparative Example 2 in Table 4, respectively. A drum mixer was used for the granulator.
As shown in FIG. 2, by changing the coke type from B to C, coarse particles having a particle diameter of 2 mm or more exceeded 10% by mass, and thus the NOx reduction rate was greatly reduced.
Therefore, it is considered preferable to use coke in which coarse particles having a particle diameter of 2 mm or more are 10 mass% or less.

次に、生石灰の粒度がNOxの低減率に及ぼす影響について、図3を参照しながら説明する。
図3は、コークスの種類をA(粒径2mm以上を5質量%)にし、生石灰の配合量を20質量%にして、生石灰の粒度1mm以下を100〜55.6質量%(a〜c)の範囲で変化させた場合のグラフである。即ち、図3の横軸のa〜cはそれぞれ、表4中の実施例1、実施例3、比較例4に対応する。なお、造粒機には、ドラムミキサーを使用した。
図3に示すように、生石灰の粒度をbからcへ変更することで、粒径1mm以下の微粉が80質量%未満となるため、NOx低減率が大きく低下した。
従って、粒径1mm以下の微粉が80質量%以上の生石灰を使用することが好ましいと考えられる。
Next, the effect of the quicklime particle size on the NOx reduction rate will be described with reference to FIG.
FIG. 3 shows that the type of coke is A (particle size of 2 mm or more is 5% by mass), the amount of quick lime is 20% by mass, and the particle size of quick lime is 1 mm or less is 100 to 55.6% by mass (ac). It is a graph at the time of changing in the range. That is, a to c on the horizontal axis in FIG. 3 correspond to Example 1, Example 3, and Comparative Example 4 in Table 4, respectively. A drum mixer was used for the granulator.
As shown in FIG. 3, by changing the particle size of quicklime from b to c, the fine powder having a particle size of 1 mm or less is less than 80% by mass, so the NOx reduction rate is greatly reduced.
Therefore, it is considered preferable to use quick lime whose fine powder having a particle diameter of 1 mm or less is 80% by mass or more.

続いて、生石灰の配合量がNOxの低減率に及ぼす影響について、図4を参照しながら説明する。
図4は、コークスの種類をA(粒径2mm以上を5質量%)にし、生石灰の種類をa(粒径1mm以下を100質量%)にして、生石灰の配合量を5〜40質量%の範囲で変化させた場合のグラフである。即ち、図4中のプロット点は左からそれぞれ、表4中の比較例5、実施例5、実施例1、実施例6、比較例6に対応する。なお、造粒機には、ドラムミキサーを使用した。
図4に示すように、生石灰の配合量が5質量%と40質量%の場合、10〜27質量%の範囲外となるため、NOx低減率が低かった。
従って、生石灰の配合量は、10質量%以上27質量%以下が適正と考えられる。
Then, the influence which the compounding quantity of quicklime has on the reduction rate of NOx is demonstrated, referring FIG.
FIG. 4 shows that the type of coke is A (particle size of 2 mm or more is 5% by mass), the type of quick lime is a (particle size of 1 mm or less is 100% by mass), and the amount of quick lime is 5 to 40% by mass. It is a graph at the time of making it change in a range. That is, the plot points in FIG. 4 correspond to Comparative Example 5, Example 5, Example 1, Example 6, and Comparative Example 6 in Table 4 from the left, respectively. A drum mixer was used for the granulator.
As shown in FIG. 4, when the amount of quicklime was 5 mass% and 40 mass%, the NOx reduction rate was low because it was outside the range of 10 to 27 mass%.
Therefore, it is considered that the amount of quicklime is 10 to 27% by mass.

最後に、造粒方法がNOxの低減率に及ぼす影響について、図5を参照しながら説明する。
図5は、コークスの種類をA(粒径2mm以上を5質量%)にし、生石灰の種類をa(粒径1mm以下を100質量%)にし、生石灰の配合量を20質量%にして、造粒機の種類を変更した場合のグラフである。即ち、図5のドラムミキサーは、表4中の実施例1に対応し、図5の振動造粒機は、表4中の実施例9に対応する。
図5に示すように、振動造粒機では、ドラムミキサーに比べ、NOxを大きく低減できることがわかった。これは、振動造粒機の使用により、微粉を緻密に造粒することで、その後の他の焼結原料との混合による崩壊を抑制できたためと考えられる。
Finally, the influence of the granulation method on the NOx reduction rate will be described with reference to FIG.
FIG. 5 shows that the type of coke is A (particle size of 2 mm or more is 5% by mass), the type of quick lime is a (particle size of 1 mm or less is 100% by mass), and the amount of quick lime is 20% by mass. It is a graph at the time of changing the kind of grain machine. That is, the drum mixer in FIG. 5 corresponds to Example 1 in Table 4, and the vibration granulator in FIG. 5 corresponds to Example 9 in Table 4.
As shown in FIG. 5, it was found that the vibration granulator can greatly reduce NOx as compared with the drum mixer. This is presumably because the use of the vibration granulator enabled fine granulation of the fine powder to suppress subsequent collapse due to mixing with other sintered raw materials.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の焼結用凝結材の事前処理方法を構成する場合も本発明の権利範囲に含まれる。   As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the pretreatment method for a sintered aggregate according to the present invention is configured by combining a part or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.

10:振動造粒機、11:水平円筒容器、12:圧密媒体、13:重錘回転式振動モータ、14:開口部、15:注水口、16:ベース、17:空気バネ 10: vibration granulator, 11: horizontal cylindrical container, 12: compaction medium, 13: weight rotary vibration motor, 14: opening, 15: water inlet, 16: base, 17: air spring

Claims (2)

焼結工程で使用する焼結用凝結材を生石灰で造粒する焼結用凝結材の事前処理方法において、
前記焼結用凝結材中の粒径2mm以上の粒子を10質量%以下とし、前記生石灰中の粒径1mm以下の粒子を80質量%以上とし、前記焼結用凝結材に対する前記生石灰の配合量を外掛けで10質量%以上27質量%以下とすることを特徴とする焼結用凝結材の事前処理方法。
In the pre-treatment method of the sintered coagulant that granulates the sintered coagulant used in the sintering process with quick lime,
The amount of particles of 2 mm or more in the sintered aggregate is 10% by mass or less, and the particle of 1 mm or less in the quicklime is 80% by mass or more. Is a pretreatment method for a sintered coagulant, characterized in that it is 10 mass% or more and 27 mass% or less.
請求項1記載の焼結用凝結材の事前処理方法において、前記焼結用凝結材と前記生石灰の造粒に、複数の圧密媒体を水平円筒容器に収納した振動造粒機を用いることを特徴とする焼結用凝結材の事前処理方法。   2. A pretreatment method for a sintered coagulant according to claim 1, wherein a vibrating granulator containing a plurality of compacted media in a horizontal cylindrical container is used for granulation of the sintered coagulant and the quicklime. A pre-treatment method for a sintered aggregate.
JP2014189109A 2014-09-17 2014-09-17 Pretreatment method for sintered aggregates Expired - Fee Related JP6327082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014189109A JP6327082B2 (en) 2014-09-17 2014-09-17 Pretreatment method for sintered aggregates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014189109A JP6327082B2 (en) 2014-09-17 2014-09-17 Pretreatment method for sintered aggregates

Publications (2)

Publication Number Publication Date
JP2016060937A JP2016060937A (en) 2016-04-25
JP6327082B2 true JP6327082B2 (en) 2018-05-23

Family

ID=55797231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189109A Expired - Fee Related JP6327082B2 (en) 2014-09-17 2014-09-17 Pretreatment method for sintered aggregates

Country Status (1)

Country Link
JP (1) JP6327082B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6772935B2 (en) * 2017-03-31 2020-10-21 日本製鉄株式会社 Sinter manufacturing method and sinter manufacturing equipment
CN109233935A (en) * 2018-09-30 2019-01-18 安徽工业大学 A kind of the joint emission reduction device and its application method of agglomeration for iron mine various pollutants of fume
JP7303442B2 (en) 2019-11-18 2023-07-05 日本製鉄株式会社 Pretreatment method for raw materials for sintering
JP7469622B2 (en) 2020-04-03 2024-04-17 日本製鉄株式会社 Manufacturing method of carbonaceous material for sintering and manufacturing method of sintered ore

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173220A (en) * 1988-12-27 1990-07-04 Kawasaki Steel Corp Method for controlling permeability on pallet in sintering machine
JPH0819485B2 (en) * 1990-08-10 1996-02-28 新日本製鐵株式会社 Powder coke, anthracite granulation method and sinter production method
JP5454503B2 (en) * 2011-03-29 2014-03-26 新日鐵住金株式会社 Carbon material reforming equipment
JP5817629B2 (en) * 2012-04-06 2015-11-18 新日鐵住金株式会社 Method for producing sintered ore using finely granulated carbon

Also Published As

Publication number Publication date
JP2016060937A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
JP6327082B2 (en) Pretreatment method for sintered aggregates
JP4887728B2 (en) Granulation method of sintering raw material
TWI412602B (en) The manufacturing method of the agglomerate, the manufacturing method of the reduced metal, and the separation method of zinc or lead
JP5375742B2 (en) Granulation method of sintering raw material
JP6295783B2 (en) Method for producing sintered ore
JP5451568B2 (en) Pretreatment method for sintering raw materials
JP2012255189A (en) Reforming apparatus for carbon material
JP5817629B2 (en) Method for producing sintered ore using finely granulated carbon
JP6353749B2 (en) Method for producing sintered ore
WO2017026203A1 (en) Method for producing sintered ore
JP6323297B2 (en) Pretreatment method of sintering raw materials
JPH1112624A (en) Formation of reduced iron-producing raw material
JP7254294B2 (en) Pre-granulation method for raw materials for sintering
JP6307997B2 (en) Pretreatment method of sintering raw materials
JP2013036051A (en) Method of producing raw material for sintering
JP6805672B2 (en) Manufacturing method of carbonaceous interior granulated particles and manufacturing method of carbonaceous interior agglomerate
JP7303442B2 (en) Pretreatment method for raw materials for sintering
JP2009030116A (en) Method for producing ore raw material for blast furnace
JPH0819485B2 (en) Powder coke, anthracite granulation method and sinter production method
JP6954236B2 (en) Manufacturing method and manufacturing equipment for coal interior sintered ore
JP5928731B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP7371610B2 (en) Method for producing shaped sintered raw material and method for producing sintered ore
JP2006241575A (en) Method for pretreating raw material for sintering
JP5167641B2 (en) Method for producing sintered ore
JP6287511B2 (en) Pretreatment method of sintering raw materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R151 Written notification of patent or utility model registration

Ref document number: 6327082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees