JPH02173220A - Method for controlling permeability on pallet in sintering machine - Google Patents

Method for controlling permeability on pallet in sintering machine

Info

Publication number
JPH02173220A
JPH02173220A JP32785588A JP32785588A JPH02173220A JP H02173220 A JPH02173220 A JP H02173220A JP 32785588 A JP32785588 A JP 32785588A JP 32785588 A JP32785588 A JP 32785588A JP H02173220 A JPH02173220 A JP H02173220A
Authority
JP
Japan
Prior art keywords
raw material
sintering
pallet
mini
air permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32785588A
Other languages
Japanese (ja)
Inventor
Takumi Fukagawa
深川 卓美
Kazuo Hosomi
和夫 細見
Shoji Nitta
新田 昭二
Shunji Iyama
井山 俊司
Noribumi Fujii
紀文 藤井
Yukio Konishi
小西 行雄
Hiroaki Ishikawa
石川 裕昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32785588A priority Critical patent/JPH02173220A/en
Publication of JPH02173220A publication Critical patent/JPH02173220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve the permeability of sintering raw material by granulating kneaded flake having plastic state from a kneading machine with a granular machine and cascade-controlling granule grain size in accordance with the permeability of the sintering raw material on a pallet. CONSTITUTION:Moisture is added to the sintering raw material to charge this into the kneading machine 5. Then, by using compact medium, exciting-compact kneading is executed with exciting force 3-10g (g: acceleration of gravity). The obtd. kneaded flake having plastic state is charged into an exciting cylindrical type granular machine 6. A cylindrical axis in this granular machine is inclined to the gradient in the range of + or -10 deg. angle and the exciting force is adjusted into the range of 3-5g and and the above raw material is rolling-pelletized and granulated while controlling grain size of mini-pellet. This mini-pellet is blended into the ordinary sintering raw material, and after re-granulating with a mixer, this is supplied into a DL-type sintering machine. Then, the permeability of the sintering raw material on the pallet is measured and compared with the preset permeability. Based on this difference, the grain size of the above mini-pellet is cascade-controlled. By this method, the permeability at the time of sintering is improved saving of power cost in a main exhauster can be executed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、焼結機バレ・ントLの通気度制御方法に関し
、さらに詳しくは、パレット上の通気度を改菩する造粒
技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for controlling the air permeability of a sintering machine barrel L, and more particularly to a granulation technique that improves the air permeability on a pallet.

[従来の技術] 第4図は従来のDL式焼結機の全体フローシートである
。焼結原料配合tg11には、焼結原料(粉鉱石、石灰
石、扮コークス、生石灰および返鉱なと)が収納されて
おり、配合槽下部に設けられたコンスタントフィーダ2
により定m切出しされた後、ベルトコンベヤ3上で多層
積み配合される。
[Prior Art] FIG. 4 is an overall flow sheet of a conventional DL type sintering machine. The sintering raw material blending tg11 stores sintering raw materials (fine ore, limestone, coke, quicklime, and return ore), and is fed to a constant feeder 2 provided at the bottom of the blending tank.
After being cut out to a certain length, they are stacked and blended in multiple layers on a belt conveyor 3.

その配合原料はドラム型ミキサ4にて、4〜5%の水分
を添加して混合造粒される。造粒物は給鉱ホッパ14に
搬送され、下部のドラムフィーダ15および給鉱シュー
ト16を介してD L式焼結fi17のパレットI8内
へ装入される。その後点火バーナ19にて原料中の粉コ
ークスに首穴し。
The blended raw materials are mixed and granulated in a drum mixer 4 with the addition of 4 to 5% water. The granules are transported to the ore feed hopper 14 and charged into the pallet I8 of the DL type sintering fi 17 via the lower drum feeder 15 and the ore feed chute 16. After that, the ignition burner 19 is used to pierce the coke powder in the raw material.

焼結が進行する。Sintering progresses.

この場合、60μm未満の粒子が60%以上であるよう
な、微粉鉄鉱石(以下PFという)も使用される。PF
を多配合使用(主原料に対し10%以上)すると焼結ベ
ツドの通気を阻害し、生産性が低下する。あるいは通気
を改善するためのバインダ(生石灰、消石灰等)を5潰
に必要とし、バインダコストが高騰する等の欠点がある
In this case, fine iron ore (hereinafter referred to as PF) is also used, in which 60% or more of the particles are less than 60 μm. P.F.
If a large amount of (10% or more based on the main raw material) is used, ventilation of the sintered bed will be inhibited and productivity will decrease. Alternatively, it requires a large amount of binder (quicklime, slaked lime, etc.) to improve ventilation, resulting in a disadvantage that the binder cost increases.

上記の問題点を解消するためPF(約60%)と核にな
る原料(返鉱または鉄鉱6約40%)をドラム型ミキサ
またはディスク型ベレタイザ4にて事前造粒した後、通
常の焼結原料と混ぜてドラム型ミキサ4に装入し、混合
造粒するPFの咳造粒法が提示されている(鉄と鋼: 
vo 1゜71、 No、l O(1985)  li
’焼結原料の造粒とその役割」)、この場合は、核にな
る原料が必要であるため、同−PF配合比では、混合機
の能力が1.4倍大きいものが必要となり、設備コスト
が高くつくという欠点がある。
In order to solve the above problems, PF (approximately 60%) and the core raw material (return ore or iron ore 6, approximately 40%) are pre-granulated using a drum mixer or disc beletizer 4, and then sintered. A PF granulation method has been proposed in which PF is mixed with raw materials, charged into a drum mixer 4, and mixed and granulated (Iron and Steel:
vo 1゜71, No, l O (1985) li
'Pelletization of sintering raw materials and its role') In this case, a core raw material is required, so with the same -PF blending ratio, a mixer with a capacity 1.4 times larger is required, and equipment is required. The disadvantage is that it is expensive.

さらに別の方法として、通常の焼結原料(粉鉱石60%
)にPFを40%程度多配合し、ディスク型ベレタイザ
4に供給して混合造粒し、5〜10mmのベレットを作
る。その後微粉コークスを添加し、ベレットの外周に外
装コークスをまぶしたもの給鉱ホッパ14に搬送し、焼
結する方法が提示されている(鉄とli4:vol、7
3゜No、l l  (1987)  Ii’高炉用新
塊成鉱の製造条件に関する基礎的研究及び品質の評価J
)。
Yet another method is to use normal sintering raw materials (60% fine ore).
) is blended with approximately 40% PF and fed to a disc-type beletizer 4 for mixing and granulation to form pellets of 5 to 10 mm. Thereafter, a method has been proposed in which fine coke is added, the outer periphery of the pellet is sprinkled with exterior coke, and the pellet is transported to the feed hopper 14 and sintered (iron and li4: vol. 7
3゜No, l l (1987) Ii' Basic research on manufacturing conditions and quality evaluation of new agglomerate ore for blast furnaces J
).

この方法の欠点として、生ボールの見掛けの密度が小さ
く、ボールの圧潰強度が低いので、焼結ベツドまでの搬
送過程で壊れ易く、ベツドの通気を阻害する。また、成
品のモ均拉径が8〜10mmと大きく外装コークスが必
要である。さらに外装コークスがベレットの外周に均一
に付着しない場合はボール内部が未溶融となり破砕工程
でm−のベレットになるか返鉱になり易いという欠点が
ある。
A disadvantage of this method is that the green balls have a low apparent density and a low crushing strength, so they are easily broken during the transportation process to the sintered bed, which impedes ventilation of the bed. In addition, the coke diameter of the finished product is large, 8 to 10 mm, and exterior coke is required. Furthermore, if the outer coke does not adhere uniformly to the outer periphery of the pellet, the inside of the ball remains unmelted, and there is a drawback that it is likely to become m- pellet or return ore during the crushing process.

一方、古い技術であるが、dコ式磨砕混練方式造粒成形
法(特公昭43−6256)が知られており、ボールミ
ル、ロッドミルその他の温式磨砕混練機にて原料の磨砕
、水分調整、混線を行った後、竪型1円筒型その他の造
粒機を用いて生ベレットを造粒するものである。
On the other hand, although it is an old technology, the d-co type grinding and kneading granulation method (Japanese Patent Publication No. 43-6256) is known, in which raw materials are ground using a ball mill, rod mill, or other hot grinding and kneading machine. After adjusting the moisture content and mixing, the raw pellets are granulated using a vertical type, cylindrical type, or other type of granulator.

この方法は旧来の湿式または乾式の磨砕工程と水分調整
混線工程とを湿潤状態で1工程で達成するものである。
This method accomplishes the conventional wet or dry grinding process and the moisture adjustment mixing process in a single step in a wet state.

この方法は設備の割に生産量が少な(、動力原単位が大
きく、現時点では経済性に乏しい。
This method has a low production volume considering the equipment (and the power consumption is high, so it is currently not economical.

[発明が解決しようとする課題1 本発明者らは上記実情に鑑み、焼結原料に圧密媒体を混
入し円運動振動によって、これを強力に加振することに
より高能率高生産徹で品質の優れた加振圧密混練を行う
ことができ、さらに造粒用加振器を用いてこれを加振転
動塊成化することによって、所望粒度範囲の強固なミニ
ベレットを高能率生産することが可能であることを見出
した。
[Problem to be Solved by the Invention 1] In view of the above-mentioned circumstances, the present inventors have attempted to improve quality with high efficiency and high production by mixing a consolidation medium into the sintering raw material and strongly shaking it with circular motion vibration. It is possible to perform excellent vibration compaction kneading, and by using a granulation vibrator to agglomerate the mixture by vibration and rolling, it is possible to efficiently produce strong mini pellets in the desired particle size range. I found out that it is possible.

本発明は、このようにして得られたミニペレットに通常
の焼結原料を配合してミキサーで再造粒のうえ焼結機パ
レットに装入する工程で、パレット上の通気度を改善す
る焼結機パレット上の通気度制御用方法を提供すること
を課題とするものである。
The present invention is a sintering process that improves air permeability on the pallet in the process of blending the mini-pellets obtained in this way with ordinary sintering raw materials, re-granulating them in a mixer, and then charging them into the sintering machine pallet. It is an object of the present invention to provide a method for controlling air permeability on a binder pallet.

[課題を解決するための+段1 本発明は上述の問題点を解決するもので、次の方法を採
った。すなわち、 焼結原料に水分を添加し、原料を圧密媒体を内蔵した圧
密可塑化混練機に装入し、加振力3g〜tog(gは重
力の加速度)を加えて加振圧密混練して可塑化状態の混
線フレークを形成させる工程と、混練原料を加振円筒型
造粒機内に装入し、造粒機の円筒軸を±10度の範囲の
勾配に傾斜させ、または加振力を3g〜5gの範囲に調
整のうえ該原料を転動塊成化して、ミニペレットを造粒
しその粒度を制御する工程と、ミニペレットを通常の焼
結原料に配合してミキサーで再造粒のうえDL式焼結機
に供給する工程とからなり、パレット上の焼結原料の通
気度を測定し、測定1直を設定値と比較し偏差値をもと
に、ミニペレットの粒度をカスケード制御することを特
徴とする特 〔作用1 本発明は圧密媒体と共に強力な円運動を行う加振力を焼
結原料に付与することによって、圧密媒体が同一方向に
回転し、隣接する圧密媒体同士の面の相対逆方向運動に
より、その圧密媒体間に存在する粒子に圧密、剪断、転
勤、圧潰作用を与え、粒子の内部水分の絞り出し、表面
水分の均−展拡作用をなす、その結果粒子群は一体化す
ると兵に可塑化する。この場合、加振力が3g未満では
、圧密可塑化が不十分で製造されるペレットの乾燥密度
が低く、Logを越えると飽和して効果がないのでト限
をlogとする6 次に造粒工程では、圧密可塑化した原料に強力な加振に
よる転勤を与えると、充填密度の増大、表面への水分の
透出、この水分による付着、粒度成長が起こり1強力な
ミニベレットを得ることができる。この造粒工程の加振
力が3g未満では。
[Step 1 for Solving the Problems] The present invention solves the above-mentioned problems, and employs the following method. That is, water is added to the sintered raw material, the raw material is charged into a consolidation plasticization kneader containing a consolidation medium, and an excitation force of 3 g to tog (g is the acceleration of gravity) is applied to perform vibration consolidation kneading. A process of forming mixed wire flakes in a plasticized state, and charging the kneaded raw material into a vibrating cylindrical granulator, tilting the cylindrical axis of the granulator to a slope within a range of ±10 degrees, or applying an excitation force. After adjusting the raw material to a range of 3 g to 5 g, the raw material is agglomerated by rolling to granulate mini pellets and the particle size is controlled, and the mini pellets are blended with normal sintering raw materials and re-granulated with a mixer. The process consists of the following steps: measuring the air permeability of the sintering raw material on the pallet, comparing the first measurement with the set value, and cascading the particle size of the mini pellets based on the deviation value. [Function 1] The present invention applies an excitation force to the sintering raw material that causes a strong circular motion together with the consolidation medium, so that the consolidation medium rotates in the same direction, and adjacent consolidation media The relative movement of the surfaces in opposite directions imparts consolidation, shearing, transfer, and crushing effects to the particles existing between the consolidation medium, squeezing out the internal moisture of the particles and leveling out the surface moisture.As a result, the particles When a group unites, it transforms into a soldier. In this case, if the excitation force is less than 3 g, the consolidation plasticization will be insufficient and the dry density of the produced pellets will be low, and if it exceeds log, it will be saturated and will be ineffective, so the limit is set to log 6 Next, granulation In the process, when the consolidated and plasticized raw material is transferred by strong vibration, the packing density increases, moisture permeates to the surface, adhesion due to this moisture, and particle size growth occur, making it possible to obtain strong mini pellets. can. If the excitation force in this granulation step is less than 3 g.

ミニベレットの粒径が小さく、5gを越えるとオーバー
サイズが増加するので加振力の範囲を3g〜5gとした
The particle size of the mini-bellet is small, and if it exceeds 5 g, the oversize will increase, so the range of the excitation force was set to 3 g to 5 g.

第2図(a)は混合原料の水分をパラメータとした場合
の造粒粒度とパレット−Fの通気度との関係グラフ、第
2図(b)は造粒粒度をパラメータとした場合の混合原
料の水分とパレット上の通気度との関係グラフを示した
ものである。なお、このグラフは何れもミニベレットの
配合比が一定の場合のものである。第2図によれば、造
粒粒度或は添加水分によってパレット−Lの通気度が制
御可能であることを示している。
Figure 2 (a) is a graph of the relationship between the granulation degree and the air permeability of Pallet-F when the moisture content of the mixed raw material is taken as a parameter, and Figure 2 (b) is a graph of the relationship between the granulation degree and the air permeability of the mixed raw material when the granulation degree is taken as a parameter. This is a graph showing the relationship between moisture content and air permeability on the pallet. Note that all of these graphs are for the case where the blending ratio of mini pellets is constant. FIG. 2 shows that the air permeability of pallet L can be controlled by the granulation degree or added moisture.

水分添加用は原料の保有水分と造粒最適含水比との差を
添加すればよく、0〜2%である。すなわち、粒度範囲
の広い焼結原料の全看を加振圧密する時は、原料の保有
水分5〜6%に対して、fI)適合水比は5〜7%に調
整する。またPFのみを造粒する場合は、PFは8〜1
1%の保有水分を有し、最適含水比は9〜12%である
For water addition, it is sufficient to add the difference between the water content of the raw material and the optimum water content ratio for granulation, which is 0 to 2%. That is, when the entire sintered raw material having a wide particle size range is subjected to vibration consolidation, the fI) compatible water ratio is adjusted to 5 to 7% with respect to the moisture content of the raw material of 5 to 6%. In addition, when granulating only PF, PF is 8 to 1
It has a moisture content of 1%, and the optimum moisture content is 9-12%.

ト述のようにして製造されたミニベレットは扮鉱、生石
灰、コークスおよび返鉱からなる通常の焼結原料に配合
されてミキサーで再造粒のうえ焼結機パレットに装入さ
れる。バレッh、tの焼結原料の通気度を測定し、測定
値を設定値を比較し該(!i差値をもとにして、造粒機
で製造されるミニベレットの粒度をカスケード制御する
ことによって、パレット上の通気度を最高の状態に維持
することができる。
The mini pellets produced as described above are blended with ordinary sintering raw materials consisting of lime ore, quicklime, coke and return ore, re-granulated in a mixer, and then charged into a sintering machine pallet. Measure the air permeability of the sintered raw material of pellets h and t, compare the measured value with the set value, and control the particle size of the mini pellets produced by the granulator in a cascade based on the difference value. This allows the ventilation on the pallet to be maintained at its highest level.

〔実施例1 第3図は、本発明を好適に実施できる、焼結機パレット
上の通気度制御装置の系統説明図である。原料PFi3
よび生石灰は、圧密媒体を内蔵した圧密可塑化混練機5
に装入され、加振力3g〜logを加えて加振圧密混練
して可塑化状態のフレークを形成させた後、混練原料を
加振円筒からなる造粒機6に装入し、円筒の円筒軸を士
10度の勾配に傾斜させ、または加振力を3g〜5gの
範囲に調整のうえ原料を転動塊成化して、強固なミニベ
レットに造粒される。
[Embodiment 1] FIG. 3 is a system explanatory diagram of an air permeability control device on a sintering machine pallet, in which the present invention can be preferably carried out. Raw material PFi3
and quicklime are made using a consolidation plasticization kneader 5 with a built-in consolidation medium.
After applying an excitation force of 3 g to log and excitation compaction kneading to form plasticized flakes, the kneaded raw material is charged into a granulator 6 consisting of an excitation cylinder, and the granulator 6 consists of an excitation cylinder. The cylindrical axis is inclined at an angle of 10 degrees, or the excitation force is adjusted to a range of 3 g to 5 g, and the raw material is agglomerated by rolling to form solid mini pellets.

次いで、扮鉱、生石灰、コークスおよび返鉱からなる通
常の焼結原料を前述のミニベレットと共にドラムミキサ
ーで混合、再造粒の上床敷ホッパーを介して焼結機パレ
ットに装入される。
Next, the usual sintering raw materials consisting of ore, quicklime, coke and return ore are mixed together with the aforementioned mini pellets in a drum mixer and charged into the sintering machine pallet via the regranulation overbed hopper.

本発明方法は、焼結機ウィンドポック基の排風圧力A、
流QB及びパレット上の原料層厚!−(を測定し、これ
を通気度演算器に人力して、通気度=(B/A)/)( を演算する。この演算値と設定値を比較23で比較し1
両者の偏差値をもとに、混練機5推びに造粒1(111
6の加振力および混練機5への添加水分を調整してミニ
ベレットの粒度を調節して、焼結機パレット−Lの通気
度を制御用する方法である。
The method of the present invention includes a sintering machine windpock base exhaust air pressure A,
Flow QB and material layer thickness on pallet! - (Measure and enter this manually into the air permeability calculator to calculate air permeability = (B/A)/)
Based on the deviation value between the two, granulation 1 (111
This is a method for controlling the air permeability of the sintering machine pallet L by adjusting the excitation force of step 6 and the water added to the kneader 5 to adjust the particle size of the mini pellets.

第2図(a)に示す、混合原料の水分をパラメータとし
、造粒粒度を調整してパレットEの通気度を制御する方
法を第1図により詳しく説明する。
The method of controlling the air permeability of the pallet E by adjusting the granulation degree using the water content of the mixed raw material as a parameter, as shown in FIG. 2(a), will be explained in detail with reference to FIG. 1.

(1)通気度が通常の制御範囲(点線で示す)内にある
場合。
(1) When the air permeability is within the normal control range (indicated by the dotted line).

通気度が点線の範囲内にある時は、粒度ψは図示した制
@範囲内でフィードバック制御用を行う。
When the air permeability is within the range indicated by the dotted line, the particle size ψ is subjected to feedback control within the range shown.

例えば1通気度が、X点に在る時は粒度を+Δφ′1i
ll fitしてやれば、通気度は設定値に制御用され
ろことになる。
For example, when 1 air permeability is at point X, the particle size is +Δφ′1i
If it is fitted, the air permeability will be controlled to the set value.

(2)通気度が点線の範囲外で低い時、例えば0点に在
る時は、 (D 粒度φを粒度φの制御範囲の上限まで大きくする
よう制御する。その結果通気度が点線の範囲内に入れば
、1述の(1)の制御を行う。
(2) When the air permeability is low outside the range of the dotted line, for example at the 0 point, (D) the particle size φ is controlled to be increased to the upper limit of the control range of the particle size φ.As a result, the air permeability is within the range of the dotted line. Once inside, the control described in (1) above is performed.

■ ■の制御を行なっても通気度が点線の範囲より低い
時1例えば0点に7Eる時は、現在設定されている水分
の特性との通気度差ΔP、に相当する水分Δmを求め、
+5mの添加水量の調整を行うと共に、粒度φを粒度φ
の制@範囲内に戻すように制御する。その結果、通気度
が点線の範囲内に入れば、上述の(1)の制御を行う。
■ If the air permeability is lower than the range indicated by the dotted line even after performing the control described in (1). For example, if the air permeability is 7E at 0 point, find the moisture Δm corresponding to the air permeability difference ΔP with the currently set moisture characteristics.
Adjust the amount of water added +5m, and change the particle size φ to particle size φ
control to bring it back within range. As a result, if the air permeability falls within the range indicated by the dotted line, the above-mentioned control (1) is performed.

なお、Δmは図から次のようにしで求められる。すなわ
ち。
Note that Δm can be obtained from the diagram as follows. Namely.

ΔP ” P 、o −P s、Δm=八Pへ/ΔP(
3)通気度が点線の範囲外で高い時、例えば0点に在る
時は、 ■粒度φを粒度φの制御l範囲の下限まで小さくするよ
う制御する。その結果通気度が点線の範囲内に入れば、
−上述の(1)の制(卸を行う。
ΔP ” P , o − P s, Δm=8P/ΔP(
3) When the air permeability is high outside the range of the dotted line, for example when it is at the 0 point, (1) The particle size φ is controlled to be reduced to the lower limit of the control range of the particle size φ. As a result, if the air permeability falls within the dotted line range,
- The above-mentioned system (1) (carry out wholesale).

■ ■の制御を行なっても通気度が点線の範囲より高い
時1例えばΔ点に在る時は、現在設定されている水分の
特性との通気度差ΔP、1に相゛ハする水分Δmlを求
め、−Δm1の添加水量の調整を行うと共に、粒度φを
粒度ψの制御範囲内に戻すように制御する。その結果5
通気度が点線の範囲内に入れば、上述の(1)の制御を
行う。
■ If the air permeability is higher than the range indicated by the dotted line even after performing the control described in (1), for example, if it is at point Δ, the air permeability difference ΔP with the currently set moisture characteristics, and the moisture Δml that is higher than 1. is determined, and the amount of water added is adjusted by -Δm1, and the particle size φ is controlled to return within the control range of the particle size ψ. Result 5
If the air permeability falls within the range indicated by the dotted line, the above-mentioned control (1) is performed.

なお、Δm、は上述のΔmと同様に図から次のようにし
て求められる。すなわら、 ΔP 、=P、、−P、、。
Note that Δm is obtained from the diagram as follows in the same manner as Δm described above. That is, ΔP,=P,, -P,,.

Δm+=Δp、、/ΔP ここに、添字9、to、ttiia何水分%を示してい
る。
Δm+=Δp, , /ΔP Here, the subscript 9, to, ttiia indicates the water percentage.

以上のようにミニペレットの粒度を調整することによっ
て、パレット上の通気度を制御することができる。
By adjusting the particle size of the mini pellets as described above, the air permeability on the pallet can be controlled.

〔発明の効果] 本発明は、次のような極めて優れた効果を奏する。〔Effect of the invention] The present invention has the following extremely excellent effects.

(0ミニベレツト内の粉体粒子の充填度が密になり、生
ミニベレット、乾燥ミニペレットおよび焼成ミニペレッ
トの強度が向上し、焼結時の通気性が改善され、主排風
機の電力経費の節減が可能となる。
(The degree of packing of powder particles in the mini pellets becomes denser, the strength of the raw mini pellets, dried mini pellets and fired mini pellets is improved, the air permeability during sintering is improved, and the power cost of the main exhaust fan is reduced. Savings are possible.

■焼結時の通気性が改善されるために、PFを5砒に配
合することが可能となり、原料コストの低減を図ること
ができる。
(2) Since the air permeability during sintering is improved, it becomes possible to mix 5% PF, and it is possible to reduce the raw material cost.

■焼結機に装入されるミニペレットの不良粒度の比率を
低下させること可能となり、返鉱発生率を低下できるの
で操業効率の向上を図ることができる。
■It is possible to reduce the ratio of defective particle sizes in the mini pellets charged into the sintering machine, and the rate of return ore generation can be reduced, making it possible to improve operational efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の制御方法の説明図、第2図(a)は混
合原料の水分をパラメータとした場合の造粒粒度とパレ
ット上の通気度との関係グラフ、第2図(b)は造粒粒
度をパラメータとした場合の混合原料の水分とパレット
上の通気度との関係グラフ、第3図は本発明を好適に実
施する制御装置の系統説明図、第4図は従来のDL式焼
焼結の全体フローシートである。 5・・・混線機 6・・・造粒機 φ・・−造粒粒度 P・・・通気度
Figure 1 is an explanatory diagram of the control method of the present invention, Figure 2 (a) is a graph of the relationship between the granulation degree and the air permeability on the pallet when the moisture content of the mixed raw material is used as a parameter, and Figure 2 (b) is a graph of the relationship between the moisture content of the mixed raw material and the air permeability on the pallet when the granulation degree is taken as a parameter, FIG. 3 is a system diagram of a control device that preferably implements the present invention, and FIG. This is the entire flow sheet of the sintering process. 5... Mixer 6... Granulator φ... - Granulation degree P... Air permeability

Claims (1)

【特許請求の範囲】 1 焼結原料に水分を添加し、該原料を圧密媒体を内蔵
した圧密可塑化混練機に装入し、加振力3g〜10g(
gは重力の加速度)を加えて加振圧密混練して可塑化状
態の混練フ レークを形成させる工程と、該混練原料を加振円筒型造
粒機内に装入し、該造粒機の円筒軸を±10度の範囲の
勾配に傾斜させ、または加振力を3g〜5gの範囲に調
整のうえ該原料を転動塊成化して、ミニペレットを造粒
しその粒度を制御する工程と、該ミニペレットを通常の
焼結原料に配合してミキサーで再造粒のうえDL式焼結
機に供給する工程とからなり、 パレット上の焼結原料の通気度を測定し、 該測定値を設定値と比較し該偏差値をもと に、前記ミニペレットの粒度をカスケード制御すること
を特徴とする焼結機パレット上の通気度制御方法。
[Claims] 1. Moisture is added to the sintering raw material, and the raw material is charged into a consolidation plasticization kneader containing a consolidation medium, and an excitation force of 3 g to 10 g (
g is the acceleration of gravity) to form kneaded flakes in a plasticized state through vibration compaction kneading, and charging the kneaded raw material into a vibrating cylindrical granulator, and inserting the cylindrical shaft of the granulator into a step of granulating mini-pellets and controlling the particle size by tilting the raw material to a slope in the range of ±10 degrees or adjusting the excitation force to a range of 3 g to 5 g, and then agglomerating the raw material by rolling, The process consists of mixing the mini pellets with regular sintering raw materials, re-granulating them in a mixer, and then feeding them to the DL sintering machine.Measuring the air permeability of the sintering raw materials on the pallet, and calculating the measured value. A method for controlling air permeability on a sintering machine pallet, characterized in that the particle size of the mini pellets is controlled in a cascade manner based on the deviation value compared with a set value.
JP32785588A 1988-12-27 1988-12-27 Method for controlling permeability on pallet in sintering machine Pending JPH02173220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32785588A JPH02173220A (en) 1988-12-27 1988-12-27 Method for controlling permeability on pallet in sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32785588A JPH02173220A (en) 1988-12-27 1988-12-27 Method for controlling permeability on pallet in sintering machine

Publications (1)

Publication Number Publication Date
JPH02173220A true JPH02173220A (en) 1990-07-04

Family

ID=18203733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32785588A Pending JPH02173220A (en) 1988-12-27 1988-12-27 Method for controlling permeability on pallet in sintering machine

Country Status (1)

Country Link
JP (1) JPH02173220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060937A (en) * 2014-09-17 2016-04-25 新日鐵住金株式会社 Pretreatment method of aggregate for sintering

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060937A (en) * 2014-09-17 2016-04-25 新日鐵住金株式会社 Pretreatment method of aggregate for sintering

Similar Documents

Publication Publication Date Title
Kapur Balling and granulation
KR20120049377A (en) Method for producing briquettes, method for producing reduced metal, and method for separating zinc or lead
CN101525686B (en) Method for manufacturing high strength green ball block by coal-based direct reduction and device therefor
TWI509081B (en) Method for producing granulation material for sintering
US5102586A (en) Agglomerating process of sinter mix and apparatus therefor
JPH02173220A (en) Method for controlling permeability on pallet in sintering machine
JPS621824A (en) Manufacture of cold-briquetted ore
JP3058015B2 (en) Granulation method of sintering raw material
JP4927538B2 (en) Process for producing ores containing raw agglomerates containing fines
JP2000290732A (en) Method for granulating raw material for sintering, excellent in combustibility
JP2790008B2 (en) Pre-processing method for sintering raw materials
JPH04198427A (en) Manufacture of sintered ore
JPS6256533A (en) Method for pelletizing mixed material for sintering
JPH0328331A (en) Pretreatment of raw material for sintering
JPH01104723A (en) Production of sintering raw material from iron making dust
JP4317316B2 (en) Pretreatment method of sintering raw materials
JPH02221332A (en) Method for pelletizing sintered raw material
JPH0819485B2 (en) Powder coke, anthracite granulation method and sinter production method
JPH0436422A (en) Method for pelletizing sintering raw material
JPH1112626A (en) Production of reduced iron
JPH02182840A (en) Method for pelletizing sintered material having deteriorated pelletizing propertys
JPS593511B2 (en) Method for producing small pellets using fine coke
JPH05148557A (en) Production of sintered ore
JPS5861184A (en) Manufacture of pellet of low-grade coal
SU842109A1 (en) Method of pelletizing agglomeration charge