JPH02221332A - Method for pelletizing sintered raw material - Google Patents

Method for pelletizing sintered raw material

Info

Publication number
JPH02221332A
JPH02221332A JP3923389A JP3923389A JPH02221332A JP H02221332 A JPH02221332 A JP H02221332A JP 3923389 A JP3923389 A JP 3923389A JP 3923389 A JP3923389 A JP 3923389A JP H02221332 A JPH02221332 A JP H02221332A
Authority
JP
Japan
Prior art keywords
raw material
cylinder
sintered
granulation
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3923389A
Other languages
Japanese (ja)
Inventor
Shoji Nitta
新田 昭二
Shunji Iyama
井山 俊司
Noribumi Fujii
紀文 藤井
Kazuo Hosomi
和夫 細見
Takumi Fukagawa
深川 卓美
Hiroaki Ishikawa
石川 裕昭
Yukio Konishi
小西 行雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3923389A priority Critical patent/JPH02221332A/en
Priority to US07/425,749 priority patent/US5102586A/en
Priority to AU43693/89A priority patent/AU621412B2/en
Priority to EP89119840A priority patent/EP0366114A1/en
Priority to BR898905482A priority patent/BR8905482A/en
Priority to CA002001718A priority patent/CA2001718C/en
Publication of JPH02221332A publication Critical patent/JPH02221332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce rigid minipellets having a desired range of grain size by mixing a compaction medium into a sintered raw material, using a cylinder exciter to optimize the gradient and exciting force of the cylinder shaft and adjusting the space factor of the raw material. CONSTITUTION:The compaction medium in a vessel is oscillated and rolled. The sintered material is charged into the space between the mediums, compacted, plasticized and kneaded into dense flakes. The flaked sintered material is charged into the pelletization exciting cylinder. The cylinder shaft is inclined at a gradient of + or -10 deg., the exciting force is adjusted to control the space factor of the material in the cylinder to 8-20%, and the material is oscillated, rolled and briquetted. By this method, rigid minipellets are obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は、鉄鉱石などをDL式焼結機に供給して焼結鉱
を焼成する焼結原料の造粒方法に関し。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a sintering raw material granulation method in which iron ore or the like is fed to a DL type sintering machine and the sintered ore is sintered.

さらに詳しくは、造粒用加振筒内の占積率を調整するこ
とにより所望粒径の焼結原料を得る焼結原料の造粒方法
に関する。
More specifically, the present invention relates to a method for granulating a sintered raw material in which a sintered raw material having a desired particle size is obtained by adjusting the space factor within the granulation excitation cylinder.

〔従来の技術] 第14図は従来のDL式焼結機の全体フローシートであ
る。焼結原料配合槽lには、焼結原料(粉鉱石1五灰石
、粉コークス、生石灰および返鉱なと)が収納されてお
り、配合槽下部に設けられたコンスタントフィーダ2に
より定量切出しされた後、ベルトコンベヤ3上で多層積
み配合される。その配合原料はドラム型ミキサ4にて、
4〜5%の水分を添加して混合造粒される。造粒物は給
鉱ホッパ14に搬送され、下部のドラムフィーダ15J
Bよび給鉱シェード16を介してDL式焼結機17のパ
レット18内へ装入される。その後点火バーナ19にて
原料中の粉コークスに着火し、焼結が進行する。
[Prior Art] FIG. 14 is an overall flow sheet of a conventional DL type sintering machine. The sintering raw material blending tank 1 stores sintering raw materials (fine ore 1, pentashite, coke powder, quicklime, and return ore), which are quantitatively cut out by a constant feeder 2 installed at the bottom of the blending tank. After that, they are stacked and blended in multiple layers on the belt conveyor 3. The raw materials are mixed in drum mixer 4.
It is mixed and granulated by adding 4 to 5% water. The granules are conveyed to the ore feed hopper 14, and then transferred to the lower drum feeder 15J.
The ore is charged into the pallet 18 of the DL type sintering machine 17 via the ore feed shade 16. Thereafter, the ignition burner 19 ignites the coke powder in the raw material, and sintering progresses.

この場合、60μm未満の粒子が60%以上であるよう
な、微粉鉄鉱石(以下PFという)も使用される。PF
を多配合使用(主原料に対し10%以上)すると焼結ベ
ツドの通気を阻害し、生産性が低下する。あるいは通気
を改善するためのバインダ(生石灰、消石灰等)を多量
に必要とし、バインダコストが高騰する等の欠点がある
In this case, fine iron ore (hereinafter referred to as PF) is also used, in which 60% or more of the particles are less than 60 μm. P.F.
If a large amount of (10% or more based on the main raw material) is used, ventilation of the sintered bed will be inhibited and productivity will decrease. Another disadvantage is that a large amount of binder (quicklime, slaked lime, etc.) is required to improve ventilation, and the cost of the binder increases.

上記の問題点を解消するためPF(約60%)と核にな
る原料(返鉱または鉄鉱6約40%)をドラム型ミキサ
またはディスク型ペレタイザにて事前造粒した後1通常
の焼結原料と混ぜてドラム型ミキサに装入し、混合造粒
するPFの核造粒法が提示されている(鉄と鋼: vo
l、71.に10 (1985)F焼結原料の造粒とそ
の役割j7)、この場合は、核になる原料が必要である
ため、同−PF配合比では、混合機の能力が1.4倍大
きいものが必要となり、設備コストが高(つくという欠
点がある。
In order to solve the above problems, PF (approximately 60%) and the core raw material (return ore or iron ore 6 approximately 40%) are pre-granulated using a drum mixer or disc pelletizer and then used as normal sintering raw materials. A nuclear granulation method for PF is proposed, in which the mixture is mixed with PF and charged into a drum-type mixer for mixed granulation (Tetsu to Hagane: vo
l, 71. 10 (1985) Granulation of F sintering raw material and its role j7), in this case, since a core raw material is required, the capacity of the mixer is 1.4 times larger with the same -PF blending ratio. The disadvantage is that the equipment cost is high.

さらに別の方法として、通常の焼結原料(粉鉱石60%
)にPFを40%程度多配合し、ディスク型ペレタイザ
に供給して混合造粒し、5〜10mmのペレットを作る
。その後微粉コークスを添加し、ペレットの外周に外装
コークスをまぶしたものを給鉱ホッパに搬送し、焼結す
る方法が提示されている(鉄と鋼:vol、73、Fk
Lll  (1987)f高炉用新塊成鉱の製造条件に
関する基礎的研究及び品質の評価J)。
Yet another method is to use normal sintering raw materials (60% fine ore).
) is blended with approximately 40% PF, and fed to a disk-type pelletizer for mixing and granulation to form pellets of 5 to 10 mm. A method has been proposed in which fine coke is then added and the outer periphery of the pellets is coated with outer coke, which is transported to an ore feed hopper and sintered (Tetsu to Hagane: Vol. 73, Fk
Lll (1987) Basic research on manufacturing conditions and quality evaluation of new agglomerated ore for blast furnaces J).

この方法の欠点として、生ボールの見掛けの密度が小さ
く、ボールの圧潰強度が低いので、焼結ベツドまでの搬
送過程で壊れ易く、ベツドの通気を阻害する。また、成
品の平均粒径が8〜10mmと大きく外装コークスが必
要である。さらに外装コークスがペレットの外周に均一
に付着しない場合はボール内部が未溶融となり破砕工程
で単一のペレットになるか返鉱になり易いという欠点が
ある。
A disadvantage of this method is that the green balls have a low apparent density and a low crushing strength, so they are easily broken during the transportation process to the sintered bed, which impedes ventilation of the bed. Moreover, the average particle size of the finished product is as large as 8 to 10 mm, and exterior coke is required. Furthermore, if the exterior coke does not adhere uniformly to the outer periphery of the pellets, there is a disadvantage that the inside of the ball remains unmelted and tends to become a single pellet or return ore during the crushing process.

一方、古い技術であるが、温式磨砕混練方式造粒成形法
(特公昭43−6256)が知られており、ボールミル
、ロッドミルその他の温式磨砕混練機にて原料の磨砕、
水分調整、混線を行った後、竪型1円筒型その他の造粒
機を用いて生ペレットを造粒するものである。
On the other hand, although it is an old technology, the hot grinding and kneading granulation method (Japanese Patent Publication No. 43-6256) is known, in which the raw materials are ground using a ball mill, rod mill, or other hot grinding and kneading machine.
After adjusting the moisture content and mixing, the raw pellets are granulated using a vertical type, one cylinder type, or other type of granulator.

この方法は旧来の湿式または乾式の磨砕工程と水分調整
混線工程とを湿潤状態で1工程で達成するものである。
This method accomplishes the conventional wet or dry grinding process and the moisture adjustment mixing process in a single step in a wet state.

この方法はドラムの回転によるロッドまたはボールの転
動を利用するもので設備の割に生産量が少なく、動力原
単位が太き(、現在の時点では経済性に乏しい。
This method utilizes the rolling of a rod or ball caused by the rotation of a drum, so the production volume is small considering the equipment required, and the power consumption is high (currently, it is not economical).

[発明が解決しようとする課題J 本発明者らは上記実情に鑑み、焼結原料に圧密媒体を混
入し、これを強力に円振動加振することによって、高能
率高生産量で品質の優れた加振圧密可塑化混練を行うこ
とができ、さらに造粒用円筒加振機を用いて適正条件下
でこれを加振転動塊成化することによって、所望粒度範
囲の強固なミニペレットを高能率生産することが可能で
あることを見出した。
[Problem to be Solved by the Invention J] In view of the above-mentioned circumstances, the present inventors mixed a consolidation medium into the sintering raw material and subjected it to strong circular vibration to achieve high efficiency, high production volume, and excellent quality. By using a cylindrical shaker for granulation to perform vibration-consolidation plasticization and kneading under appropriate conditions, it is possible to form strong mini-pellets in the desired particle size range. It was discovered that high efficiency production is possible.

本発明はこのような造粒方法における造粒用加振円筒の
占積率を調整することによって強固なミニペレットを製
造する方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing strong mini-pellets by adjusting the space factor of the vibrating cylinder for granulation in such a granulation method.

[課題を解決するための手段J 本発明は、DL式焼結機に供給する焼結原料の造粒に際
し、容器中に収納された多数の圧密媒体を加振して転動
させ、この転動している圧密媒体の間隙に焼結原料を装
入して圧密可塑化混練し。
[Means for Solving the Problems J] The present invention vibrates and rolls a large number of compaction media housed in a container when granulating the sintering raw material to be supplied to a DL sintering machine. The sintering raw material is charged into the gap between the moving consolidation media and is consolidated, plasticized, and kneaded.

密実なフレーク状の焼結原料を形成し1次いでこのフレ
ーク状の焼結原料を造粒用加振円筒内に装入し、その円
筒軸を±10度の範囲の勾配に傾斜させると共に加振力
を調整して造粒用円筒内の原料の占積率を8〜20%に
調整し、この造粒原料を加振転動塊成化し1強固なミニ
ペレットを造粒することを特徴とする。
A dense flake-like sintered raw material is formed, and then the flake-like sintered raw material is charged into a vibrating cylinder for granulation, and the cylinder axis is tilted at an inclination within a range of ±10 degrees, and the sintered raw material is heated. The feature is that the space factor of the raw material in the granulation cylinder is adjusted to 8 to 20% by adjusting the vibration force, and the granulation raw material is agglomerated by vibration and rolling to granulate one strong mini-pellet. shall be.

〔作用J 容器中に収納された圧密媒体に円運動を行う強力な加振
力を付与することによって、圧密媒体が同一回転方向に
転動し、隣接する圧密媒体同士の面の相対逆方向運動に
より、その圧密媒体間に存在する粒子に圧密、剪断、転
動、圧潰、こねまわし、混線作用を与え、粒子の内部水
分の絞り出し、表面水分の均−展拡作用をなす、その結
果粒子群はフレーク化すると共に圧密可塑化する。
[Action J: By applying a strong excitation force that causes a circular motion to the consolidation medium housed in a container, the consolidation medium rolls in the same rotation direction, and the surfaces of adjacent consolidation media move in relative opposite directions. This gives consolidation, shearing, rolling, crushing, kneading, and cross-talk effects to the particles existing between the consolidation medium, squeezing out the internal moisture of the particles and leveling out the surface moisture, resulting in a particle group. becomes flakes and becomes compacted and plasticized.

これを第12図によって説明する。第12図の(a)に
示すように、ある含水比を持つ微粉原料を容器内に収納
し、これを圧縮する方向に加振力を与えると、容器内の
微粉の密度が上昇することが知られている。このとき、
容器内の微粉原料の含水比および加える加振エネルギー
の大小に応じて粒子の充填状態が変化し、この充填状態
に応じて密度が上昇する。第12図のグラフはこれを示
すものである。
This will be explained with reference to FIG. As shown in Figure 12 (a), when a fine powder raw material with a certain moisture content is stored in a container and an excitation force is applied in the direction of compressing it, the density of the fine powder in the container increases. Are known. At this time,
The filling state of the particles changes depending on the water content ratio of the fine powder raw material in the container and the magnitude of the applied vibration energy, and the density increases according to this filling state. The graph in FIG. 12 shows this.

微粉原料の含水比が少ないときは、粉体の粒子間には空
気のある空隙が存在し、粉体はパサパサの混合物の状態
である。微粉原料の含水比を増加させて加振すると、粒
子の表面に水分が一様均一に拡展され、空気層の空隙が
な(なり、粒体全体はネバネバした可塑化状態となり、
微粉原料の乾燥密度は空隙率ゼロの曲線に近づく。
When the moisture content of the fine powder raw material is low, air gaps exist between the particles of the powder, and the powder is in the state of a dry mixture. When the water content of the fine powder raw material is increased and it is vibrated, the water is uniformly spread over the surface of the particles, the air gaps are eliminated, and the entire granule becomes sticky and plasticized.
The dry density of the fine powder raw material approaches a curve with zero porosity.

さらに含水比が増加すると、粉体はドロドロのスラリー
状態となる。このスラリー状態より水分が少なく、空気
層の空隙の最も少ない可塑物状態は、キャピラリー域と
呼ばれ、粉体の乾燥密度が最も高く密実なフレーク状態
となっている。
When the water content further increases, the powder becomes a slurry. The plastic state, which has less moisture than this slurry state and has the least air voids, is called the capillary region, where the powder has the highest dry density and is in the form of dense flakes.

このキャピラリー域の粉体を得るには、粒体の粒子の性
状に応じた最も適正な含水比と、適正なエネルギーの振
動圧縮を加えることによって得ることができる。
This capillary region powder can be obtained by applying vibration compression with the most appropriate water content ratio and appropriate energy depending on the properties of the particles.

本発明は、工程のこの原理を利用した焼結原料の造粒方
法であって、加振圧密可塑化混練を行ってキャピラリー
域のフレーク化した粉体を先ず加工し、そのフレーク化
した粉体を転動造粒するものである。
The present invention is a method for granulating a sintering raw material using this principle of the process, in which powder that has been turned into flakes in the capillary region is first processed by vibration consolidation plasticization and kneading, and the powder that has been turned into flakes is processed. The material is rolled and granulated.

従って、微粉原料の特性に応じた適正含水比と最適加振
力を微粉原料に与え1粒子表面の水滴を粒子表面に均一
に分散させ、かつ水膜が薄く粒子表面に引き延ばされた
状態とし1粒子間の空気による空隙率を低下させて密充
填させ、充填状態がキャピラリー域となり、密充填の圧
密可塑化したフレークを形成するようにする。
Therefore, the appropriate water content ratio and optimum excitation force according to the characteristics of the fine powder raw material are applied to the fine powder raw material, so that the water droplets on the surface of each particle are uniformly dispersed on the particle surface, and a thin water film is stretched over the particle surface. Then, the porosity due to air between each particle is reduced to form a dense packing, and the filling state becomes a capillary region, forming a densely packed compacted and plasticized flake.

水分添加量は原料の保有水分と造粒最適含水比との差を
添加すればよく、0〜2%である。すなわち1粒度範囲
の広い焼結原料の全量を加振圧密する時は、原料の保有
水分5〜6%に対して、最適含水比は5〜7%に調整す
る。またPFのみを造粒する場合は、PFは8〜11%
の保有水分を有し、最適含水比は9〜12%である。
The amount of water added may be the difference between the water content of the raw material and the optimum water content ratio for granulation, and is 0 to 2%. That is, when the entire amount of the sintered raw material having a wide particle size range is subjected to vibration consolidation, the optimum water content ratio is adjusted to 5 to 7% compared to the moisture content of the raw material of 5 to 6%. In addition, when granulating only PF, PF is 8 to 11%.
The optimum moisture content is 9 to 12%.

次に、圧密可塑化混練機の加振力を変化させたときの造
粒物の見掛は密度および圧壊強度を第13図に示した。
Next, FIG. 13 shows the apparent density and crushing strength of the granules when the excitation force of the consolidation plasticization kneader was varied.

また、比較例の造粒物の見掛は密度及び圧壊強度も併せ
て第13図に示した。
Further, the apparent density and crushing strength of the granulated product of the comparative example are also shown in FIG. 13.

造粒前原料の嵩密度は2.5 g / c m 3であ
り、ディスクペレタイザで造粒した造粒物の乾燥見掛は
密度は3.1であった。これに対し、実施例では振動の
加速度に応じて見掛は密度は4.4〜5.6と非常に密
実となった。
The bulk density of the raw material before granulation was 2.5 g/cm 3 , and the dry apparent density of the granulated product granulated with a disk pelletizer was 3.1. On the other hand, in the examples, the apparent density was very dense, ranging from 4.4 to 5.6, depending on the vibration acceleration.

また、ディスクベレタイザで造粒した造粒物(湿ボール
)圧壊強度は約70g/個であったのに対し、実施例で
は圧壊強度は振動の加速度に応じて約130〜150g
/個と極めて強固であった。
In addition, the crushing strength of the granules (wet balls) granulated with a disc beletizer was about 70 g/piece, whereas in the examples, the crushing strength was about 130 to 150 g depending on the vibration acceleration.
/ piece, which was extremely strong.

第13図から圧密可塑化混練機の加振力が3g未満では
圧密造粒の効果が少なく、10gを越えると飽和してお
り、混線機の加振力の適正範囲は3g−10gであるこ
とが分る。
From Figure 13, if the excitation force of the consolidation plasticization kneader is less than 3g, the effect of consolidation granulation is small, and if it exceeds 10g, it is saturated, and the appropriate range of the excitation force of the mixer is 3g-10g. I understand.

次に造粒工程では、この圧密可塑化した原料に強力な加
振による転動を与えると、充填密度の増大1表面への水
分の透出、この水分による付着。
Next, in the granulation process, when this compacted and plasticized raw material is subjected to rolling motion by strong vibration, the packing density increases.1 Moisture seeps out to the surface and adhesion due to this moisture occurs.

粒度成長が起こる。Grain size growth occurs.

この場合に造粒機の処理能力について第6図および第7
図に示す関係があり、造粒機の処理能力と造粒用円筒の
内容量の関係は近似的に次式で示される。
In this case, the throughput of the granulator is shown in Figures 6 and 7.
There is a relationship shown in the figure, and the relationship between the processing capacity of the granulator and the internal capacity of the granulation cylinder is approximately expressed by the following equation.

Qv=a・γ       ・・・・−(1)Q=QT
 −V=a・ γ・V ・・・・・・ (2)ただし、 Q:処理能力(t/h) Q丁=単位処理能力(、kg/i!、・h)γ:嵩比重
(t/rr?) V:造粒用円筒内容積(I2) a:比例定数 である、上記(2)式に V=   D”  ・ L および L/ D = 3.5 を代入し、整理すると Q=a ・γ・−・ D2 ・ L πX 、X 3.5 =         ・ γ ・ D3となる、一方造
粒用円筒内の原料の滞留時間は、ただし、 T: L: φ: D: θ: N: b。
Qv=a・γ・・・・−(1)Q=QT
-V=a・γ・V (2) However, Q: Processing capacity (t/h) Q: Unit processing capacity (,kg/i!,・h) γ: Bulk specific gravity (t/h) /rr?) V: Internal volume of the cylinder for granulation (I2) a: Proportionality constant. Substituting V=D”・L and L/D=3.5 into the above formula (2) and rearranging, Q= a・γ・−・D2・L πX, b.

である。It is.

滞留時間(min) ドラム長さ(m) 原料の安息角じ) ドラム内径(m) ドラムの傾転角度じ) 回転数(r p m ) C:係数 従って、占積率Φは、 υ d ・ π ・ L−r と表わすことができ、占積率Φは造粒用円筒の回転数と
傾斜角度の関数である。この回転数及び傾斜角度の何れ
かまたは両者を調整して造粒用円筒内の原料の占積率を
調整し、強固なミニペレットを造粒する。
Residence time (min) Drum length (m) Angle of repose of raw material) Drum inner diameter (m) Drum tilt angle) Rotational speed (r p m) C: Coefficient Therefore, the space factor Φ is υ d ・It can be expressed as π·Lr, and the space factor Φ is a function of the rotation speed and inclination angle of the granulation cylinder. By adjusting either or both of the rotational speed and the inclination angle, the space factor of the raw material within the granulation cylinder is adjusted, and strong mini-pellets are granulated.

占積率は8〜20%が適切である。占積率が8%未満で
は転動運動による粒子同士の耐着が十分でなく造粒粒子
の大きさが不十分となる。また、20%を越えると造粒
された粒子の大きさが大きくなりすぎる。
A suitable space factor is 8 to 20%. If the space factor is less than 8%, the adhesion of particles to each other due to rolling motion will not be sufficient and the size of the granulated particles will be insufficient. Moreover, if it exceeds 20%, the size of the granulated particles becomes too large.

第8図は水平円筒形加振造粒機の振動の加速度及び円筒
の傾斜に対する占積率の関係を示したものである。この
図は振動の振幅を一定(7mm)にしたときのグラフで
ある。占積率を8〜20%の最適な値にするには振動の
加速度を3〜6g、円筒の傾斜を±10度の範囲に調整
すれば良い。
FIG. 8 shows the relationship between the vibration acceleration of a horizontal cylindrical vibratory granulator and the space factor with respect to the cylinder inclination. This figure is a graph when the amplitude of vibration is kept constant (7 mm). In order to set the space factor to an optimal value of 8 to 20%, the acceleration of the vibration should be adjusted to 3 to 6 g, and the inclination of the cylinder should be adjusted within the range of ±10 degrees.

振動の加速度は3g未満では造粒されるペレットの粒度
が小さく6gを越えて加振すると粒度が大きくなりすぎ
て不可である6従って、加振力は3〜6gの範囲とする
If the acceleration of vibration is less than 3 g, the particle size of the pellets to be granulated will be small, and if the acceleration is more than 6 g, the particle size will become too large and cannot be used6. Therefore, the excitation force should be in the range of 3 to 6 g.

逆に、加振力が3〜6gの範囲にあるとき、占積率8〜
20%を得るための傾斜角度の調整範囲は、第8図から
±10度とすればよい。
Conversely, when the excitation force is in the range of 3 to 6 g, the space factor is 8 to 6 g.
The adjustment range of the inclination angle to obtain 20% may be ±10 degrees from FIG.

〔実施例] 第2図は本発明の実施例の焼結操業のフローシートを示
すもので、焼結原料配合槽lからベルトコンベヤ3上で
搬送された焼結配合原料は加振圧密可塑化混練装置30
において圧密可塑化混練混され、ついで加振造粒装置4
0に供給される。
[Example] Fig. 2 shows a flow sheet of a sintering operation in an example of the present invention, in which the sintered mixed raw material conveyed from the sintered raw material blending tank 1 on the belt conveyor 3 is subjected to vibration consolidation plasticization. Kneading device 30
Consolidation, plasticization, kneading, and then vibration granulation device 4
0.

ここで造粒されたミニペレットは給鉱ホッパ14に搬送
され、ドラムフィーダ15および給鉱シュート16を介
してDL式焼結機17のパレット18内へ装入される。
The mini-pellets granulated here are transported to the ore feed hopper 14 and charged into the pallet 18 of the DL type sintering machine 17 via the drum feeder 15 and the ore feed chute 16.

第3図は上記圧密可塑化混練装置30と加振造粒装置4
0の例を示す斜視図である1第4図は加振造粒装置の一
例の側面図、第5図は第4図とは別の加振造粒機の側面
図である。
Figure 3 shows the above-mentioned consolidation plasticization kneading device 30 and vibration granulation device 4.
FIG. 4 is a side view of an example of a vibration granulator, and FIG. 5 is a side view of a vibration granulator different from FIG. 4.

第4図の装置は水平円筒形のドラム41の原料供給側を
縦軸45で支持し、原料排出側にドラム41を水平揺動
させる揺動加振機46を装着したもので、これら全体を
フレーム47上に載置しこのフレーム47を傾斜させる
傾動装置48.ビン支持ブラケット49を備えている。
The apparatus shown in FIG. 4 has a horizontal cylindrical drum 41 whose raw material supply side is supported by a vertical shaft 45, and a rocking vibrator 46 that horizontally rocks the drum 41 on the raw material discharge side. A tilting device 48 placed on the frame 47 and tilting the frame 47. A bin support bracket 49 is provided.

第5図の別の加振造粒装置40はドラム41をスプリン
グ43で支持しドラム41の両側に加振機42を装着し
た装置である。この加振機は左右同期させてあり、ドラ
ム41に円運動の振動を付与し、ドラム41内の焼結原
料に転動運動を与えてこれを造粒する。第4図の装置と
同様に全体をフレーム47上に載置しこのフレーム47
を傾斜させる傾動装置48、ビン支持ブラケット49を
備えている。
Another vibration granulating device 40 shown in FIG. 5 is a device in which a drum 41 is supported by a spring 43 and vibrators 42 are mounted on both sides of the drum 41. This vibrator is synchronized with the left and right sides, and applies circular motion vibration to the drum 41, and gives rolling motion to the sintered raw material in the drum 41 to granulate it. The entire device is placed on a frame 47 in the same way as the device shown in FIG.
A tilting device 48 and a bin support bracket 49 are provided.

第1図は円筒形の加振造粒機の縦断面図であって、(a
)水平にした場合、(b)原料の移送方向に対して前傾
斜した場合すなわち傾斜角度θがマイナスの場合、(C
)原料の移送方向に対して逆傾斜した場合すなわち傾斜
角度θがプラスの場合を示している。造粒機40内の焼
結原料の占積率は前傾斜した(b)の場合に減少−し、
逆傾斜した(C)の場合に増大する。また、同一傾斜で
は加振力が増大すると占積率が減少する。この関係は、
既に第8図によって説明したとおりである。
FIG. 1 is a longitudinal cross-sectional view of a cylindrical vibrating granulator, (a
) When it is horizontal, (b) When it is tilted forward with respect to the raw material transfer direction, that is, when the inclination angle θ is negative, (C
) Indicates a case where the inclination is opposite to the direction in which the raw material is transferred, that is, a case where the inclination angle θ is positive. The space factor of the sintered raw material in the granulator 40 decreases in the case of forward tilt (b),
It increases in case of reverse slope (C). Further, at the same slope, as the excitation force increases, the space factor decreases. This relationship is
This has already been explained with reference to FIG.

第3図の装置を用いて造粒した焼結原料の粒度分布を、
従来のドラムミキサを用いて造粒した焼結原料の粒度分
布と対比して第9図に示した。
The particle size distribution of the sintered raw material granulated using the apparatus shown in Figure 3 is as follows:
FIG. 9 shows a comparison with the particle size distribution of a sintered raw material granulated using a conventional drum mixer.

また、圧密可塑化混練工程の振動の加速度に対する造粒
されたミニペレットの乾燥ボールの圧壊強度及び見掛は
比重を従来のディスクペレタイザによって造粒した粒子
との対比で第10図に示した。
In addition, the crushing strength and apparent specific gravity of the dry balls of the granulated mini-pellets in response to the acceleration of vibration during the consolidation, plasticization, and kneading process are shown in Figure 10 in comparison with particles granulated by a conventional disk pelletizer. .

さらに、本発明方法を従来のドラムミキサによる造粒方
法と比較してPFの配合率および焼結生産率を第11図
に例示した。
Furthermore, FIG. 11 illustrates the blending ratio of PF and the sintering production rate by comparing the method of the present invention with the conventional granulation method using a drum mixer.

第9図〜第11図から、本発明の造粒方法により、緻密
で粒度分布がよく強度も高いミニペレットを製造するこ
とが容易に可能であることが明らかである。また、PF
配合率を高めることができ、低価格の原料を多量に用い
ることができ、バインダの量も減少することができるか
ら、低コストの焼結原料を製造することが可能となり、
さらに焼結生産率も向上することが明白である。
From FIGS. 9 to 11, it is clear that by the granulation method of the present invention, it is possible to easily produce mini-pellets that are dense, have a good particle size distribution, and have high strength. Also, P.F.
Since the blending ratio can be increased, a large amount of low-cost raw materials can be used, and the amount of binder can be reduced, it is possible to produce low-cost sintered raw materials.
Furthermore, it is clear that the sintering production rate is also improved.

〔発明の効果J 本発明によれば、ミニペレット内の粉体粒子の充填が密
となり、生ボールの見掛は密度上よび圧潰強度が向上し
、さらに2〜5mmの収率が向上することにより焼結ベ
ツドでの通気性が改善される。
[Effect of the invention J According to the present invention, the powder particles in the mini pellets are packed densely, the apparent density and crushing strength of the green balls are improved, and the yield of 2 to 5 mm is further improved. This improves air permeability in the sintered bed.

従ってPFの多配合使用が可能となり焼結生産性も向上
し、かつ主排風機の省電力を期待することができる。
Therefore, it is possible to use multiple PF mixtures, improve sintering productivity, and expect power savings for the main exhaust fan.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る加振造粒機の傾斜角度の変更によ
る占積率の変化を説明する縦断面図、第2図は本発明の
実施例の焼結全体工程を示すフローシート、第3図は加
振圧密可塑化混練機と加振造粒機の実施例の斜視図、第
4図は加振造粒機の一例の側面図、第5図は他の加振造
粒機の実施例の側面図、第6図は焼結原料の嵩比重と単
位処理能力の関係を示すグラフ、第7図は焼結原料の嵩
比重と造粒機の容量/混練機の容量の比の関係を示すグ
ラフ、第8図は造粒機の傾斜角度及び振動加速度と占積
率との関係を示すグラフ、第9図は製造されたミニペレ
ットの粒度分布のグラフ、第10図は圧密可塑化混練装
置の振動の加速度と造粒された粒子の圧壊強度、見掛は
密度を示すグラフ、第11図はPF配合比および焼結生
産率のグラフ、第12図は本発明の工程の原理を説明す
る説明図、第13図は実施例と比較例の成品の見掛は密
度上よび圧壊強度を示すグラフ、第14図は従来の焼結
工程のフローシートである。 30−・・加振圧密可塑化混練装置 40・・−加振造粒装置
FIG. 1 is a longitudinal cross-sectional view illustrating changes in space factor due to changes in the inclination angle of the vibrating granulator according to the present invention, and FIG. 2 is a flow sheet showing the entire sintering process of an embodiment of the present invention. Fig. 3 is a perspective view of an example of a vibratory compaction plasticization kneader and a vibratory granulator, Fig. 4 is a side view of an example of a vibratory granulator, and Fig. 5 is another vibratory granulator. Fig. 6 is a graph showing the relationship between the bulk specific gravity of the sintered raw material and the unit processing capacity, and Fig. 7 is the ratio of the bulk specific gravity of the sintered raw material to the capacity of the granulator/capacity of the kneader. Figure 8 is a graph showing the relationship between the inclination angle and vibration acceleration of the granulator and the space factor, Figure 9 is a graph showing the particle size distribution of the manufactured mini pellets, and Figure 10 is the consolidation ratio. A graph showing the vibration acceleration of the plasticizing kneading device, the crushing strength of the granulated particles, and the apparent density. Figure 11 is a graph of the PF blending ratio and sintering production rate. Figure 12 is a graph of the process of the present invention. An explanatory diagram for explaining the principle, FIG. 13 is a graph showing the apparent density and crushing strength of the finished products of Examples and Comparative Examples, and FIG. 14 is a flow sheet of a conventional sintering process. 30--Vibration consolidation plasticization kneading device 40--Vibration granulation device

Claims (1)

【特許請求の範囲】 1 DL式焼結機に供給する焼結原料の造粒に際し、 多数の圧密媒体を加振して転動させ、該転 動する圧密媒体の間隙に焼結原料を装入してこれを圧密
可塑化混練してフレーク状焼結原料を形成し、 次いで該フレーク状焼結原料を造粒用加振 円筒内に装入し、該円筒の円筒軸の勾配を±10度の範
囲内に調整すると共に加振力を調整して造粒用円筒内の
原料の占積率を8〜 20%に調整し、該原料を加振転動塊成化して強固なミ
ニペレットを造粒することを特徴とする焼結原料の造粒
方法。
[Claims] 1. When granulating the sintering raw material to be supplied to the DL sintering machine, a large number of consolidation media are vibrated and rolled, and the sintering raw materials are loaded into the gaps between the rolling consolidation media. The flaky sintered raw material is then put into a vibrating cylinder for granulation, and the slope of the cylindrical axis of the cylinder is set to ±10. The space factor of the raw material in the granulation cylinder is adjusted to 8 to 20% by adjusting the excitation force and the raw material is agglomerated by vibration and rolling to form strong mini-pellets. A method for granulating a sintered raw material, the method comprising granulating a sintered raw material.
JP3923389A 1988-10-27 1989-02-21 Method for pelletizing sintered raw material Pending JPH02221332A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3923389A JPH02221332A (en) 1989-02-21 1989-02-21 Method for pelletizing sintered raw material
US07/425,749 US5102586A (en) 1988-10-27 1989-10-23 Agglomerating process of sinter mix and apparatus therefor
AU43693/89A AU621412B2 (en) 1988-10-27 1989-10-24 Agglomerating process of sinter mix and apparatus therefor
EP89119840A EP0366114A1 (en) 1988-10-27 1989-10-25 Agglomerating process of sinter mix and apparatus therefor
BR898905482A BR8905482A (en) 1988-10-27 1989-10-26 MIXING AGGLOMERATION PROCESS FOR SINTER AND AGLOMERATION APPLIANCE
CA002001718A CA2001718C (en) 1988-10-27 1989-10-27 Agglomerating process of sinter mix and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3923389A JPH02221332A (en) 1989-02-21 1989-02-21 Method for pelletizing sintered raw material

Publications (1)

Publication Number Publication Date
JPH02221332A true JPH02221332A (en) 1990-09-04

Family

ID=12547411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3923389A Pending JPH02221332A (en) 1988-10-27 1989-02-21 Method for pelletizing sintered raw material

Country Status (1)

Country Link
JP (1) JPH02221332A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016036769A (en) * 2014-08-07 2016-03-22 Jfeスチール株式会社 Adjustment method for mixer of steel material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016036769A (en) * 2014-08-07 2016-03-22 Jfeスチール株式会社 Adjustment method for mixer of steel material

Similar Documents

Publication Publication Date Title
KR20120049377A (en) Method for producing briquettes, method for producing reduced metal, and method for separating zinc or lead
JP2015096651A (en) Apparatus for improving crude pellet and pelletization method
HRP970317A2 (en) Process for the continued dry granulation of the powdered sooth
JPH03166321A (en) Method and device for pelletizing sintering raw material
US5102586A (en) Agglomerating process of sinter mix and apparatus therefor
US2674522A (en) Apparatus for pelletizing carbon black
JPH02221332A (en) Method for pelletizing sintered raw material
JP2017064670A (en) Rolling granulation apparatus and rolling granulation method
JPH0742522B2 (en) Pretreatment method for sintering raw material
RU2613917C2 (en) Powders granulation method and equipment for its implementation
JPH02225628A (en) Pretreatment of sintering raw material
JPH02173220A (en) Method for controlling permeability on pallet in sintering machine
JPH02182840A (en) Method for pelletizing sintered material having deteriorated pelletizing propertys
JP3837845B2 (en) Method for producing reduced iron
JPH0819485B2 (en) Powder coke, anthracite granulation method and sinter production method
JP2746030B2 (en) Pre-processing method for sintering raw materials
JPH0748634A (en) Method of pretreatment of sintered raw material
JPH01104723A (en) Production of sintering raw material from iron making dust
JPH0523570A (en) Granulation of raw material and its device
JPH0483826A (en) Method for pretreating pulverized sintering raw material
JPH0543952A (en) Method for granulating sintering raw material
JPH0523567A (en) Granulation of raw material and its device
JPH0436422A (en) Method for pelletizing sintering raw material
JPH0523568A (en) Raw material granulation and its device
JPH0523569A (en) Raw material granuation and its device