JP2012026016A - Method of manufacturing sintered ore - Google Patents

Method of manufacturing sintered ore Download PDF

Info

Publication number
JP2012026016A
JP2012026016A JP2010168325A JP2010168325A JP2012026016A JP 2012026016 A JP2012026016 A JP 2012026016A JP 2010168325 A JP2010168325 A JP 2010168325A JP 2010168325 A JP2010168325 A JP 2010168325A JP 2012026016 A JP2012026016 A JP 2012026016A
Authority
JP
Japan
Prior art keywords
raw material
coal
sintered ore
packed bed
material packed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010168325A
Other languages
Japanese (ja)
Inventor
Shinji Kawachi
慎治 河内
Shunji Kasama
俊次 笠間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010168325A priority Critical patent/JP2012026016A/en
Publication of JP2012026016A publication Critical patent/JP2012026016A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a sintered ore which can improve a product yield of the sintered ore without causing the lowering or the like of the rigidity of the sintered core at an upper layer of the sintered ore.SOLUTION: In the manufacturing method for the sintered ore using a lower suction type sintered ore, coal whose volatile content is not smaller than 10 mass% is spread on the surface of a raw material filling layer which is fed with ore on a pallet of manufacturing equipment after the raw material filling layer is extracted from an ignition furnace. Since an upper layer of the sintered ore manufacturing equipment can be sufficiently heated by spreading the coal on the surface of the raw material filling layer and feeding a heat source, the product yield of the sintered core can be improved without causing the lowering or the like of the rigidity of the sintered ore caused by the insufficiency of heat.

Description

本発明は、焼結鉱の製造方法に関する。   The present invention relates to a method for producing a sintered ore.

製鐵所における下方吸引型焼結機を用いた焼結鉱の製造は、次のようにして行われる。   Production of sintered ore using a lower suction type sintering machine at a steelworks is performed as follows.

焼結原料は、主原料である鉄鉱石や製鉄プロセスで発生する製鉄ダストなどの鉄含有原料、焼結反応に必要となる石灰石および蛇紋岩などの副原料及び熱源としてのコークス粉等の固体燃料とを配合して形成される。   Solid materials such as iron ore as the main raw material and iron-containing raw materials such as iron-making dust generated in the iron making process, secondary materials such as limestone and serpentine required for the sintering reaction, and coke powder as a heat source And is formed.

焼結原料は、下方吸引型焼結機に装入する前に、ドラム型ミキサーなどの混合・造粒機を用いて、水添加しながら混合、造粒し、主として、粒径1mm以上の核粒子と、その周囲に付着した粒径0.5mm以下の付着粉とからなる擬似粒子とする。   Sintering raw materials are mixed and granulated while adding water using a mixing and granulating machine such as a drum mixer before being charged into the lower suction type sintering machine. A pseudo particle composed of particles and adhering powder having a particle diameter of 0.5 mm or less adhering to the periphery thereof is used.

このことにより、焼結機に装入した後、焼結パレット内に形成された原料充填層内の通気性を維持し、焼結原料の焼結反応を促進し、高い生産性を確保することができる。   By this, after charging into the sintering machine, maintain the air permeability in the raw material packed layer formed in the sintering pallet, promote the sintering reaction of the sintering raw material, and ensure high productivity Can do.

擬似粒子化された焼結原料は、焼結機の給鉱部で、焼結パレット内に装入され、原料充填層を形成する。その後、点火炉で、その表面のコークス粉に点火されるとともに、焼結機下部に空気吸引することにより、コークス粉の燃焼点を下方に移動させる。 The pseudo-particle-formed sintered raw material is charged into a sintering pallet at a feeding section of a sintering machine to form a raw material packed layer. Thereafter, the coke powder on the surface is ignited in an ignition furnace, and the combustion point of the coke powder is moved downward by sucking air into the lower part of the sintering machine.

燃焼熱により原料充填層の上層から下層にかけての焼結反応は順次進行し、焼結パレ
ットが移動し排鉱部に到達するまでに焼結は完了する。焼結パレット内の焼結ケーキ(塊)は、排鉱部から排出された後、破砕され、所定粒度の高炉用の焼結鉱が製造される。
Sintering reaction from the upper layer to the lower layer of the raw material packed layer proceeds sequentially by the heat of combustion, and the sintering is completed by the time the sintering pallet moves and reaches the waste ore section. The sintered cake (lumps) in the sintering pallet is discharged from the waste ore section and then crushed to produce a sintered ore for a blast furnace with a predetermined particle size.

焼結鉱の製造において発生した高炉用の焼結鉱としての所定粒径より小さい焼結鉱粉は、返鉱として、焼結原料中に配合されて、再度焼結される。   Sintered ore powder having a particle size smaller than a predetermined particle size as a blast furnace sinter generated in the production of sinter is blended in a sintering raw material as a return ore and sintered again.

焼結原料の焼結反応は、1200℃付近で、主として、鉄含有原料中のFe2と石灰石中のCaOとの反応で、カルシウムフェライト(CaO−Fe2)の初期融液を生成し、この融液中に鉄鉱石また副原料中の成分が溶け込む同化反応により進行する。 The sintering reaction of the sintering raw material is a reaction between Fe 2 O 3 in the iron-containing raw material and CaO in the limestone at around 1200 ° C., and an initial melt of calcium ferrite (CaO—Fe 2 O 3 ) is used. Produces and proceeds by an assimilation reaction in which the iron ore or the components in the auxiliary raw material are dissolved in the melt.

この焼結反応は、初期融液の生成から数分程度で終了する極めて短い反応であり、この反応により、焼結鉱の成品歩留および生産性、並びに、焼結鉱の強度などの品質が大きく影響される。   This sintering reaction is an extremely short reaction that is completed within a few minutes after the formation of the initial melt. This reaction improves the product yield and productivity of the sintered ore and the quality of the sintered ore. It is greatly affected.

例えば、焼結反応が過剰に進み、生成する融液量が極端に増加すると、焼結操業において、焼結層内の通気が悪化し、これによる焼けムラが発生するため、成品歩留および生産性が低下し、強度などの焼結鉱の品質も悪化することになる。   For example, if the sintering reaction proceeds excessively and the amount of melt produced increases excessively, in the sintering operation, the air flow in the sintered layer deteriorates, resulting in burn unevenness, resulting in product yield and production. As a result, the quality of sintered ore such as strength is deteriorated.

一方、焼結反応が十分に進まない場合は、残留鉄鉱石(残留元鉱)等の未溶融部同士を結合させるための融液が減少するため、成品歩留が低下し、焼結鉱強度(SI)や還元粉化(RDI)などの焼結鉱の品質の悪化を引き起こすこととなる。   On the other hand, if the sintering reaction does not proceed sufficiently, the melt for bonding unmelted parts such as residual iron ore (residual source ore) decreases, so the product yield decreases and the sinter strength The quality of sintered ore such as (SI) and reduced powdering (RDI) is deteriorated.

下方吸引型焼結機を用いた焼結鉱の製造においては、焼結パレット内の原料充填層下層の焼結原料は、下方に吸引される上層コークスの燃焼排ガスにより余熱され、熱が十分伝えられる。これに対し、原料充填層上層の鉱石は、排ガスにより余熱されないため熱が不足気味になる。また、焼成後の焼結鉱は、上方より吸引された空気により急速冷却され、脆い焼結鉱となり、上層部における焼結鉱の成品歩留の低下および強度等の品質悪化をまねき、従来から問題となっていた。   In the production of sintered ore using a lower suction type sintering machine, the sintering raw material in the lower layer of the raw material packed bed in the sintering pallet is preheated by the combustion gas of the upper coke sucked downward, and the heat is transferred sufficiently. It is done. On the other hand, the ore in the upper layer of the raw material packed bed is not sufficiently heated by the exhaust gas, so the heat becomes insufficient. In addition, the sintered ore after firing is rapidly cooled by the air sucked from above and becomes brittle sintered ore, leading to a decrease in product yield of the sintered ore in the upper layer part and quality deterioration such as strength. It was a problem.

上記下方吸引型焼結機を用いた焼結鉱の製造における原料充填層の上層部における成品歩留および強度などの品質を向上するための方法は、今までに、数多く提案されている。   Many methods have been proposed so far for improving the quality such as product yield and strength in the upper layer portion of the raw material packed bed in the production of sintered ore using the lower suction type sintering machine.

原料充填層上層部への着火後の原料充填層の表層部の温度を上昇させるために、充填層上方にフードを設け、該フードから空気又は保温ガスに可燃ガスを混合して充填層に供給する方法が提案されている(特許文献1、参照)。   In order to raise the temperature of the surface layer part of the raw material packed bed after ignition of the upper part of the raw material packed bed, a hood is provided above the packed bed, and a combustible gas is mixed from the hood with air or a heat retaining gas and supplied to the packed bed Has been proposed (see Patent Document 1).

また、点火後の焼結層表層から焼結層内に吸引される含酸素気体に、可燃性ガスと低融点溶剤、または可燃性ガスと炭材を配合した低融点溶剤を混合して焼結層に吹き込む方法が提案されている(特許文献2、参照)。   In addition, the oxygen-containing gas sucked into the sintered layer from the surface of the sintered layer after ignition is mixed with a combustible gas and a low-melting solvent, or a low-melting solvent containing a combustible gas and a carbon material, and sintered. A method of blowing into the layer has been proposed (see Patent Document 2).

また、点火前の原料充填層の表層に燃料を供給した後に表層を着火する方法が提案されている(特許文献3、参照)。   In addition, a method of igniting the surface layer after supplying fuel to the surface layer of the raw material packed layer before ignition has been proposed (see Patent Document 3).

また、点火前の原料充填層の表層に、粉体燃料を広範に且つ均一に連続して散布供給する粉体燃料散布装置及び方法が提案されている(特許文献4、参照)。   Further, there has been proposed a pulverized fuel spraying apparatus and method for supplying pulverized fuel in a broad and uniform manner to the surface layer of the raw material packed layer before ignition (see Patent Document 4).

特開昭55−18585号公報JP-A-55-18585 特開平5−311257号公報Japanese Patent Laid-Open No. 5-311257 特開昭60−39129号公報JP-A-60-39129 特開2000−178661号公報JP 2000-178661 A

しかしながら、特許文献1及び特許文献2に記載の発明では、可燃性ガスの逆火や爆発の危険性がある。また、焼結機ガスシールは完全とはいえず、可燃性ガス中の有毒成分の漏洩・拡散の虞がある。   However, in the inventions described in Patent Document 1 and Patent Document 2, there is a risk of backfire or explosion of combustible gas. In addition, the gas seal of the sintering machine is not perfect, and there is a risk of leakage and diffusion of toxic components in the combustible gas.

また、特許文献3に記載の発明では、燃料の供給が点火前の原料充填層の表層に限定されることと(特許請求の範囲(1))、供給される燃料が揮発分の少ないコークス又は石炭に限られる(特許文献3(3)右下)という問題がある。   In addition, in the invention described in Patent Document 3, the supply of fuel is limited to the surface layer of the raw material packed layer before ignition (claim (1)), and the supplied fuel is coke or low volatile matter. There is a problem that it is limited to coal (Patent Document 3 (3) lower right).

また、特許文献4に記載の発明では、粉体燃料散布装置を点火前に設置する必要があるため、設置スペースに余裕がないという問題がある。   Moreover, in the invention described in Patent Document 4, since it is necessary to install the pulverized fuel spraying device before ignition, there is a problem that there is no room for installation space.

本発明の目的は、焼結鉱の上層部の焼結鉱の強度等の低下を招くことなく焼結鉱の製品歩留まりを向上させるとともに、従来使用が困難であった揮発分を有する石炭を固体燃料として使用することができる焼結鉱の製造方法を提供することにある。   The object of the present invention is to improve the product yield of sintered ore without causing a decrease in the strength of the sintered ore in the upper layer of the sintered ore, and to solidify the coal having volatile content, which has been difficult to use conventionally. It is providing the manufacturing method of the sintered ore which can be used as a fuel.

(1)下方吸引型焼結機を用いた焼結鉱の製造方法であって、原料充填層が点火炉を出た後0.2分経過後で、原料充填層が点火炉を出た後2分以内に、揮発分10質量%以上の石炭を、全配合コークス量の5質量%以上15質量%以下の範囲で、パレット上に給鉱された原料充填層の表面に散布を終了することを特徴とする焼結鉱製造方法。
(2)石炭の粒度が、0.25mm未満であることを特徴とする前記(1)に記載の焼結鉱製造方法。
(1) A method for producing sintered ore using a lower suction type sintering machine, after 0.2 minutes have elapsed after the raw material packed bed has left the ignition furnace, and after the raw material packed bed has left the ignition furnace Within 2 minutes, the application of coal with a volatile content of 10% by mass or more to the surface of the raw material packed bed fed on the pallet within the range of 5% by mass to 15% by mass of the total blended coke amount is completed. A method for producing a sinter.
(2) The method for producing a sinter according to (1), wherein the coal has a particle size of less than 0.25 mm.

原料充填層の表面に石炭を散布し、熱源を供給することにより、焼結鉱製造設備の上層部を十分に加熱できるので、熱不足による焼結鉱の強度等の低下を招くことなく焼結鉱の製品歩留まりを向上させることができる。さらに、固体燃料の一部に石炭が使用可能となり製造コストを削減できる。   By spraying coal on the surface of the raw material packed bed and supplying a heat source, the upper layer of the sinter production facility can be sufficiently heated, so sintering does not cause a decrease in the strength of the sinter due to lack of heat. The product yield of the ore can be improved. Furthermore, coal can be used as a part of the solid fuel, and the manufacturing cost can be reduced.

鍋試験及び原料充填層の表面に石炭を散布する方法を示す図。The figure which shows the method of spraying coal on the surface of a pot test and a raw material packed bed. 散布炭材の種類と焼結生産率の関係を示す図。The figure which shows the relationship between the kind of dispersion | spreading carbonaceous material, and a sintering production rate. 散布炭材の種類と焼結鉱強度の関係を示す図。The figure which shows the relationship between the kind of spraying carbonaceous material, and sintered ore intensity | strength. NSBC炭の粒度と焼結生産率の関係を示す図。The figure which shows the relationship between the particle size of NSBC charcoal, and a sintering production rate. 散布石炭量と焼結生産率の関係を示す図。The figure which shows the relationship between the amount of sprayed coal, and a sintering production rate. NSBC炭散の散布終了までの時間と未燃石炭の関係を示す図。The figure which shows the time until the spreading | diffusion completion | finish of NSBC coal dispersion, and unburned coal. 点火後、原料充填層表面から10mmの位置における温度を示す図。The figure which shows the temperature in the position of 10 mm from the raw material filling layer surface after ignition. 低密度固体(CTL)の原料充填層高さ方向分布図。The raw material packed bed height direction distribution map of a low density solid (CTL).

本発明は、下方吸引型焼結機を用いた焼結鉱の製造において、焼結鉱製造設備のパレット上に給鉱された原料充填層の表面に、揮発分10質量%以上の石炭を散布することを特徴とする。
下方吸引型焼結機を用いた焼結鉱の製造においては、焼結パレット内の原料充填層下層の焼結原料は、下方に吸引される上層コークスの燃焼排ガスにより余熱され、熱が十分伝えられる。
これに対し、原料充填層上層の鉱石は、排ガスにより余熱されないため熱が不足し、また、焼成後の焼結鉱は、上方より吸引された空気により急速冷却され、脆い焼結鉱となる。
本発明によれば、原料充填層の表面に石炭を散布し、熱源を供給することにより、焼結鉱製造設備の上層部を十分に加熱できるので、熱不足による焼結鉱の強度等の低下を招くことなく焼結鉱の製品歩留まりを向上させることができる。
In the production of sintered ore using a lower suction type sintering machine, the present invention sprays coal having a volatile content of 10% by mass or more on the surface of the raw material packed bed fed on the pallet of the sintered ore production facility. It is characterized by doing.
In the production of sintered ore using a lower suction type sintering machine, the sintering raw material in the lower layer of the raw material packed bed in the sintering pallet is preheated by the combustion gas of the upper coke sucked downward, and the heat is transferred sufficiently. It is done.
On the other hand, since the ore in the upper layer of the raw material packed layer is not heated by the exhaust gas, the heat is insufficient, and the sintered ore after firing is rapidly cooled by the air sucked from above and becomes brittle sintered ore.
According to the present invention, the upper layer portion of the sinter production facility can be sufficiently heated by spraying coal on the surface of the raw material packed bed and supplying a heat source, so that the strength of the sinter is reduced due to insufficient heat. It is possible to improve the product yield of sintered ore without incurring any damage.

散布する石炭の揮発分は、高いほど効果が大きい。これは、原料充填層表面の冷却されやすい環境においても燃焼が円滑に進行し、燃え残りの燃料が少ないためである。本発明では、主要な石炭の揮発分が10〜40%であることから10質量%以上としたが、19質量%以上がより好ましい。   The higher the volatile content of the sprayed coal, the greater the effect. This is because combustion proceeds smoothly even in an environment where the surface of the raw material packed bed is easily cooled, and there is little unburned fuel. In the present invention, the main coal has a volatile content of 10 to 40%, so it is 10% by mass or more, but 19% by mass or more is more preferable.

石炭の原料充填層表面への散布は、原料充填層が点火炉を出た後0.2分経過後で、原料充填層が点火炉を出た後2分以内に終了することが好ましい。原料充填層が点火炉を出た後2分経過後に石炭の散布を行うと未燃の石炭が、原料充填層の表面に残るからである。即ち、点火炉を出た後2分も経過すると、点火炉で点火されたコークス燃焼点が、表面下に移動してしまい、散布した石炭を完全に燃焼させることが困難となるからである。原料充填層が点火炉を出た後0.2分経過後としたのは、0.2分未満では、石炭の濃度が高くベッドの吸引が不可能となるからである。
従来、焼結機では揮発分を有する固体燃料は使用できなかった。これは、排ガス中に放出された揮発分が後段の集塵機やブロアーに付着して、それぞれ火災や振動の原因となるためである。しかし、本発明においては、石炭から放出される揮発分は、焼結燃焼帯を通過するときに完全に燃焼されるため、この問題が解消される。
It is preferable that the spraying of the coal on the surface of the raw material packed bed is completed within 0.2 minutes after the raw material packed bed leaves the ignition furnace after 0.2 minutes have passed since the raw material packed bed left the ignition furnace. This is because unburned coal remains on the surface of the raw material packed bed if the coal is sprayed after two minutes have passed after the raw material packed bed leaves the ignition furnace. That is, when two minutes have passed after leaving the ignition furnace, the coke combustion point ignited in the ignition furnace moves below the surface, making it difficult to completely burn the dispersed coal. The reason why 0.2 minutes have elapsed after the raw material packed bed has left the ignition furnace is that if the content is less than 0.2 minutes, the concentration of coal is high and the bed cannot be sucked.
Conventionally, solid fuel having a volatile content cannot be used in a sintering machine. This is because the volatile matter released into the exhaust gas adheres to the subsequent dust collector and blower, causing fire and vibration, respectively. However, in the present invention, the volatile matter released from the coal is completely burned when passing through the sintered combustion zone, so this problem is solved.

散布する石炭の粒度は、0.25mm未満であることが好ましい。粒度が大き過ぎると原料充填層の表面で、散布した石炭を完全に燃焼させることが困難となるからである。   The particle size of the coal to be dispersed is preferably less than 0.25 mm. This is because if the particle size is too large, it is difficult to completely burn the spread coal on the surface of the raw material packed bed.

原料充填層の表面への石炭散布の効果を調査するため、直径300mm、層高600mmの焼結鍋試験を行った。原料配合を表1に示す。   In order to investigate the effect of coal spraying on the surface of the raw material packed bed, a sintering pot test with a diameter of 300 mm and a bed height of 600 mm was conducted. Table 1 shows the raw material composition.

Figure 2012026016
Figure 2012026016

コークス量は、石炭散布をしないベース条件では、4.5質量%(外数)とした。石炭散布時のテスト条件では、コークス量を4.3質量%(外数)とし、コークスの減量0.2質量%分を、投入熱量一定として石炭0.227質量%に置換した。この場合、コークス発熱量30.2MJ/kg、石炭発熱量26,6MJ/kgとし、全投入熱量はベース条件、テスト条件共に1092MJ/t−配原料とした。
この石炭の散布量0.227質量%は、全配合コークス量4.3%に対し5.28%である。
The amount of coke was 4.5% by mass (outside number) under base conditions where no coal was sprayed. Under the test conditions at the time of coal spraying, the amount of coke was 4.3% by mass (outside number), and the 0.2% by mass reduction of coke was replaced with 0.227% by mass of coal with a constant input heat amount. In this case, the coke heat generation amount was 30.2 MJ / kg, the coal heat generation amount was 26,6 MJ / kg, and the total input heat amount was 1092 MJ / t-distributed raw material for both base conditions and test conditions.
The coal application amount of 0.227% by mass is 5.28% with respect to the total blended coke amount of 4.3%.

石炭は、NSBC炭(揮発分36.5質量)とサラジ炭(揮発分19.3質量%)を使用した。   NSBC charcoal (volatile content 36.5 mass) and Saraji charcoal (volatile content 19.3 mass%) were used as coal.

図1に鍋試験及び原料充填層の表面に石炭を散布する方法を示す。配合原料をドラムミキサーにより混合1分、造粒4分後に、直径300mmの試験鍋1に層厚600mmに充填し、90秒間の点火操作の後、負圧15.0kpaの一定条件で吸引し焼結した。原料充填層の表面への散布は、充填槽の上で所定の篩目の篩網4で石炭3を手篩いし、原料充填層の表面に散布した。原料充填層最下層から120mm、300mm、450mm及び590mmの各位置に熱電対2を配置し、層内温度を測定した。焼成後に、生産率、焼結鉱強度、焼結鉱化学分析及び焼結ケーキ表面の未燃石炭を観測した。また、焼成後の焼結鉱をX線写真により、解析した。   FIG. 1 shows a pot test and a method of spraying coal on the surface of the raw material packed bed. After mixing the raw materials in a drum mixer for 1 minute and after granulation for 4 minutes, the test pan 1 having a diameter of 300 mm is filled to a layer thickness of 600 mm, and after igniting for 90 seconds, it is sucked and baked under a constant condition of negative pressure of 15.0 kpa. I concluded. For spraying on the surface of the raw material packed bed, the coal 3 was hand-screened with a screen 4 of a predetermined mesh on the filling tank, and then sprayed on the surface of the raw material packed bed. The thermocouple 2 was arrange | positioned in each position of 120 mm, 300 mm, 450 mm, and 590 mm from the lowest layer of a raw material packed layer, and the temperature in a layer was measured. After firing, production rate, sinter strength, sinter chemical analysis and unburned coal on the surface of the sinter cake were observed. Moreover, the sintered ore after firing was analyzed by X-ray photography.

散布炭材としては、NSBC炭、サラジ炭及びコークスを使用した。NSBC炭、サラジ炭及びコークスの工業分析と元素分析を表2に示す。   NSBC charcoal, Saraji charcoal, and coke were used as the spread charcoal. Table 2 shows the industrial analysis and elemental analysis of NSBC coal, Saraji coal and coke.

Figure 2012026016
Figure 2012026016

散布炭材の種類と焼結生産率の関係についての焼結鍋試験結果を図2に示す。また、散布炭材の種類と焼結の強度の関係についての焼結鍋試験結果を図3に示す。
原料充填層の表面に炭材を散布していないベースに比べ、NSBC炭(揮発分36.5質量%)又はサラジ炭(揮発分19.3質量%)を表面散布したテストの場合は、生産率及び焼結鉱強度が向上した。また、コークスを表面に散布した場合と比較した場合、石炭散布により生産率及び焼結鉱強度が向上した。原料充填層の表面に散布する炭材は、揮発分の高い石炭が優れていることがわかった。
FIG. 2 shows the results of the sintering pot test on the relationship between the type of sprayed carbon material and the sintering production rate. Moreover, the sintering pot test result about the relationship between the kind of dispersion | distribution carbon | charcoal material and the intensity | strength of sintering is shown in FIG.
In the case of a test in which NSBC charcoal (36.5% by mass of volatiles) or Saraj charcoal (19.3% by mass of volatiles) is sprinkled on the surface of the raw material packed bed compared to the base in which no charcoal is sprayed, Rate and sinter strength improved. Moreover, when compared with the case where coke was spread on the surface, the production rate and sintered ore strength were improved by the coal spread. It was found that the carbon material sprayed on the surface of the raw material packed bed is excellent in coal having a high volatile content.

また、比較のために、石炭を原料充填層の表面に散布する代わりに0.2質量%のコークスを原料充填層の表面に散布する試験も行った。更に、CaO/Fe=0.3、コークス割合が17%となるように鉄鉱石、生石灰および粉コークスを混合した溶剤を、投入熱量一定の条件で散布した場合についても試験を行い、その結果を図2及び図3に示す。コークスや溶剤の表面散布に対しても石炭散布の優位性が見られた。 For comparison, a test was also conducted in which 0.2% by mass of coke was sprayed on the surface of the raw material packed bed instead of spraying coal on the surface of the raw material packed layer. Furthermore, a test was also conducted for a case where a mixture of iron ore, quicklime and powdered coke was sprayed at a constant input heat amount so that the CaO / Fe 2 O 3 = 0.3 and the coke ratio was 17%. The results are shown in FIGS. Coal spraying was superior to coke and solvent surface spraying.

表面に散布する石炭の粒度の影響を調査するため、0.5mm未満、0.25mm未満及び0.1mm未満に粉砕したNSBC炭(揮発分36.5質量%)の散布試験を行った。NSBC炭(揮発分36.5質量%)の粒度と焼結生産率の関係を図4に示す。散布石炭の粒度は、0.25mm未満が、より適切であることがわかった。   In order to investigate the influence of the particle size of the coal spread on the surface, a spray test of NSBC coal (volatile content 36.5% by mass) ground to less than 0.5 mm, less than 0.25 mm, and less than 0.1 mm was performed. FIG. 4 shows the relationship between the particle size of NSBC charcoal (volatile content: 36.5% by mass) and the sintering production rate. It has been found that the particle size of the sprayed coal is more suitable less than 0.25 mm.

表面に散布する石炭の量の影響を調査するため、コークスと石炭の合計質量を一定とした条件において、表面に散布する石炭の量を変更した試験を行った。散布石炭量と焼結生産性の関係を図5に示す。散布石炭量は5質量%以上、15質量%以下の範囲が適切であることがわかった。   In order to investigate the influence of the amount of coal sprayed on the surface, a test was performed in which the amount of coal sprayed on the surface was changed under the condition that the total mass of coke and coal was constant. The relationship between the amount of sprayed coal and the sintering productivity is shown in FIG. It turned out that the range of 5 mass% or more and 15 mass% or less is appropriate for the amount of sprayed coal.

点火炉で点火した後に、原料充填層に石炭を散布する場合の石炭散布のタイミングを調査する試験を行った。点火炉を出た直後の原料充填層にNSBC炭(0.1mm未満)を散布し、散布終了までの時間を変えた。試験条件は、すべて同じ投入熱量とするため、コークス減量0.2質量%分に相当する熱量である0.227質量%の石炭を散布した。 散布石炭の散布終了までの時間と未燃石炭の関係を図6に示す。石炭散布は、原料充填層が点火炉を出た後、2分を経過後に石炭散布を継続すると未燃石炭が焼結上層に残留していることが観測された。点火炉で点火した後に原料充填層に石炭を散布する場合は、点火炉を出た後2分以内に散布完了しなければならないことがわかった。   After igniting in the ignition furnace, a test was conducted to investigate the timing of spraying coal when spraying coal into the raw material packed bed. NSBC charcoal (less than 0.1 mm) was sprayed on the raw material packed bed immediately after leaving the ignition furnace, and the time until the end of spraying was changed. In order to make all the test conditions into the same input calorie | heat amount, 0.227 mass% coal which is a calorie | heat amount equivalent to 0.2 mass% of coke loss was sprayed. FIG. 6 shows the relationship between the time until spraying of the sprayed coal and the unburned coal. It was observed that when coal was sprayed after 2 minutes had elapsed after the raw material packed bed left the ignition furnace, unburned coal remained in the upper sintering layer. It has been found that when coal is sprayed on the raw material packed bed after ignition in the ignition furnace, the spraying must be completed within 2 minutes after leaving the ignition furnace.

原料充填層の表面に石炭を散布することにより、原料充填層の上部の熱不足が解消されているか否かを観測するため、原料充填層表面から10mmの位置の温度を測定した。石炭散布をしない場合をベースとし、投入熱量を一定にし、コークス0.2質量%をNSBC炭(0.1mm未満)の散布に置換した場合の原料充填層表面から10mmの位置の温度を図7に示す。
NSBC炭(0.1mm未満)の表面散布により、原料充填層の上部の温度が上昇し、熱不足が解消していることがわかった。
In order to observe whether or not the lack of heat at the top of the raw material packed bed was eliminated by spraying coal on the surface of the raw material packed bed, the temperature at a position 10 mm from the surface of the raw material packed bed was measured. FIG. 7 shows the temperature at a position of 10 mm from the surface of the raw material packed bed when the amount of heat input is constant and 0.2 mass% of coke is replaced with NSBC coal (less than 0.1 mm), based on the case where coal is not dispersed. Shown in
It was found that the surface spray of NSBC charcoal (less than 0.1 mm) raised the temperature of the upper part of the raw material packed bed and eliminated the lack of heat.

石炭散布をしない場合をベースとし、投入熱量を一定にして、コークス0.2質量%をNSBC炭(0.1mm未満)0.227質量%の散布に置換した場合の焼成後の焼結鉱をX線写真により解析した。結果を図8に示す。ここで、CTLは、低密度固体の存在割合を示す。即ち、充填層の各高さにおける焼結鉱のX線写真解析による密度(ρ)が、1.6を超え2.2以下の画素数をLとし、2.2を超え3.4以下の画素数をMとし、3.4を超えるものをHとした場合の、各位置の全体に対する低密度画素数の割合(L/(L+M+H))を低密度固体の存在割合(CTL)とした。
原料充填層上部で低密度焼結鉱の割合が減少し、焼結強度の向上となったことがわかった。
Sintered ore after firing when the amount of heat input is constant and 0.2% by mass of coke is replaced with 0.227% by mass of NSBC charcoal (less than 0.1 mm) based on the case where coal is not applied. Analysis was performed by X-ray photography. The results are shown in FIG. Here, CTL indicates the abundance ratio of the low density solid. That is, the density (ρ) by X-ray analysis of the sintered ore at each height of the packed bed is 1.6 to 2.2 and the number of pixels is L and 2.2 to 3.4. The ratio (L / (L + M + H)) of the number of low-density pixels to the whole of each position when the number of pixels is M and H is more than 3.4 is defined as the low-density solid existence ratio (CTL).
It was found that the ratio of low density sintered ore decreased in the upper part of the raw material packed bed, and the sintering strength was improved.

本発明は、下方吸引型焼結機を用いた焼結鉱の製造方法に利用できる。   The present invention can be used in a method for producing sintered ore using a downward suction type sintering machine.

1…試験鍋、2…熱電対、3…石炭、4…篩網   1 ... Test pan, 2 ... Thermocouple, 3 ... Coal, 4 ... Sieve

Claims (2)

下方吸引型焼結機を用いた焼結鉱の製造方法であって、原料充填層が点火炉を出た後0.2分経過後で、原料充填層が点火炉を出た後2分以内に、揮発分10質量%以上の石炭を、全配合コークス量の5質量%以上15質量%以下の範囲で、パレット上に給鉱された原料充填層の表面に散布を終了することを特徴とする焼結鉱製造方法。   A method for producing sintered ore using a downward suction type sintering machine, wherein 0.2 minutes have elapsed after the raw material packed bed exited the ignition furnace, and within 2 minutes after the raw material packed bed exited the ignition furnace In addition, the application of coal having a volatile content of 10% by mass or more to the surface of the raw material packed bed fed on the pallet within a range of 5% by mass to 15% by mass of the total blended coke amount is characterized by A method for producing sintered ore. 石炭の粒度が、0.25mm未満であることを特徴とする請求項1に記載の焼結鉱製造方法。   The sinter production method according to claim 1, wherein the particle size of the coal is less than 0.25 mm.
JP2010168325A 2010-07-27 2010-07-27 Method of manufacturing sintered ore Withdrawn JP2012026016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010168325A JP2012026016A (en) 2010-07-27 2010-07-27 Method of manufacturing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010168325A JP2012026016A (en) 2010-07-27 2010-07-27 Method of manufacturing sintered ore

Publications (1)

Publication Number Publication Date
JP2012026016A true JP2012026016A (en) 2012-02-09

Family

ID=45779286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010168325A Withdrawn JP2012026016A (en) 2010-07-27 2010-07-27 Method of manufacturing sintered ore

Country Status (1)

Country Link
JP (1) JP2012026016A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032419A (en) * 2019-08-13 2021-03-01 日本製鉄株式会社 Sintering machine and method for operating sintering machine
JP2021120479A (en) * 2020-01-31 2021-08-19 日本製鉄株式会社 Method for producing sintered ore and sintering machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032419A (en) * 2019-08-13 2021-03-01 日本製鉄株式会社 Sintering machine and method for operating sintering machine
JP2021120479A (en) * 2020-01-31 2021-08-19 日本製鉄株式会社 Method for producing sintered ore and sintering machine
JP7381876B2 (en) 2020-01-31 2023-11-16 日本製鉄株式会社 Sintered ore manufacturing method and sintering machine

Similar Documents

Publication Publication Date Title
JP5786795B2 (en) Sinter ore production method using oil palm core shell coal
JP2012117082A (en) Method for production of sintered ore
JP2022033594A (en) Method for manufacturing sintered ore
JP2021120479A (en) Method for producing sintered ore and sintering machine
JP6421666B2 (en) Method for producing sintered ore
JP4837799B2 (en) Method for producing sintered ore
JP6102463B2 (en) Method for producing sintered ore
JP5817629B2 (en) Method for producing sintered ore using finely granulated carbon
JP5853874B2 (en) Method for producing sintered ore with high combustible carbon material mixed in the upper layer of the sintered layer
JP2012026016A (en) Method of manufacturing sintered ore
JP5811756B2 (en) Method for producing sintered ore
JP4918754B2 (en) Semi-reduced sintered ore and method for producing the same
JP4984488B2 (en) Method for producing semi-reduced sintered ore
JP5561443B2 (en) Method for producing sintered ore
BRPI1007900B1 (en) CARBONACE MATERIAL FOR SINTERING IRON ORE
KR101696328B1 (en) Apparatus for raw material process, method thereof and pellet
JP2946880B2 (en) Sinter production method
JP7095561B2 (en) Sintered ore manufacturing method
JP2008019455A (en) Method for producing half-reduced sintered ore
JP4379083B2 (en) Method for producing semi-reduced agglomerate
CN217636810U (en) Sintering machine capable of improving sintering yield
JPWO2017221774A1 (en) Method for producing carbonaceous interior sinter
JP6357842B2 (en) Sinter ore manufacturing method
JP6816709B2 (en) Manufacturing method of coal material interior sinter
JP2021161529A (en) Method for producing carbonaceous material for sintering, and method for producing sintered ore

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131001