JP2022033594A - Method for manufacturing sintered ore - Google Patents

Method for manufacturing sintered ore Download PDF

Info

Publication number
JP2022033594A
JP2022033594A JP2020137572A JP2020137572A JP2022033594A JP 2022033594 A JP2022033594 A JP 2022033594A JP 2020137572 A JP2020137572 A JP 2020137572A JP 2020137572 A JP2020137572 A JP 2020137572A JP 2022033594 A JP2022033594 A JP 2022033594A
Authority
JP
Japan
Prior art keywords
carbonaceous material
raw material
low
coal
combustible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020137572A
Other languages
Japanese (ja)
Inventor
勝 松村
Masaru Matsumura
英昭 矢部
Hideaki Yabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020137572A priority Critical patent/JP2022033594A/en
Publication of JP2022033594A publication Critical patent/JP2022033594A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method for manufacturing a sintered ore, capable of post-adding a coagulation material in a step of granulating a sintering raw material while together using a low flammable carbonaceous material and a high flammable carbonaceous material as the coagulation material and improving a sintering yield by a preferable mixing ratio of the high flammable carbonaceous material to the total coagulation material (a preferable mixing ratio of the low flammable carbonaceous material to the high flammable carbonaceous material).SOLUTION: A low flammable carbonaceous material consisting of at least one of coke breeze and anthracite and a high flammable carbonaceous material being a carbonaceous material having a combustion start temperature lower than that of the low flammable carbonaceous material are used as the coagulation material of a sintering raw material. The mass ratio of the carbon content of the high flammable carbonaceous material to that of the coagulation material is 25-75 mass%, and at least one of the low flammable carbonaceous material and the high flammable carbonaceous material is added in the latter half of the step of granulating the sintering raw material.SELECTED DRAWING: Figure 2

Description

本発明は、高炉原料用の焼結鉱を製造する焼結鉱の製造方法であって、特に、コークスおよび無煙炭よりも燃焼開始温度が低い高燃焼性炭材を凝結材(炭材)として用いる焼結鉱の製造方法に関する。 The present invention is a method for producing a sinter for producing a sinter for a blast furnace raw material, and in particular, a highly combustible carbonaceous material having a lower combustion start temperature than coke and smokeless coal is used as a coagulant (coal material). Regarding the manufacturing method of sinter.

現在、高炉製銑の主原料は、焼結鉱である。焼結鉱は、通常、次のように製造される。まず、焼結鉱製造用の原料(焼結原料)として、鉄鉱石(粉)等の鉄原料、スケール・製鉄ダスト等の含鉄雑原料、橄欖岩等のMgO含有副原料、石灰石等のCaO含有副原料、返鉱、燃焼熱によって焼結鉱を焼結(凝結)させる燃料となる炭材(凝結材)などを、所定の割合で混合する。混合した配合原料を造粒して配合原料造粒物とする。次に、配合原料造粒物を、ホッパより、下方吸引式のドワイトロイド(DL)式焼結機のパレット(焼結パレット)上に搭載して、原料充填層(焼結充填層)を形成する。形成した原料充填層の上部(表面)から、点火炉(点火器)により原料充填層中の炭材に点火する。そして、パレットを連続的に移動させながらパレットの下方から空気を吸引する。吸引により原料充填層内に酸素を供給し、原料充填層中の炭材の燃焼を上部から下部に向けて進行させて、炭材の燃焼熱により原料充填層を順次焼結させる。焼結により得られた焼結部(焼結ケーキ)は、所定の粒度に粉砕、篩分け等により整粒され、高炉の原料である焼結鉱となる。 Currently, the main raw material for blast furnace pig iron is sinter. Sintered ore is usually produced as follows. First, as raw materials (sintered raw materials) for sintering ore production, iron raw materials such as iron ore (powder), iron-containing miscellaneous raw materials such as scale and iron-making dust, MgO-containing auxiliary materials such as sinter, and CaO-containing limestone. A by-material, return ore, carbonaceous material (condensing material) as a fuel for sintering (condensing) the sintered ore by heat of combustion, and the like are mixed at a predetermined ratio. The mixed compounded raw material is granulated to obtain a compounded raw material granulated product. Next, the compounded raw material granulated product is mounted on a pallet (sintered pallet) of a downward suction type dwightroid (DL) type sintering machine from a hopper to form a packed raw material (sintered packed bed). do. The charcoal material in the packed bed is ignited by an ignition furnace (igniter) from the upper part (surface) of the formed packed bed. Then, air is sucked from below the pallet while continuously moving the pallet. Oxygen is supplied into the packed bed of the raw material by suction, combustion of the carbonaceous material in the packed bed of the raw material proceeds from the upper part to the lower part, and the packed bed of the raw material is sequentially sintered by the combustion heat of the carbonaceous material. The sintered portion (sintered cake) obtained by sintering is sintered to a predetermined particle size by pulverization, sieving, etc., and becomes a sintered ore which is a raw material of a blast furnace.

焼結用の炭材(凝結材)として、主に、コークス、無煙炭が用いられる。焼結用のコークスは、高炉用のコークスを製造する過程で、高炉使用に適さない粒度(通常40mm以下)のものを、焼結使用に適する3mm以下に粉砕したものである。高炉用の塊コークスに対して焼結用を粉コークスとも呼ぶ。無煙炭は、石炭に付与される分類(褐炭、瀝青炭、無煙炭)の一つで、最も炭化が進行した石炭である。燃料比(固定炭素/揮発分(質量比))で4以上の石炭、簡易には、炭素含有量が90質量%以上の石炭が無煙炭に分類される。 Coke and anthracite are mainly used as the carbonaceous material (condensing material) for sintering. The coke for sintering is a coke having a particle size unsuitable for use in a blast furnace (usually 40 mm or less) crushed to 3 mm or less suitable for use in sintering in the process of producing coke for a blast furnace. Sintering is also called powder coke as opposed to lump coke for blast furnace. Anthracite is one of the categories (brown coal, bituminous coal, anthracite) given to coal, and is the most carbonized coal. Coal with a fuel ratio (fixed carbon / volatile content (mass ratio)) of 4 or more, or simply coal with a carbon content of 90% by mass or more, is classified as anthracite.

高炉の原料として適した焼結鉱を製造するために、様々な焼結鉱の製造方法が提案されている。例えば、特許文献1には、焼結鉱の製造において、燃焼反応開始温度が450℃未満の低温燃焼固体燃料(亜瀝青炭、褐炭、または、亜瀝青炭と褐炭とを混合した混合炭を800℃程度の比較的低温で乾留して得られたチャー)を10mass%以上含む固体燃料を用いる焼結鉱の製造方法が開示されている。低温燃焼固体燃料を、粉コークス、無煙炭またはカーボン含有ダストとともに、固体燃料として用いることで、固体燃料の燃焼性を本質的に改善させ、生産性を向上させる。 Various methods for producing sinter have been proposed in order to produce sinter suitable as a raw material for blast furnaces. For example, Patent Document 1 states that in the production of sintered ore, low-temperature combustion solid fuel (sub-bituminous charcoal, lignite, or a mixture of sub-bituminous charcoal and lignite) having a combustion reaction start temperature of less than 450 ° C. is about 800 ° C. A method for producing a sintered ore using a solid fuel containing 10 mass% or more of char) obtained by carbonization at a relatively low temperature is disclosed. By using the low temperature combustion solid fuel as a solid fuel together with coke breeze, anthracite or carbon-containing dust, the combustibility of the solid fuel is substantially improved and the productivity is improved.

特許文献2および特許文献3には、炭材(凝結材)を後添加する技術(炭材後添加焼結法)が開示されている。炭材後添加焼結法とは、炭材以外の焼結原料の造粒中、または、炭材以外の焼結原料の造粒後に、炭材以外の焼結原料の造粒物に炭材を後から添加して、焼結原料造粒物を製造する技術である。 Patent Document 2 and Patent Document 3 disclose a technique for post-adding a carbonaceous material (coagulant) (coal material post-addition sintering method). The post-carbonation addition sintering method is a method of granulating a sintering material other than the carbon material, or after granulating the sintering material other than the carbon material, and then adding the carbon material to the granulated material of the sintering material other than the carbon material. Is a technique for producing a sintered raw material granulated product by adding the above.

特許文献2においては、炭材として揮発分が10mass%以下の炭材を用いた炭材後添加焼結法が開示されており、褐炭などを熱分解した石炭チャーを用いた場合でも、造粒粒子の粒度を高めるとともに炭材の燃焼性を向上できる焼結原料を得ることができ、得られた焼結原料を用いて焼結鉱を製造することで焼結鉱の燃焼歩留および生産率を高めることができることが記載されている。 Patent Document 2 discloses a post-addition sintering method for a coal material using a coal material having a volatile content of 10 mass% or less as the coal material, and even when a coal char obtained by thermally decomposing brown coal or the like is used, granulation is performed. It is possible to obtain a sinter material that can increase the grain size of the particles and improve the combustibility of the coal material. By producing the sinter using the obtained sinter material, the combustion yield and production rate of the sinter can be obtained. It is stated that it can be enhanced.

特許文献3においては、焼結用炭材の原料としてロガ指数が10以下である石炭を用いた炭材後添加焼結法が開示されており、焼結鉱を製造するときに発生するNOxの排出量を低減でき、石炭から焼結用炭材を製造することなく、石炭のロガ指数を算出するだけで焼結用炭材の原料を選定することができることが記載されている。 Patent Document 3 discloses a post-additional sinter method for coal using coal having a logger index of 10 or less as a raw material for sintering coal, and NOx generated when sinter is produced. It is described that the amount of emissions can be reduced and the raw material for the sintering coal can be selected simply by calculating the logger index of coal without producing the sintering coal from coal.

国際公開WO2010-106756号International release WO2010-106756 特開2018-3081号公報Japanese Unexamined Patent Publication No. 2018-3081 特開2020-56086号公報Japanese Unexamined Patent Publication No. 2020-56086

上述のように、特許文献1においては、固体燃料として、コークスまたは無煙炭などとともに、低温燃焼固体燃料を用いる技術が開示されている。また、特許文献2,3には、を炭材後添加焼結法が開示されている。しかしながら、これまで、コークスまたは/および無煙炭(コークスおよび無煙炭は後述する低燃焼性炭材に分類される)と、低燃焼性炭材よりも燃焼開始温度が低い高燃焼性炭材とを凝結材として併用しつつ、凝結材(一部または全部)を焼結原料の造粒工程において後添加する焼結鉱の製造方法については検討されてこなかった。 As described above, Patent Document 1 discloses a technique of using a low-temperature combustion solid fuel together with coke or anthracite as a solid fuel. Further, Patent Documents 2 and 3 disclose a method for sintering after adding carbonaceous material. However, until now, coke and / and anthracite (coke and anthracite are classified as low-combustible carbonaceous materials described later) and high-combustible carbonaceous materials having a lower combustion start temperature than low-combustible carbonaceous materials have been coagulated. A method for producing sinter, in which a coagulant (part or all) is added afterwards in the granulation process of the sinter raw material, has not been studied.

本発明は、凝結材として低燃焼性炭材と高燃焼性炭材とを併用しつつ、焼結原料の造粒工程において凝結材を後添加する焼結鉱の製造方法において、焼結の歩留の向上を可能とする全凝結材に対する高燃焼性炭材の好ましい配合比率(低燃焼性炭材と高燃焼性炭材との好ましい配合比率)を提示することを目的とする。 The present invention is a step of sintering in a method for producing a sintered ore in which a coagulant is post-added in the granulation process of a sintering raw material while using a low-combustible carbonaceous material and a high-combustible carbonaceous material in combination as a coagulant. It is an object of the present invention to present a preferable compounding ratio of a highly combustible carbonaceous material (a preferable compounding ratio of a low combustible carbonaceous material and a highly combustible carbonaceous material) with respect to the total coagulant that enables improvement of retention.

(1)焼結原料の凝結材として、粉コークスおよび無煙炭の少なくともどちらか一方からなる低燃焼性炭材と、前記低燃焼性炭材よりも燃焼開始温度が低い炭材である高燃焼性炭材とを用い、
前記高燃焼性炭材の炭素分は、前記凝結材の炭素分に対して質量比率が25質量%~75質量%であり、
前記低燃焼性炭材および前記高燃焼性炭材の少なくともいずれか一方を、前記焼結原料の造粒工程後半において添加する焼結鉱の製造方法。
(2)前記焼結原料として、金属鉄または二価鉄イオンを含有する鉄系原料である低酸化度鉄系原料を全新原料に対して内数で2質量%以上配合する(1)に記載の焼結鉱の製造方法。
(1) High combustible charcoal, which is a low combustible coal material composed of at least one of coke breeze and anthracite, and a charcoal material having a lower combustion start temperature than the low combustible coal material, as the coagulant of the sintered raw material. Using wood,
The carbon content of the highly combustible carbonaceous material has a mass ratio of 25% by mass to 75% by mass with respect to the carbon content of the coagulating material.
A method for producing a sinter, in which at least one of the low-combustible carbonaceous material and the high-combustible carbonaceous material is added in the latter half of the granulation step of the sintered raw material.
(2) Described in (1), as the sintering raw material, a low-oxidation iron-based raw material, which is an iron-based raw material containing metallic iron or divalent iron ions, is blended in an amount of 2% by mass or more with respect to the all-new raw material. How to make sinter.

本発明によれば、低燃焼性炭材と高燃焼性炭材とを凝結材として併用する場合において、高燃焼性炭材の炭素分を凝結材の炭素分に対して質量比率で25質量%~75質量%として、低燃焼性炭材および高燃焼性炭材の少なくともいずれか一方を、焼結原料の造粒工程後半において添加することにより、焼結の歩留を向上させることができる。 According to the present invention, when a low-combustible carbonaceous material and a high-combustible carbonaceous material are used in combination as a coagulant, the carbon content of the high-combustible carbonaceous material is 25% by mass in mass ratio with respect to the carbon content of the coagulant. The yield of sintering can be improved by adding at least one of the low-combustible carbonaceous material and the high-combustible carbonaceous material in an amount of about 75% by mass in the latter half of the granulation step of the sintering raw material.

焼結充填層における焼成状態を説明する概略説明図である。It is a schematic explanatory drawing explaining the firing state in a sintered packed bed. 褐炭チャーおよび粉コークスの配合比と焼結ヒートパターンとの関係を示す図である。It is a figure which shows the relationship between the blending ratio of lignite char and coke breeze, and the sintering heat pattern. 試験1の実験結果を示す図である。It is a figure which shows the experimental result of Test 1. 試験2の実験結果を示す図である。It is a figure which shows the experimental result of the test 2. 試験3の実験結果を示す図である。It is a figure which shows the experimental result of the test 3. 試験4の実験結果を示す図である。It is a figure which shows the experimental result of the test 4.

まず、焼結鉱製造用の原料(焼結原料)として使用する低燃焼性炭材および高燃焼性炭材と、低酸化度鉄系原料について順に説明し、その後に本発明の実施の形態について説明する。 First, a low-combustible carbonaceous material and a high-combustible carbonaceous material used as raw materials (sintered raw materials) for producing sinter, and low-oxidation iron-based raw materials will be described in order, and then the embodiments of the present invention will be described. explain.

(低燃焼性炭材と高燃焼性炭材)
焼結原料の炭材(凝結材)は、低燃焼性炭材と高燃焼性炭材とに分類される。
低燃焼性炭材はコークスおよび無煙炭であり、高燃焼性炭材は、低燃焼性炭材より燃焼性の高い炭材である。具体的には、低燃焼性炭材と高燃焼性炭材とは示差熱天秤で得られる燃焼開始温度に基づいて分類され、低燃焼性炭材は550℃を超える炭材であり、高燃焼性炭材は550℃以下の炭材である。
(Low combustible carbonaceous material and high combustible carbonaceous material)
The carbonaceous material (condensing material) of the sintered raw material is classified into a low combustible carbonaceous material and a high combustible carbonaceous material.
The low-combustible carbonaceous material is coke and anthracite, and the high-combustible carbonaceous material is a carbonaceous material having higher combustibility than the low-combustible carbonaceous material. Specifically, the low combustible coal material and the high combustible coal material are classified based on the combustion start temperature obtained by the differential thermal balance, and the low combustible coal material is a coal material exceeding 550 ° C and has high combustion. The sex charcoal material is a charcoal material having a temperature of 550 ° C. or lower.

高燃焼性炭材には、例えば、石炭チャーやバイオマス炭(アブラ椰子核殻炭や、木材を乾留して製造した木炭チャーなど)などがある。コークスの着火温度は約670℃、無煙炭の着火温度は約690℃であるのに対し、石炭チャー(セミコークス、褐炭チャー、および亜瀝青炭チャー)の着火温度は約430℃~550℃であり、バイオマス炭(アブラ椰子核殻炭)の着火温度は約470℃と低い。石炭チャーとバイオマス炭(アブラ椰子核殻炭)は、着火温度がおおよそ同じ温度であるので、同様の燃焼性を有する。 Examples of the highly combustible coal material include coal char and biomass charcoal (such as Abra palm kernel shell charcoal and charcoal char produced by carbonizing wood). The ignition temperature of coke is about 670 ° C and the ignition temperature of smokeless coal is about 690 ° C, while the ignition temperature of coal char (semi-coke, brown coal char, and subbituminous coal char) is about 430 ° C to 550 ° C. The ignition temperature of biomass coal (Abra palm coke) is as low as about 470 ° C. Coal char and biomass charcoal (Abra palm kernel shell coal) have similar flammability because the ignition temperature is about the same.

ここで、石炭チャーとは、例えば、粘結性の低い瀝青炭、褐炭、および亜瀝青炭などを原炭として、700~900℃で乾留して製造した炭材(チャー)である。粘結性の低い瀝青炭、褐炭、亜瀝青炭を乾留して製造した炭材を、それぞれ、セミコークス、褐炭チャー、亜瀝青炭チャーという。これらの炭材は、原料となる石炭(混炭を含む)を、熱分解炉(例えばロータリーキルン)により乾留して製造される。
また、バイオマス炭とは、例えば、アブラ椰子核や木材などの生物資源(バイオマス)を材料として、これを熱処理して製造された炭材である。アブラ椰子核殻炭(PKS炭)は、アブラ椰子核殻(Palm Kernel Shell)を加熱処理(乾留)して製造した固体炭化物である。PKS炭の製造方法については、特開2014-218713(原ら)などに記載されているので、詳細は省略する。
Here, the coal char is a coal material (char) produced by carbonizing, for example, bituminous coal, lignite, and subbituminous coal having low cohesiveness at 700 to 900 ° C. as raw coal. The charcoal materials produced by carbonizing low-viscosity bituminous coal, lignite, and subbituminous coal are called semi-coke, lignite char, and subbituminous coal char, respectively. These coal materials are produced by carbonizing coal (including mixed coal) as a raw material in a pyrolysis furnace (for example, a rotary kiln).
Further, the biomass charcoal is a charcoal material produced by heat-treating biological resources (biomass) such as Abra palm kernel and wood as a material. Abra coconut husk charcoal (PKS charcoal) is a solid carbide produced by heat-treating (dry distillation) Abra coconut husk (Palm Kernel Shell). The method for producing PKS charcoal is described in JP-A-2014-218713 (Hara et al.), And details thereof will be omitted.

(低酸化度鉄系原料)
低酸化度鉄系原料は、金属鉄または二価鉄イオンのうちの少なくとも1つを含有し、酸化発熱性を有する。鉱物相では、金属鉄(Fe)、ウスタイト(FeO)、およびマグネタイト(Fe)のうちの少なくとも1つを含有する。スケール(製鐵所で発生するミルスケール、スカーフィングスケール)や転炉ダストが例示される。
高温下となる焼結過程において、金属鉄(Fe)、ウスタイト(FeO)、およびマグネタイト(Fe)は酸化され、例えば、金属鉄(Fe)やウスタイト(FeO)はマグネタイト(Fe)やヘマタイト(Fe)に、マグネタイト(Fe)はヘマタイト(Fe)に変化する。これらの酸化反応は発熱反応であるので、低酸化度鉄系原料を発熱源として使用することもできる。
(Low-oxidation iron-based raw material)
The low-oxidation iron-based raw material contains at least one of metallic iron or ferrous ion and has an oxidation heat generating property. The mineral phase contains at least one of metallic iron (Fe), wustite (FeO), and magnetite (Fe 3O 4 ) . Examples include scales (mill scales and scarfing scales generated at steelworks) and converter dust.
In the sintering process under high temperature, metallic iron (Fe), ustite (FeO), and magnetite (Fe 3O 4 ) are oxidized, for example, metallic iron (Fe) and ustite (FeO) are magnetite (Fe 3 O ). 4 ) and hematite (Fe 2 O 3 ) are changed, and magnetite (Fe 3 O 4 ) is changed to hematite (Fe 2 O 3 ). Since these oxidation reactions are exothermic reactions, a low-oxidation iron-based raw material can also be used as an exothermic source.

本発明の焼結鉱製造方法は、焼結原料の凝結材として、低燃焼性炭材と高燃焼性炭材とを併用し、高燃焼性炭材に含有される炭素分は全凝結材含有される炭素分に対して質量比率が25質量%~75質量%であり、低燃焼性炭材および高燃焼性炭材の少なくともいずれか一方を、焼結原料の造粒工程後半において添加する。このような配合比率および後添加とすることにより、焼結の成品歩留が向上する。その根拠は、後述する実施例による。なお、ここで、凝結材として使用する低燃焼性炭材は粉コークスおよび無煙炭の少なくともどちらか一方からなる。また、凝結材として使用する高燃焼性炭材は、1種類の原料からなるものでも、複数種類の原料を混合したもの(例えば、複数種類の石炭チャーを混合したもの、石炭チャーとバイオマス炭を混合したもの、複数の原料炭を混合した混合原料炭から製造した石炭チャーなど)でもよい。 In the method for producing a sinter of the present invention, a low combustible carbonaceous material and a high combustible carbonaceous material are used in combination as a coagulant as a sinter raw material, and the carbon content contained in the high combustible carbonaceous material is the total coagulant. The mass ratio is 25% by mass to 75% by mass with respect to the carbon content to be obtained, and at least one of a low combustible carbonaceous material and a high combustible carbonaceous material is added in the latter half of the granulation step of the sintering raw material. By using such a blending ratio and post-addition, the yield of sintered products is improved. The rationale is based on the examples described later. Here, the low-combustibility carbonaceous material used as the coagulant is composed of at least one of coke breeze and anthracite. Further, the highly combustible coal material used as a coagulant may be a mixture of one type of raw material or a mixture of a plurality of types of raw materials (for example, a mixture of a plurality of types of coal char, coal char and biomass charcoal). It may be a mixture, a coal charcoal produced from a mixed coking coal in which a plurality of coking coals are mixed, etc.).

本発明では、凝結材として、従来の低燃焼性炭材(粉コークス、無煙炭)と共に、低燃焼性炭材より燃焼開始温度が低い高燃焼性炭材を使用する。低燃焼性炭材と高燃焼性炭材とは燃焼開始温度が異なるため、下方吸引により焼結が進行する焼結過程において両者の燃焼位置(燃焼ゾーン)が異なってくる。低燃焼性炭材と高燃焼性炭材の配合比率が適正な範囲において、焼結工程において、燃焼特性の異なる複数の炭材を燃焼させることにより、焼結充填層の層高方向における燃焼帯の幅を拡大することができ、燃焼帯の高温保持時間の伸延が達成される。 In the present invention, as the coagulant, a high combustible carbonaceous material having a lower combustion start temperature than the low combustible carbonaceous material is used together with the conventional low combustible carbonaceous material (coke powder, anthracite). Since the combustion start temperature is different between the low combustible carbon material and the high combustible carbon material, the combustion position (combustion zone) of both is different in the sintering process in which sintering proceeds by downward suction. By burning multiple coal materials with different combustion characteristics in the sintering process within the range where the mixing ratio of the low combustible carbon material and the high combustible carbon material is appropriate, the combustion zone in the layer height direction of the sintered packed bed. The width of the combustion zone can be expanded and the extension of the high temperature holding time of the combustion zone is achieved.

また、本発明では、造粒工程において低燃焼性炭材および高燃焼性炭材の少なくともどちらか一方を後添加する(後添加する低燃焼性炭材および高燃焼性炭材の少なくともどちらか一方を、以下、後添加炭材ともいう)。すなわち、造粒機を用いて焼結原料から焼結原料造粒物(焼結原料の造粒物)を製造する造粒工程において、まず、後添加炭材を除く焼結原料を先に造粒機に投入して混合し、調湿して造粒を開始する。続いて、後添加炭材を後から(造粒工程の途中で)造粒機内に投入して、焼結原料造粒物を製造する。後添加炭材を後から適正なタイミングで添加することにより、後添加炭材は焼結原料造粒物に外装され、すなわち造粒物へ内包されることはなく、造粒物の表層に付着または未付着な独立粒として存在する。後添加炭材が外装された焼結原料造粒物(配合原料造粒物)を用いることにより、焼結工程における後添加炭材の燃焼開始のタイミングを調整することが可能となる。なお、後添加炭材は、低燃焼性炭材および高燃焼性炭材のうちのどちらか1種類であればよい。 Further, in the present invention, at least one of the low-combustible carbonaceous material and the high-combustible carbonaceous material is post-added in the granulation step (at least one of the low-combustible coal material and the high-combustible coal material to be post-added). , Hereinafter also referred to as post-added carbonaceous material). That is, in the granulation process of producing a granulated raw material (granulated material of a sintered raw material) from a sintered raw material using a granulator, first, the sintered raw material excluding the post-added carbonaceous material is first produced. Put it in a granulator, mix it, adjust the humidity, and start granulation. Subsequently, the post-added carbonaceous material is later put into the granulator (in the middle of the granulation process) to produce a sintered raw material granulated product. By adding the post-added carbonaceous material at an appropriate timing later, the post-added carbonaceous material is covered with the sintered raw material granulated product, that is, it is not included in the granulated material and adheres to the surface layer of the granulated material. Or it exists as a non-adherent independent grain. By using the sintered raw material granulated product (blended raw material granulated product) on which the post-added carbon material is outer, it is possible to adjust the timing of the combustion start of the post-added carbon material in the sintering step. The post-added carbonaceous material may be any one of a low combustible carbonaceous material and a high combustible carbonaceous material.

造粒工程における後添加は、例えば、以下のように行う。造粒には、下流側に向かって下方に中心軸が傾斜するピストンフロー形式の筒型の造粒機を使用し、下流出口から小さな搬送コンベアを造粒機内部の所定位置まで差し入れた状態とする。上流入口から後添加炭材を除く焼結原料(以下、後添加前焼結原料ともいう)を投入すると、投入した焼結原料は混合され造粒されながら下流側へ移動する。後添加炭材は搬送コンベアに載って造粒機の下流出口から内部上流側に搬入される。後添加炭材は、造粒機内を上流側から造粒されつつ移動してきた後添加前焼結原料の造粒物に、所定位置で添加されて、全焼結原料がさらに造粒され、下流出口から焼結原料造粒物(配合原料造粒物)として排出される。 Post-addition in the granulation step is performed, for example, as follows. For granulation, a piston flow type tubular granulator whose central axis tilts downward toward the downstream side is used, and a small conveyor is inserted from the downstream outlet to a predetermined position inside the granulator. do. When the sintered raw material excluding the post-added carbonaceous material (hereinafter, also referred to as the post-added pre-added sintered raw material) is charged from the upstream inlet, the charged sintered raw material moves to the downstream side while being mixed and granulated. The post-added coal material is placed on a conveyor and carried from the downstream outlet of the granulator to the internal upstream side. The post-added carbonaceous material is added at a predetermined position to the granulated product of the post-addition pre-saturated raw material that has been granulated and moved from the upstream side in the granulator, and the entire sintered raw material is further granulated, and the downstream outlet. Is discharged as a sintered raw material granulated product (blended raw material granulated product).

なお、後添加炭材を添加するまでの後添加前焼結原料の造粒時間を、焼結原料の全造粒時間に対して80%以上96%以下、すなわち、後添加のタイミングを造粒工程における焼結原料の全造粒時間の80%から96%の範囲内の時間とすることが好ましい。後添加が全造粒時間の80%の時間よりも早いと、後添加炭材が造粒物への内包されてしまうことを十分に回避することができない。また、後添加が全造粒時間の96%の時間よりも遅いと、後添加炭材の造粒処理が不十分となる。ここで、造粒工程における全造粒時間は、焼結原料が造粒機に投入されて加水されるまでの単に混合されている時間(混合時間)は含まない。焼結においては、主としてドラムミキサーを使用するが、これは等速のピストンフロー型である。従って、後添加位置はドラムミキサーの機長方向の距離で対応できる。 The granulation time of the post-addition pre-sintered raw material until the post-addition carbonaceous material is added is 80% or more and 96% or less with respect to the total granulation time of the sintered raw material, that is, the timing of post-addition is granulated. The time is preferably in the range of 80% to 96% of the total granulation time of the sintered raw material in the step. If the post-addition is earlier than 80% of the total granulation time, it cannot be sufficiently avoided that the post-addition carbonaceous material is included in the granulated product. Further, if the post-addition is slower than 96% of the total granulation time, the granulation treatment of the post-added carbonaceous material becomes insufficient. Here, the total granulation time in the granulation step does not include the time (mixing time) in which the sintering raw material is simply mixed until it is charged into the granulator and water is added. In sintering, a drum mixer is mainly used, which is a constant velocity piston flow type. Therefore, the post-addition position can correspond to the distance in the machine length direction of the drum mixer.

また、上述の配合比率および後添加のタイミングの条件において、焼結原料として、金属鉄または/および二価鉄イオンを含有する鉄系原料(低酸化度鉄系原料)を、全新原料に対して内数で2質量%以上配合してもよい。焼結工程において、低酸化度鉄系原料中の金属鉄、二価鉄イオンが酸化し、その酸化熱でさらに歩留が向上する。 Further, under the above-mentioned compounding ratio and post-addition timing conditions, an iron-based raw material containing metallic iron and / or divalent iron ions (low-oxidation iron-based raw material) is used as a sintering raw material for all new raw materials. It may be blended in an amount of 2% by mass or more. In the sintering process, metallic iron and divalent iron ions in the low-oxidation iron-based raw material are oxidized, and the heat of oxidation further improves the yield.

以下、図面を用いて、焼結充填層における燃焼反応の進行について説明する。
図1は、焼結原料として、従来の凝結材である低燃焼性炭材(粉コークスなど)と共に、高燃焼性炭材(褐炭チャーなど)、および低酸化度鉄源(ミルスケールなど)を使用した場合における焼結充填層内の焼成状態を説明する説明図である。図1(A)は時刻tにおける焼結充填層内の状態を、図1(B)は時刻tにおける焼結充填層内の状態を示す模式図であり、時刻tは、時刻tから所定の時間が経過した後の時刻である。また、図1(C)は、時刻tにおける焼結充填層内の層高方向における温度および酸素濃度分布を、図1(B)の焼結充填層内の層高方向の位置に対応させて示した図である。なお、図1(C)の温度および酸素濃度を示す各グラフは、左方から右方に向かって高温および高濃度となることを示している。
Hereinafter, the progress of the combustion reaction in the sintered packed bed will be described with reference to the drawings.
In FIG. 1, as a sintering raw material, a high combustible carbonaceous material (brown coal char, etc.) and a low oxidation degree iron source (mill scale, etc.) are used together with a conventional low combustible carbonaceous material (powder coke, etc.). It is explanatory drawing explaining the firing state in the sintered packed bed at the time of use. 1 (A) is a schematic diagram showing the state in the sintered packed bed at time t 1 , FIG. 1 (B) is a schematic diagram showing the state in the sintered packed bed at time t 2 , and time t 2 is time t. It is the time after a predetermined time has elapsed from 1 . Further, FIG. 1C corresponds the temperature and oxygen concentration distribution in the sintered packed bed in the layer height direction at time t2 to the position in the layer height direction in the sintered packed bed of FIG . 1B. It is a figure shown by. It should be noted that each graph showing the temperature and oxygen concentration in FIG. 1C shows that the temperature and the concentration increase from the left to the right.

焼結工程において、燃焼は点火された焼結充填層表面から下方へと進行する。図1(A)に示すように、焼結中の焼結充填層は層高方向の上下において焼結の進行状況により3つの領域に分けられる。具体的には、上層側には焼結が完了した焼結ケーキが、下層側には焼結前の焼結原料が、これらに挟まれた中間部分には凝結材の燃焼反応および低酸化度鉄源の酸化反応が起きている酸化(燃焼)帯が存在している。図1(A)および図1(B)に示すように、時間の経過(時刻tから時刻tへ)により焼結が進行し、酸化(燃焼)帯は降下していく。 In the sintering step, combustion proceeds downward from the surface of the ignited sintered packed bed. As shown in FIG. 1 (A), the sintered packed bed being sintered is divided into three regions at the top and bottom in the layer height direction depending on the progress of sintering. Specifically, the sintered cake that has been sintered is on the upper layer side, the sintered raw material before sintering is on the lower layer side, and the combustion reaction of the coagulant and the low degree of oxidation are in the intermediate portion sandwiched between them. There is an oxidation (combustion) zone in which the oxidation reaction of the iron source occurs. As shown in FIGS. 1 (A) and 1 (B), sintering progresses with the passage of time (from time t 1 to time t 2 ), and the oxidation (combustion) zone descends.

図1(B)に示すように、酸化(燃焼)帯は燃焼反応および酸化反応の進行状況により、さらに、層高方向の下方から上方に向かって順に3つの領域A,B,Cに分けられる。領域Aでは主に高燃焼性炭材の燃焼反応が、領域Bでは主に低燃焼性炭材の燃焼反応が、領域Cでは低酸化度鉄源の酸化反応が起きている。以下、図1(B)および図1(C)を用いて、酸化(燃焼)帯における燃焼反応および酸化反応の進行について説明する。 As shown in FIG. 1 (B), the oxidation (combustion) zone is further divided into three regions A, B, and C in order from the lower side to the upper side in the layer height direction according to the progress of the combustion reaction and the oxidation reaction. .. In the region A, the combustion reaction of the highly combustible carbonaceous material mainly occurs, in the region B, the combustion reaction of the low combustible carbonaceous material mainly occurs, and in the region C, the oxidation reaction of the low-oxidation iron source occurs. Hereinafter, the combustion reaction and the progress of the oxidation reaction in the oxidation (combustion) zone will be described with reference to FIGS. 1 (B) and 1 (C).

下方の未焼結の焼結原料の層に酸化(燃焼)帯が降下すると、凝結材のうち燃焼開始温度が低い高燃焼性炭材がまず燃焼を開始し、その後消失する。つまり、酸化(燃焼)帯の再下面が高燃焼性炭材の燃焼開始位置であり、高燃焼性炭材の燃焼範囲は、酸化(燃焼)帯の下側部分(A領域)である。高燃焼性炭材の燃焼により、図1(C)に示すように、焼結層内の温度が上昇すると、燃焼開始温度が高い低燃焼性炭材が燃焼を開始し、その後消失する。低燃焼性炭材は、高燃焼性炭材に遅れて燃焼を開始するため、その燃焼範囲は、A領域の上側である酸化(燃焼)帯の中間部分(B領域)となる。ここで、図1(C)に示すように、領域Bにおいては、低燃焼性炭材の燃焼により高温環境となるが、低燃焼性炭材の燃焼により酸素が消費されてCOが発生して還元雰囲気下となるため、低酸化度鉄源の酸化は抑制された状態となっている。B領域の上側である酸化(燃焼)帯の上側部分(C領域)では、低燃焼性炭材が燃焼し消失することにより、上方から供給される大気中の酸素の消費量が減少してCOの発生量も減少するため、低酸化度鉄源の酸化が促進されて、この酸化反応により酸化熱が発生する。 When the oxidation (combustion) zone falls on the lower unsintered layer of sintered raw material, the highly combustible carbonaceous material having a low combustion start temperature among the coagulants first starts combustion and then disappears. That is, the lower surface of the oxidation (combustion) zone is the combustion start position of the highly combustible carbonaceous material, and the combustion range of the highly combustible carbonaceous material is the lower portion (A region) of the oxidation (combustion) zone. As shown in FIG. 1 (C), when the temperature in the sintered layer rises due to the combustion of the highly combustible carbonaceous material, the low combustible carbonaceous material having a high combustion start temperature starts combustion and then disappears. Since the low-combustible carbonaceous material starts burning later than the high-combustible carbonaceous material, the combustion range is the middle portion (B region) of the oxidation (combustion) zone which is the upper side of the A region. Here, as shown in FIG. 1 (C), in the region B, the combustion of the low combustible carbonaceous material creates a high temperature environment, but the combustion of the low combustible carbonaceous material consumes oxygen and generates CO. Since the atmosphere is reduced, the oxidation of the low-oxidation iron source is suppressed. In the upper part (C region) of the oxidation (combustion) zone, which is the upper side of the B region, the low combustible carbonaceous material burns and disappears, so that the consumption of oxygen in the atmosphere supplied from above decreases and CO Since the amount of oxygen generated is also reduced, the oxidation of the low-oxidation iron source is promoted, and the heat of oxidation is generated by this oxidation reaction.

このように、酸化(燃焼)条件の異なる複数の原料(低燃焼性炭材と高燃焼性炭材との2種類の凝結材、および低酸化度鉄系原料)を焼結原料に配合することにより、図1(B)の領域A~Cに示すように多段燃焼を実現することができ、焼結の進行にともなって層高方向における燃焼および酸化領域(酸化(燃焼)帯)が拡大する。その結果、層高方向における任意位置における高温保持時間が伸延し、成品歩留向上が見込まれる。なお、上述した説明においては焼結原料に低酸化度鉄系原料を配合した場合について述べたが、低酸化度鉄系原料を配合しない場合においても、低燃焼性炭材と高燃焼性炭材との2種類の凝結材により、図1(B)の領域Aおよび領域Bによる多段燃焼を実現することができる。低燃焼性炭材のみを使用する場合に比べて層高方向における酸化(燃焼)領域が拡大するので、成品歩留向上が見込まれる。 In this way, a plurality of raw materials having different oxidation (combustion) conditions (two types of coagulants of low-combustible carbonaceous material and high-combustible carbonaceous material, and low-oxidation iron-based raw materials) are blended into the sintered raw material. As a result, multi-stage combustion can be realized as shown in the regions A to C of FIG. 1 (B), and the combustion and oxidation regions (oxidation (combustion) zone) in the layer height direction expand as the sintering progresses. .. As a result, the high temperature holding time at an arbitrary position in the layer height direction is extended, and the product yield is expected to be improved. In the above description, the case where the low-oxidation iron-based raw material is blended with the sintered raw material has been described, but even when the low-oxidation iron-based raw material is not blended, the low-combustibility carbonaceous material and the high-combustible carbonaceous material are not blended. With the two types of coagulant, it is possible to realize multi-stage combustion in regions A and B in FIG. 1 (B). Since the oxidation (combustion) region in the layer height direction is expanded as compared with the case where only low combustible carbonaceous material is used, it is expected that the product yield will be improved.

しかしながら、上述のような高燃焼性炭材の燃焼と低燃焼性炭材の燃焼とが連続する多段燃焼を実現するには、低燃焼性炭材と高燃焼性炭材の配合比率を適正なものとする必要がある。そこで、本発明者らは、上述の配合比率および後添加のタイミングの根拠となる後述の実施例を行う前に、低燃焼性炭材と高燃焼性炭材の配合比率(配合比)が焼結層温度の経時変化(以下、ヒートパターンという)に与える影響について調べるバッチ実験を行った。以下、バッチ実験について説明する。バッチ実験においては、低燃焼性炭材として粉コークスを、高燃焼性炭材として褐炭チャーを使用した。 However, in order to realize multi-stage combustion in which the combustion of the high combustible carbon material and the combustion of the low combustible carbon material are continuous as described above, the mixing ratio of the low combustible carbon material and the high combustible carbon material is appropriate. Need to be. Therefore, the present inventors have burned the blending ratio (blending ratio) of the low-combustible carbonaceous material and the high-combustible carbonaceous material before carrying out the examples described later, which are the basis of the above-mentioned blending ratio and the timing of post-addition. A batch experiment was conducted to investigate the effect of the layering temperature on the change over time (hereinafter referred to as heat pattern). Hereinafter, the batch experiment will be described. In the batch experiment, coke breeze was used as the low combustible coal material and lignite char was used as the high combustible coal material.

バッチ実験では、直径100mm高さ160mmの円柱形鍋を用いた。粉コークスおよび褐炭チャーの配合比(後述する炭素分質量比率による配合比)を変更した凝結材を配合した5つの試料(配合原料)を準備し、それぞれについて焼結を行い、焼結層内温度を測定した。なお、温度の測定位置は、焼結層の層高方向において上面から深さ140mm位置、水平方向において鍋の中央位置として、この焼結層内位置におけるヒートパターンを調査した。 In the batch experiment, a cylindrical pot with a diameter of 100 mm and a height of 160 mm was used. Five samples (blending raw materials) containing a coagulant with different blending ratios of coke breeze and lignite char (combined ratio based on carbon content mass ratio, which will be described later) were prepared, and each was sintered and the temperature inside the sintered layer. Was measured. The temperature was measured at a depth of 140 mm from the upper surface in the height direction of the sintered layer and at the center of the pot in the horizontal direction, and the heat pattern at the position inside the sintered layer was investigated.

図2は、バッチ実験で測定した各試料のヒートパターンを示す。
図2に示すように、褐炭チャーの配合率が0%および褐炭チャーの配合率が100%のケースは、褐炭チャーの配合率が25%以上75%以下のケースと比較して最高温度が低く、高温保持時間が短かった。後述する実施例にも示すように、褐炭チャーの配合率が25%未満であると、高燃焼性炭材配合効果である燃焼前線降下速度の向上効果が得られず、褐炭チャーの配合率が75%を超えると、高燃焼性炭材特有の高速燃焼によって、成品歩留が低下するためであると考えられる。
FIG. 2 shows the heat pattern of each sample measured in the batch experiment.
As shown in FIG. 2, the case where the lignite char content is 0% and the lignite char content is 100% has a lower maximum temperature than the case where the lignite char content is 25% or more and 75% or less. , The high temperature holding time was short. As shown in the examples described later, when the blending ratio of the lignite char is less than 25%, the effect of improving the combustion front descent speed, which is the effect of blending the highly combustible coal material, cannot be obtained, and the blending ratio of the lignite char is increased. If it exceeds 75%, it is considered that the product yield is lowered due to the high-speed combustion peculiar to the highly combustible coal material.

さらに、本発明の重要な構成として、凝結材を造粒工程の最終段階で後添加することが挙げられる。凝結材を他の焼結原料と一括造粒してしまうと、造粒物の付着粉層中に内包されてしまう。内包されてしまうと、凝結材の燃焼開始が付着粉層の伝熱時間に律速されてしまい、凝結材の燃焼特性の差異が顕在化しなくなる。本発明者らは、種々の検討の結果、造粒工程において、2種類の凝結材(低燃焼性炭材および高燃焼性炭材)の少なくともどちらか1種類を後添加する必要があることを見出した。なお、上述のバッチ実験においても、凝結材の1種以上(低燃焼性炭材または/および高燃焼性炭材)を後添加して造粒した焼結原料造粒物を焼成すると成品歩留が向上する結果が得られている。 Further, an important configuration of the present invention is to post-add the coagulant at the final stage of the granulation process. If the coagulant is collectively granulated with other sintering raw materials, it will be included in the adhered powder layer of the granulated material. If it is included, the start of combustion of the coagulant is controlled by the heat transfer time of the adhering powder layer, and the difference in the combustion characteristics of the coagulant does not become apparent. As a result of various studies, the present inventors have found that it is necessary to post-add at least one of two types of coagulant (low combustible carbonaceous material and high combustible carbonaceous material) in the granulation process. I found it. Also in the above-mentioned batch experiment, when one or more kinds of coagulants (low combustible carbonaceous material and / and high combustible carbonaceous material) are added afterwards and the granulated sintered raw material granulated product is fired, the product yield is obtained. Has been obtained to improve.

本発明の炭材構成比率の決定根拠を示す実施例について説明する。なお、後述する試験1~4において行った試験ケースのうち、歩留が74.5%以上となったものが実施例である。なお、本発明は、以下の実施例に限定されるものではない。例えば低燃焼性炭材として無煙炭を使用しても同様の効果がある。 An example showing the basis for determining the carbonaceous material composition ratio of the present invention will be described. In addition, among the test cases performed in the tests 1 to 4 described later, the case where the yield is 74.5% or more is an example. The present invention is not limited to the following examples. For example, using anthracite as a low-combustible coal material has the same effect.

実施例では、通称焼結鍋試験と呼ばれる方法を用いて検証した。焼結鍋試験は、所定の大きさの容器に燃料となる炭材を含む焼結原料(配合原料)を装入し、上面から着火して下方吸引することで焼結を進行させる試験である。焼結鍋試験の装置では、ドワイトロイド(DL)式焼結機のようにパレットによる原料充填層の移動こそないが、DL式焼結機による焼結を模擬できる試験装置である。試験は、後述する試験1~4の4試験を行った。まず、試験に使用した原料、および試験方法について説明し、その後、各試験について順に述べる。なお、原料を所定の割合で混合した状態の焼結原料を配合原料という。 In the examples, it was verified by using a method commonly known as a sintering pot test. The sintering pot test is a test in which a sintering raw material (blending raw material) containing a carbonaceous material as a fuel is charged into a container of a predetermined size, ignited from the upper surface, and sucked downward to proceed with sintering. .. Unlike the Dwightroid (DL) type sintering machine, the sintering pot test device does not move the packed bed of the raw material by the pallet, but it is a test device that can simulate sintering by the DL type sintering machine. As the test, four tests 1 to 4 described later were performed. First, the raw materials used in the test and the test method will be described, and then each test will be described in order. The sintered raw material in which the raw materials are mixed at a predetermined ratio is referred to as a compounded raw material.

(原料)
表1は、試験に使用した低燃焼性炭材および高燃焼性炭材の工業分析および元素分析の結果を示す。表1に示すように、低燃焼性炭材として粉コークスを、高燃焼性炭材として、褐炭チャー、亜瀝青炭チャーおよびセミコークスを準備した。
(material)
Table 1 shows the results of industrial analysis and elemental analysis of the low-combustible and high-combustible coal materials used in the test. As shown in Table 1, powdered coke was prepared as a low combustible coal material, and lignite char, subbituminous coal char and semi-coke were prepared as high combustible coal materials.

Figure 2022033594000002
Figure 2022033594000002

また、低酸化度鉄系原料は、製鉄所の下工程由来のスケールを準備した。スケールの成分は、全鉄分:74質量%、二価鉄:66質量%(FeOとして)、金属鉄分:4質量%であった。 For low-oxidation iron-based raw materials, scales derived from the lower process of the steelworks were prepared. The components of the scale were total iron content: 74% by mass, ferric iron: 66% by mass (as FeO), and metallic iron content: 4% by mass.

(原料配合)
表2は、本試験において基準とした配合原料(以下、基準配合原料という)についての各原料の配合割合を示す。表2に示すように、基準配合原料においては、高燃焼性炭材およびスケールを配合しておらず、炭材として表1に示す低燃焼性炭材(粉コークス)のみを使用している。また、鉄鉱石A~Eはそれぞれ産地が異なる鉄鉱石であり、粉コークスおよび返鉱の配合割合は、新原料(鉄鉱石、橄欖石、生石灰、および石灰石)を100質量%として、それぞれ外数で4.5質量%および15.0質量%とした。
(Ingredient composition)
Table 2 shows the compounding ratio of each raw material for the compounding raw material (hereinafter referred to as the standard compounding material) used as the standard in this test. As shown in Table 2, the standard compounding raw material does not contain a highly combustible carbonaceous material and scale, and only the low combustible carbonaceous material (powdered coke) shown in Table 1 is used as the carbonaceous material. In addition, iron ore A to E are iron ores from different production areas, and the mixing ratio of coke breeze and return ore is 100% by mass of new raw materials (iron ore, sardine, fresh lime, and limestone). It was set to 4.5% by mass and 15.0% by mass.

Figure 2022033594000003
Figure 2022033594000003

詳細は後述するが、試験1~試験4においては、表2の基準配合原料を基準として、上述した高燃焼性炭材(表1参照)および/または上述したスケールを所定量配合した配合原料(以下、比較配合原料という)を、適宜配合して実験を行った。 Details will be described later, but in Tests 1 to 4, the above-mentioned highly combustible carbonaceous material (see Table 1) and / or the above-mentioned scale is blended in a predetermined amount based on the reference compounding raw material in Table 2 (the compounding raw material (see Table 1). Hereinafter, the comparative compounding raw material) was appropriately compounded and the experiment was conducted.

基準配合原料に対し高燃焼性炭材を配合する場合には、各配合原料(基準配合原料および比較配合原料)に含まれる全炭材(低燃焼性炭材および高燃焼性炭材)の工業分析の炭素量が同量となるように、基準配合原料の低燃焼性炭材を高燃焼性炭材に置換する配合割合調整を行った。
また、基準配合原料に対しスケールを配合する場合には、質量が同量となるように鉄鉱石Dをスケールに置換するとともに、両配合原料中の全推定発熱量が同一となるように(配合するスケール中のFeOおよび金属鉄がFeへ酸化する際に発生する酸化発熱量と、置換される低燃焼性炭材が完全燃焼する際に発生する酸化発熱量とが等価となるように)、低燃焼性炭材(粉コークス)の配合量を削減する配合割合調整を行った。具体的数値として、カーボン、FeOおよび金属鉄がCOやFeへ燃焼・酸化する際の発熱量をそれぞれの物質1molあたり、394kJ/mol、135 kJ/mol、412 kJ/molとした。
さらに、高燃焼性炭材とスケールの両方を配合する際には、まず、上述の高燃焼性炭材の配合割合調整を行った後に、上述のスケールの配合割合調整を行い、各原料の配合割合を決定した。
When a highly combustible coal material is blended with a standard blended raw material, the industry of all coal materials (low combustible coal material and highly combustible coal material) contained in each blended raw material (standard blended raw material and comparative blended raw material). The blending ratio was adjusted by substituting the low-combustible coal material, which is the standard compounding material, with the high-combustible coal material so that the amount of carbon in the analysis was the same.
In addition, when the scale is blended with respect to the standard blended raw material, the iron ore D is replaced with the scale so that the mass is the same, and the total estimated calorific value in both blended raw materials is the same (blending). The calorific value of oxidation generated when FeO and metallic iron in the scale are oxidized to Fe 2 O 3 is equivalent to the calorific value of oxidation generated when the replaced low-combustible coke is completely burned. In), the blending ratio was adjusted to reduce the blending amount of low-combustible carbonaceous material (powdered coke). As specific numerical values, the calorific value when carbon, FeO and metallic iron were burned and oxidized to CO and Fe 2 O 3 was set to 394 kJ / mol, 135 kJ / mol and 412 kJ / mol per 1 mol of each substance.
Further, when blending both the highly combustible carbonaceous material and the scale, first, the above-mentioned blending ratio of the highly combustible carbonaceous material is adjusted, and then the blending ratio of the above-mentioned scale is adjusted, and the blending of each raw material is performed. The ratio was decided.

各試験において使用した配合原料について、原料の配合割合の詳細は後述する。以下に、まず、試験1~試験3における試験方法およびその結果評価方法について説明する。 Regarding the compounded raw materials used in each test, the details of the compounding ratio of the raw materials will be described later. First, the test methods in Tests 1 to 3 and the method for evaluating the results will be described below.

(造粒方法)
造粒機として直径600mm長さ800mmの円筒型のバッチ式ドラムミキサーを使用した。配合原料を造粒機の上流側から投入し、4分間混合処理した後に、水分を添加(調湿)してさらに4分間混合して造粒する処理した。なお、添加した水分量は、配合する炭材種に依存する。これは各炭材によって吸水量が異なるからである。具体的には各配合原料に対して外数で粉コークスの場合7.0質量%、高燃焼性炭材の場合7.6%として粉コークスと高燃焼性炭材の配合比によって値を決定した。また、一括造粒ではなく、炭材(低燃焼性炭材または/および高燃焼性炭材)を後添加するケースについては、後添加する炭材を除く配合原料の一部を投入して調湿後、3分50秒混合処理した後に後添加する炭材を加えてさらに10秒混合して造粒した。一連の混合処理の終了後、原料水分を計測し、水分量を確認した。なお、この場合の造粒時間は、調湿後の4分間である。
(Granulation method)
A cylindrical batch drum mixer having a diameter of 600 mm and a length of 800 mm was used as the granulator. The compounding raw material was added from the upstream side of the granulator, mixed for 4 minutes, and then water was added (humidity control) and mixed for another 4 minutes for granulation. The amount of water added depends on the type of carbonaceous material to be blended. This is because the amount of water absorption differs depending on each carbonaceous material. Specifically, the external number of each compounded raw material is 7.0% by mass in the case of coke breeze and 7.6% in the case of highly combustible coal, and the value is determined by the compounding ratio of coke breeze and highly combustible coal. did. In addition, in the case of post-adding charcoal material (low combustible charcoal material and / and high combustible charcoal material) instead of batch granulation, a part of the compounding raw material excluding the post-added charcoal material is added for preparation. After wetting, the mixture was mixed for 3 minutes and 50 seconds, then the charcoal material to be added later was added, and the mixture was further mixed for 10 seconds to granulate. After the completion of a series of mixing treatments, the water content of the raw material was measured and the water content was confirmed. The granulation time in this case is 4 minutes after humidity control.

(装入・点火方法)
使用した鍋試験装置は直径300mm、高さ500mmの円筒形状の鍋である。造粒した配合原料を偏析させることなく垂直に装入して原料充填層の層高500mmとして、原料充填層の表面に1分間(熱量25MJ/原料t)点火して焼成した。焼成時の吸引負圧は、鍋下における計測値が点火開始から1300mmAq(12.7kPa)一定となるように、送風機吸引側のバルブ開度を調整した。
(Charging / ignition method)
The pot test device used was a cylindrical pot with a diameter of 300 mm and a height of 500 mm. The granulated compounded raw material was vertically charged without segregation, and the surface of the raw material packed bed was ignited for 1 minute (calorific value 25 MJ / raw material t) to have a layer height of 500 mm and fired. For the suction negative pressure during firing, the valve opening on the suction side of the blower was adjusted so that the measured value under the pot was constant at 1300 mmAq (12.7 kPa) from the start of ignition.

(焼結時間)
焼結時間は以下のように測定した。熱電対を鍋下に挿入して排ガスの温度を計測した。焼結工程においては、燃焼帯が焼結層の最下部に到達すると、鍋下の排ガス温度が上昇を開始し、やがてピークを迎え、炭材の燃焼完了により低下する。この排ガス温度がピークとなった3分後に送風機の吸引を停止し、焼結終了とした。焼結時間は、点火開始から排ガス温度がピークに到達するまでに要した時間とした。
(Sintering time)
The sintering time was measured as follows. A thermocouple was inserted under the pot and the temperature of the exhaust gas was measured. In the sintering step, when the combustion zone reaches the bottom of the sintered layer, the exhaust gas temperature under the pot starts to rise, eventually reaches a peak, and decreases when the combustion of the carbonaceous material is completed. Three minutes after the exhaust gas temperature reached its peak, the suction of the blower was stopped, and the sintering was completed. The sintering time was defined as the time required from the start of ignition to the peak of the exhaust gas temperature.

(歩留)
歩留は、以下のように測定した。焼成後、得られた焼結ケーキを、2mの高さから4回落下処理を行い、床敷鉱を除く粒径+5mm(5mm以上)を焼結成品として質量を求めた。床敷鉱を除くシンターケーキの質量に対する焼結成品の割合(質量%)を、成品歩留(+5mm%)と定義した。
(Yield)
Yield was measured as follows. After firing, the obtained sintered cake was dropped four times from a height of 2 m, and the mass was determined with a particle size of +5 mm (5 mm or more) excluding the bedding ore as a sintered product. The ratio (% by mass) of the sintered product to the mass of the sinter cake excluding the bedding ore was defined as the product yield (+ 5 mm%).

(燃焼前線降下速度)
燃焼前線降下速度(mm/min)は、原料充填層の層高500mmを上述の焼結時間で割って算出した。
(Combustion front descent speed)
The combustion front descent rate (mm / min) was calculated by dividing the layer height of the raw material packed bed of 500 mm by the above-mentioned sintering time.

(生産率)
生産率は、上述の焼結時間に基づいて、以下の式(1)により算出した。
生産率(t/d/m)=成品量(t)/鍋底面積(m)/焼結時間(日) ・・・(1)
(Production rate)
The production rate was calculated by the following formula (1) based on the above-mentioned sintering time.
Production rate (t / d / m 2 ) = product quantity (t) / pot bottom area (m 2 ) / sintering time (day) ・ ・ ・ (1)

《試験1》
試験1では、低燃焼性炭材と高燃焼性炭材との適正配合比および後添加の効果を検証する実験を行った。
表3は、試験1で使用した配合条件を示す。表3に示すように、低燃焼性炭材および高燃焼性炭材の配合比が異なる5種類の配合原料(R,R25,R50,R75,R100)を準備した。配合原料R25,R50,R75,R100は、高燃焼性炭材には表1に示す褐炭チャーを使用し、表2の基準配合原料Rを基準として、工業分析の炭素量が同量となるように粉コークスを褐炭チャーに置換したものである。具体的には、全炭材に対し、褐炭チャーの炭素含有量での構成比率(炭素分質量比率)を、Rは0質量%(比較例1および比較例6)、R25は25質量%(比較例2および実施例1)、R50は50質量%(比較例3および実施例2)、R75は75質量%(比較例4および実施例3)、R100は100質量%(比較例5)とした。また、低燃焼性炭材(粉コークス)を含む4種類の配合原料(R,R25,R50,R75)については、具体的には、全原料を一括して造粒するケース(比較例1~4)と、全原料のうち粉コークスのみを後添加して造粒するケース(比較例6および実施例1~3)とを設け、全部で9種類の焼結原料造粒物を製造し、各焼結原料造粒物を用いて上述の鍋試験による実験を行った。
<< Test 1 >>
In Test 1, an experiment was conducted to verify the appropriate mixing ratio of the low-combustible carbonaceous material and the high-combustible carbonaceous material and the effect of post-addition.
Table 3 shows the compounding conditions used in Test 1. As shown in Table 3, five kinds of compounding raw materials (R 0 , R 25 , R 50 , R 75 , R 100 ) having different compounding ratios of low combustible carbonaceous material and high combustible carbonaceous material were prepared. For the compounding raw materials R 25 , R 50 , R 75 , and R 100 , the lignite char shown in Table 1 is used for the highly combustible carbonaceous material, and the carbon content in the industrial analysis is based on the standard compounding material R 0 in Table 2. The coke breeze is replaced with lignite char so that the amount is the same. Specifically, the composition ratio (carbon content mass ratio) of the lignite char in terms of carbon content with respect to the total carbon material is 0% by mass (Comparative Example 1 and Comparative Example 6) for R 0 and 25 mass for R 25 . % (Comparative Example 2 and Example 1), R 50 is 50% by mass (Comparative Example 3 and Example 2), R 75 is 75% by mass (Comparative Example 4 and Example 3), and R 100 is 100% by mass (Comparative Example 4 and Example 3). It was referred to as Comparative Example 5). Regarding the four types of compounded raw materials (R 0 , R 25 , R 50 , R 75 ) including low combustible carbonaceous material (powdered coke), specifically, the case where all the raw materials are granulated at once (the case of granulating all the raw materials at once (R 0, R 25, R 50, R 75). Comparative Examples 1 to 4) and a case (Comparative Example 6 and Examples 1 to 3) in which only powdered coke was added afterwards to granulate the whole raw material were provided, and a total of 9 types of sintered raw material granulated products were provided. Was produced, and the above-mentioned pot test was conducted using each of the sintered raw material granulated products.

Figure 2022033594000004
Figure 2022033594000004

(試験1の試験結果)
図3は、試験1の結果を示す。図3において、全原料を一括で造粒したケースを白丸、粉コークスを後添加したケースを黒丸で示した。
図3に示すように、褐炭チャー配合比が0質量%である場合、粉コークスを後添加したケースは、全原料一括造粒のケースと比較して成品歩留が低下したものの燃焼前線降下速度が向上し、その結果生産率は向上した。また、褐炭チャーの配合比が25,50,75質量%である場合、すなわち、褐炭チャーと粉コークスとの双方を配合した場合において、成品歩留も燃焼前線降下速度も向上し、大幅に生産率が向上した。
(Test result of test 1)
FIG. 3 shows the results of Test 1. In FIG. 3, the case where all the raw materials are granulated at once is shown by a white circle, and the case where the coke breeze is added afterwards is shown by a black circle.
As shown in FIG. 3, when the lignite char compounding ratio is 0% by mass, the case where the coke breeze is added afterwards has a lower product yield than the case of batch granulation of all raw materials, but the combustion front descent rate. As a result, the production rate has improved. In addition, when the blending ratio of lignite char is 25, 50, 75% by mass, that is, when both lignite char and powdered coke are blended, the product yield and the combustion front descent rate are improved, resulting in significant production. The rate has improved.

《試験2》
試験2では、後添加する炭材の種類による効果の違いを検証する実験を行った。
表4は、試験2で使用した焼結原料造粒物を示す。表3の比較例3および実施例2については、表3の再掲である。表4に示すように、炭素分質量比率を50%で一定として、後添加する炭材の種類が異なる実験4および実験5を実施した。具体的には、試験1の比較例3では全原料を一括造粒し、実施例2では粉コークスのみを後添加しており、実施例3においては褐炭チャーのみを後添加し、実施例4においては粉コークスおよび褐炭チャーの両方を後添加した。
<< Test 2 >>
In Test 2, an experiment was conducted to verify the difference in effect depending on the type of carbonaceous material to be added later.
Table 4 shows the sintered raw material granulated product used in Test 2. Comparative Example 3 and Example 2 in Table 3 are reprinted in Table 3. As shown in Table 4, Experiments 4 and 5 were carried out in which the types of carbonaceous materials to be added afterwards were different, with the carbon content mass ratio being constant at 50%. Specifically, in Comparative Example 3 of Test 1, all the raw materials were collectively granulated, in Example 2, only powdered coke was post-added, and in Example 3, only lignite char was post-added, and Example 4 was carried out. In, both coke breeze and lignite char were post-added.

Figure 2022033594000005
Figure 2022033594000005

(試験2の試験結果)
図4は、試験2の結果を示す。
図4に示すように、全焼結原料を一括造粒する場合(後添加無し)に比較して、褐炭チャーおよび粉コークスの一方のみあるいは両方を後添加した場合において、成品歩留、燃焼前線降下速度、生産率が向上した。
(Test result of test 2)
FIG. 4 shows the results of Test 2.
As shown in FIG. 4, compared with the case of batch granulation of all sintered raw materials (without post-addition), when only one or both of lignite char and coke breeze are post-added, the product yield and combustion front drop. Speed and production rate have improved.

《試験3》
試験3では、スケールを原料として配合した場合におけるスケール配合量の違いによる影響を検証する実験を行った。
表5は、試験3で使用した焼結原料造粒物を示す。表5の実施例5については、表4の再掲である。表5に示すように、褐炭チャーの炭素分質量比率を50%一定(但し、スケール配合による粉コークス減配は考慮しない。)として、粉コークスおよび褐炭チャーの両方を後添加した条件において、スケール配合量を0,1,2,5質量%と変更して実験を行った。スケールは表2の鉄鉱石Dと置換して配合し、スケール配合量は新原料を100質量%とした際の配合割合(内数)である。なお、実施例6~8の配合原料種類および配合比の低燃焼性炭材の欄に記載しているように、スケールの酸化熱を考慮して、粉コークス配合比(配合量)をスケールの配合量と熱量等価で減ずる調整を行った。具体的には、粉コークス配合比(配合量)が50%(炭素分質量比率)であった実施例5に対して、実施例6,7,8においては、それぞれ49.94%、49.89%、49.72%とした。なお、高燃焼性炭材の配合量は実施例5~8において同量である。なお、表6に示す数値は、表5に示す実施例5~8の低燃焼性炭材および高燃焼性炭材の配合比について、低燃焼性炭材と高燃焼性炭材との合計炭素分質量(凝結材の総炭素分質量)を100質量%として算出した値である。
<< Test 3 >>
In Test 3, an experiment was conducted to verify the effect of the difference in the amount of scale compounded when the scale was compounded as a raw material.
Table 5 shows the sintered raw material granulated product used in Test 3. Example 5 in Table 5 is reprinted in Table 4. As shown in Table 5, the carbon content mass ratio of the lignite char is kept constant at 50% (however, the reduction of the coke breeze due to the scale compounding is not considered), and the scale compounding is performed under the condition that both the coke breeze powder and the lignite char are added afterwards. The experiment was carried out by changing the amount to 0, 1, 2, 5% by mass. The scale is substituted with iron ore D in Table 2 and blended, and the scale blending amount is the blending ratio (internal number) when the new raw material is 100% by mass. In addition, as described in the column of low combustible charcoal material of blending raw material type and blending ratio of Examples 6 to 8, the powder coke blending ratio (blending amount) is set in consideration of the heat of oxidation of the scale. Adjustments were made to reduce the amount equivalent to the amount of compounding and the amount of heat. Specifically, compared to Example 5 in which the powder coke blending ratio (blending amount) was 50% (carbon content mass ratio), in Examples 6, 7 and 8, 49.94% and 49. It was set to 89% and 49.72%. The blending amount of the highly combustible carbonaceous material is the same in Examples 5 to 8. The numerical values shown in Table 6 are the total carbon of the low-combustible carbonaceous material and the high-combustible carbonaceous material with respect to the compounding ratio of the low-combustible carbonaceous material and the high-combustible carbonaceous material of Examples 5 to 8 shown in Table 5. It is a value calculated assuming that the fractional mass (total carbon content mass of the coagulant) is 100% by mass.

Figure 2022033594000006
Figure 2022033594000006

Figure 2022033594000007
Figure 2022033594000007

(試験3の試験結果)
図5は、試験3の結果を示す。
図5に示すように、スケール配合量の増加とともに歩留が向上した。ただし、配合量が2%以上で向上効果は穏やかとなった。一方、スケール配合量の増加と共に燃焼前線降下速度は若干低下したが、生産性はスケール配合量2%以上で若干高値となった。
(Test result of test 3)
FIG. 5 shows the results of Test 3.
As shown in FIG. 5, the yield improved as the scale compounding amount increased. However, when the blending amount was 2% or more, the improvement effect became mild. On the other hand, the combustion front descent rate decreased slightly as the scale compounding amount increased, but the productivity became slightly higher when the scale compounding amount was 2% or more.

《試験4》
試験4では、高燃焼性炭材種の比較検証を行う実験を行った。
表7は、試験4で使用した焼結原料造粒物を示す。表7の実施例2については、表3および表4の再掲である。表7に示すように、高燃焼性炭材の炭素分質量比率を50%、粉コークスを後添加とした条件において、高燃焼性炭材種を褐炭チャーとした実験(実施例2)以外に、高燃焼性炭材種を亜瀝青炭チャーとした実施例9、および高燃焼性炭材種をセミコークスとした実施例10の実験を行った。
<< Test 4 >>
In Test 4, an experiment was conducted to perform comparative verification of highly combustible carbonaceous materials.
Table 7 shows the sintered raw material granulated product used in Test 4. Example 2 in Table 7 is a reprint of Tables 3 and 4. As shown in Table 7, under the condition that the carbon content mass ratio of the highly combustible carbonaceous material is 50% and the coke breeze is added afterwards, other than the experiment in which the highly combustible carbonaceous material is lignite charcoal (Example 2). The experiments of Example 9 in which the highly combustible coal grade was sub-bituminous charcoal char and Example 10 in which the highly combustible coal grade was semi-coke were carried out.

Figure 2022033594000008
Figure 2022033594000008

(試験4の試験結果)
図6は、試験4の結果を示す。
図6に示すように、高燃焼性炭材として、亜瀝青炭チャーまたはセミコークスを使用した場合も、褐炭チャーを使用した場合よりも歩留が向上した。生産性は、亜瀝青炭チャーについては褐炭チャーを使用した場合よりも向上したが、セミコークスについては燃焼前線降下速度とともに低下した。
(Test result of test 4)
FIG. 6 shows the results of Test 4.
As shown in FIG. 6, when the subbituminous coal char or semi-coke was used as the highly combustible coal material, the yield was improved as compared with the case where the lignite char was used. Productivity was improved for subbituminous coal chars compared to using lignite chars, but decreased with combustion front descent rate for semi-coke.

Claims (2)

焼結原料の凝結材として、粉コークスおよび無煙炭の少なくともどちらか一方からなる低燃焼性炭材と、前記低燃焼性炭材よりも燃焼開始温度が低い炭材である高燃焼性炭材とを用い、
前記高燃焼性炭材の炭素分は、前記凝結材の炭素分に対して質量比率が25質量%~75質量%であり、
前記低燃焼性炭材および前記高燃焼性炭材の少なくともいずれか一方を、前記焼結原料の造粒工程後半において添加する焼結鉱の製造方法。
As the coagulant of the sintering raw material, a low combustible carbonaceous material composed of at least one of coke breeze and anthracite and a high combustible carbonaceous material having a lower combustion start temperature than the low combustible carbonaceous material are used. Use,
The carbon content of the highly combustible carbonaceous material has a mass ratio of 25% by mass to 75% by mass with respect to the carbon content of the coagulating material.
A method for producing a sinter, in which at least one of the low-combustible carbonaceous material and the high-combustible carbonaceous material is added in the latter half of the granulation step of the sintered raw material.
前記焼結原料として、金属鉄または二価鉄イオンを含有する鉄系原料である低酸化度鉄系原料を全新原料に対して内数で2質量%以上配合する請求項1に記載の焼結鉱の製造方法。
The sintering according to claim 1, wherein as the sintering raw material, an iron-based raw material having a low degree of oxidation, which is an iron-based raw material containing metallic iron or divalent iron ions, is blended in an amount of 2% by mass or more based on the total new raw materials. How to make ore.
JP2020137572A 2020-08-17 2020-08-17 Method for manufacturing sintered ore Pending JP2022033594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020137572A JP2022033594A (en) 2020-08-17 2020-08-17 Method for manufacturing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020137572A JP2022033594A (en) 2020-08-17 2020-08-17 Method for manufacturing sintered ore

Publications (1)

Publication Number Publication Date
JP2022033594A true JP2022033594A (en) 2022-03-02

Family

ID=80375443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020137572A Pending JP2022033594A (en) 2020-08-17 2020-08-17 Method for manufacturing sintered ore

Country Status (1)

Country Link
JP (1) JP2022033594A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084749A1 (en) * 2022-10-18 2024-04-25 Jfeスチール株式会社 Method for producing sintered ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084749A1 (en) * 2022-10-18 2024-04-25 Jfeスチール株式会社 Method for producing sintered ore

Similar Documents

Publication Publication Date Title
Kawaguchi et al. Utilization of biomass for iron ore sintering
Lovel et al. The influence of fuel reactivity on iron ore sintering
KR101054136B1 (en) Hot Briquette Iron and How to Make It
JP5547879B2 (en) Carbonaceous material-incorporated iron oxide agglomerate, method for producing the same, and method for producing reduced iron or metallic iron
JP5786795B2 (en) Sinter ore production method using oil palm core shell coal
Matsumura et al. Improvement of sinter productivity by adding return fine on raw materials after granulation stage
JP6540359B2 (en) Modified carbon material for producing sintered ore and method for producing sintered ore using the same
JP6075231B2 (en) Method for producing sintered ore
Fan et al. Appropriate technology parameters of iron ore sintering process with flue gas recirculation
JP7207147B2 (en) Method for producing sintered ore
JP2018178252A (en) Manufacturing method of reduced iron using rotary hearth furnace, and rotary hearth furnace
JP2022033594A (en) Method for manufacturing sintered ore
CN102471822B (en) Unfired carbon-containing agglomerate and production method therefor
JP5853874B2 (en) Method for producing sintered ore with high combustible carbon material mixed in the upper layer of the sintered layer
CN102300965B (en) Carbonaceous material for sintering iron ore
Fan et al. Preparation technologies of straw char and its effect on pollutants emission reduction in iron ore sintering
CS204971B2 (en) Process for manufacturing carbonaceous pellets
Pereira et al. Influence of carbon content on mechanical properties of iron ore pellets
Bobkov et al. Analysis of chemical-metallurgical agglomeration processes during charge sintering
JP7095561B2 (en) Sintered ore manufacturing method
KR102233326B1 (en) Manufacturing method of carbon material embedded sintered ore
TWI649429B (en) Manufacturing method of sintered ore
JP2946880B2 (en) Sinter production method
JP7469622B2 (en) Manufacturing method of carbonaceous material for sintering and manufacturing method of sintered ore
JP2015063716A (en) Iron ore mini pellet for sintered ore manufacturing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240423