WO2024116778A1 - Method for producing sintered ore - Google Patents
Method for producing sintered ore Download PDFInfo
- Publication number
- WO2024116778A1 WO2024116778A1 PCT/JP2023/040407 JP2023040407W WO2024116778A1 WO 2024116778 A1 WO2024116778 A1 WO 2024116778A1 JP 2023040407 W JP2023040407 W JP 2023040407W WO 2024116778 A1 WO2024116778 A1 WO 2024116778A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gaseous fuel
- sintering
- sintered ore
- carbon material
- combustion
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 238000005245 sintering Methods 0.000 claims abstract description 61
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 50
- 239000000446 fuel Substances 0.000 claims abstract description 39
- 238000002485 combustion reaction Methods 0.000 claims abstract description 36
- 239000002994 raw material Substances 0.000 claims abstract description 7
- 239000002803 fossil fuel Substances 0.000 claims abstract description 6
- 239000000571 coke Substances 0.000 claims description 17
- 230000000977 initiatory effect Effects 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 29
- 230000000694 effects Effects 0.000 description 18
- 239000002028 Biomass Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 239000003610 charcoal Substances 0.000 description 14
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 7
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 3
- 239000003830 anthracite Substances 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000004449 solid propellant Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 238000002459 porosimetry Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000003476 subbituminous coal Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
- C22B1/20—Sintering; Agglomerating in sintering machines with movable grates
Definitions
- the present invention relates to a method for producing sintered ore for use in the steel industry.
- Patent Document 1 discloses a carbon material for sintering iron ore, assuming subbituminous coal or lignite, which has a reaction initiation temperature of 550° C. or less, a volatile matter (VM) of 1.0% or more, a hydrogen to carbon atomic ratio (H/C) of 0.040 or more, and a pore volume of 0.1 to 10 ⁇ m in diameter measured by mercury intrusion porosimetry of 50 mm 3 /g or more.
- VM volatile matter
- H/C hydrogen to carbon atomic ratio
- Patent Document 2 discloses a method in which 30% or more of high water of crystallization iron ore containing 4.0% or more water of crystallization is used, and 10% or more of solid fuel with a combustion start temperature of less than 450°C is included.
- Patent Document 3 discloses a two-stage ignition sintering method in which a sintering charge layer is formed in two stages and sintering is carried out by igniting the surface of each stage, using coke or anthracite and a carbonaceous material with a lower combustion start temperature as the raw material in the lower stage.
- Patent Document 4 discloses a method in which a carbonaceous material with a low combustion start temperature is mixed with fine coke or anthracite as an agglomeration agent in an amount ranging from 25 to 75% of the total carbon content, and at least one of the low combustion start temperature carbonaceous material and the high combustion start temperature carbonaceous material is added in the latter half of the granulation process.
- Patent Documents 1 and 2 discuss the use of carbonaceous materials with low reaction start temperatures and combustion start temperatures. However, they do not discuss the effect of the use of carbonaceous materials with low combustion start temperatures on the deterioration of yield in the sintered ore manufacturing process, nor do they consider measures to improve the yield.
- Patent Document 3 is premised on a two-stage ignition sintering method, and cannot be used for general sintering methods.
- the technology disclosed in Patent Document 4 uniformly organizes materials by carbon content.
- carbonaceous materials with low combustion start temperatures there are many types of carbonaceous materials with low combustion start temperatures, and this does not take into account the fact that their combustion start temperatures vary, and the associated impact on yield is not taken into account.
- the present invention was made in consideration of the above circumstances, and aims to propose a method for producing sintered ore with improved yield when using carbonaceous material with a low combustion start temperature in the sintering process.
- the method for producing sintered ore according to the present invention is a method for producing sintered ore that uses a carbonaceous material with a combustion start temperature of 550°C or less, and is characterized in that gaseous fuel supplied above the charging bed of the sintering machine is sucked in together with air from below the charging bed and introduced into the charging bed.
- the method for producing sintered ore according to the present invention is as follows: (a) sucking the gaseous fuel in a range of 1/2 of the length of the ore feeding section side on the sintering bed in the traveling direction of the sintering machine; (b) the carbonaceous material having a combustion start temperature of 550° C.
- the gaseous fuel supplied above the sintering machine's charging bed is sucked in together with air from below the charging bed and introduced into the charging bed, improving the heat pattern and preventing a decrease in yield.
- 1 is a graph showing the effect of biomass charcoal and gaseous fuel on sintering yield. 1 is a graph showing the effect of the gas fuel injection range on the sintering yield.
- biomass charcoal In diversifying carbon materials to reduce the environmental burden, attention is being paid to organic resources other than fossil fuels and carbonaceous materials produced using these organic resources as raw materials (hereinafter referred to as biomass charcoal).
- Biomass charcoal absorbs carbon dioxide gas while the plants that are its raw material grow, so fuels made from biomass charcoal can be counted as having no carbon dioxide gas emissions outside the system from the perspective of carbon neutrality.
- the use of biomass charcoal is being considered in iron ore sintering processes, which normally use coke powder.
- a characteristic of biomass charcoal is that it starts to burn at a lower temperature than coke. While the starting temperature for coke to burn is in the range of 650 to 750°C, the starting temperature for biomass charcoal to burn is generally below 550°C.
- flux and carbonaceous material are added to the iron ore as auxiliary raw materials during the sintering process, and the materials are continuously charged onto the sintering machine to form a sintering bed (charging layer).
- the sintering bed is ignited at the top end, and then exhaust gas is sucked in from the bottom end, causing the combustion of the carbonaceous material to spread from the top to the bottom of the bed, and the heat is used to cause the iron ore and flux to react and form into agglomerates.
- a blower is used to suck in the exhaust gas from the bottom end. The sucked in exhaust gas passes through a duct, passes through a dust collector and desulfurization and denitrification equipment, and is then discharged from the chimney.
- biomass charcoal A distinctive feature of biomass charcoal is its low combustion initiation temperature. This is thought to be because, compared to powdered coke (derived from fossil fuels) that is generally used in the sintering process, biomass charcoal is porous and has a very large specific surface area, allowing it to achieve a high combustion rate even at low temperatures. Therefore, not only does biomass charcoal have a low combustion initiation temperature, it also tends to have a high combustion rate once combustion has begun.
- the combustion reaction of carbon materials is a gas-solid reaction.
- the solid carbon material reacts with oxygen in the surrounding gas and burns.
- gas-solid reactions under conditions of gas flow, such as sintering, there is a very thin area called a gas film on the surface of the solid.
- the gas film is not affected by the turbulent flow outside and maintains a laminar flow.
- the combustion of carbon materials is used when oxygen diffuses from the outside of the gas film through the gas film and reaches the surface of the carbon material.
- the burning speed of the carbon material is very fast, even if the oxygen concentration in the surroundings is high, the oxygen consumption rate at the surface due to the burning of the carbon material is greater than the oxygen supply rate due to oxygen diffusion in the gas film, and the oxygen concentration in the gas film decreases.
- the carbon material undergoes incomplete combustion and the amount of carbon monoxide generated increases. Therefore, if the burning speed is very fast, part of the combustion heat of the carbon material is not used and is discharged outside the system as carbon monoxide. Therefore, it is thought that the yield decreases due to the decrease in reaction heat used for sintering.
- a fast burning speed indicates that the time from the start of combustion to the end of combustion is short. It burns out immediately after the start of combustion, and cooling begins with the air coming from above. Therefore, the sintering bed in the sintering machine forms a heat pattern in which the temperature rises rapidly and then drops in a short time. This effect means that the sintering reaction in the high-temperature area only occurs for a short period of time, which can result in insufficient bonding between the ores.
- the gaseous fuel supplied above the sintering machine's charging bed is sucked in from below the sintering bed together with air and introduced into the sintering bed.
- the introduced gaseous fuel burns above the position where the carbonaceous material is burning in the height direction of the sintering bed, mitigating the cooling effect of the air flowing in from the upper layer. This prevents the temperature of the sintering bed from dropping.
- This effect makes it possible to extend the time during which the sintering bed is maintained at a high temperature, that is, the time of the sintering reaction. Therefore, the bonds between the ores can be strengthened. This effect is also manifested under conditions where ordinary coke powder is used.
- the sintering reaction time in the high temperature region in the base heat pattern before the gaseous fuel is injected is short. Therefore, the effect of extending the sintering reaction time in the high temperature region by injecting the gaseous fuel is greater than when coke is used.
- the upper layer tends to have a lower yield due to a lack of heat, while the lower layer tends to have an excess of heat. This is because cold air flows directly into the upper layer from above the charging layer.
- the upper layer is more susceptible to the effects of a lack of heat caused by the use of biomass coal. Therefore, it is preferable that the suction of gaseous fuel is also carried out within a range of 1/2 the length of the ore feeding section above the charging layer where the reaction zone is located in the upper layer.
- the suction of gaseous fuel is carried out within a range of 1/4 or more of the length of the ore feeding section of the sintering machine, and even more preferable that it is carried out within a range of 1/3 or more of the length.
- the gaseous fuel It is preferable to dilute the gaseous fuel below the lower limit of flammability. This is because if residual fires on the sintering bed ignite the outside above the sintering bed, not only will the effect of gaseous fuel injection not be fully achieved, but it may also lead to a fire.
- Any gas may be used as the gaseous fuel, such as city gas, natural gas, propane gas, or coke oven gas. Non-toxic city gas, natural gas, or propane gas is preferable.
- the lower limit of flammability of each gaseous fuel relative to air is city gas: 4.5 vol.%, natural gas: 4.4 vol.%, propane gas: 2.4 vol.%, etc.
- the lower limit of the concentration of the gaseous fuel is determined by the required amount of heat.
- the lower limit of the concentration of the gaseous fuel contained in the air introduced into the sintering bed is preferably more than 0 vol.%, and more preferably 1/20 or more of the lower limit of flammability.
- the amount of carbonaceous material may be reduced by up to 10% of the total amount of all carbonaceous materials. This is because the injection of gaseous fuel eliminates the heat shortage in the upper layer of the sintering bed, making it possible to reduce the excess heat in the lower layer.
- Example 1 The effect of the present invention was verified using a batch-type sintering test device.
- T1 was a level where only commonly used coke was used, and T3 was a level where 20% of the coke was replaced with biomass charcoal.
- T2 to T7 city gas was adjusted to a concentration of 0.4 volume% relative to the intake air as the gaseous fuel, and was injected for 30 seconds to 7 minutes after the ignition furnace was extinguished. The same amounts of ore and auxiliary materials were used.
- Table 1 and Figure 1 Compared to T1, which is a reference example where only coke was used, T2, where city gas was injected, had a yield improvement of about 3%.
- T3 where 20% of the coke was replaced with biomass charcoal
- T4 where city gas was injected
- T4 where city gas was injected
- T5 T6, and T7 are levels where the amount of coke equivalent heat equivalent to T4 is reduced by 0.2% each. The reduction was made so that the ratio of coke to biomass coal would not change. As the reduction amount increased from T5 to T6 to T7, the yield decreased. In T7, where the total amount of coke was reduced by 12%, the yield was lower than that of the base (T1).
- Example 2 Next, the gas fuel injection range was verified. Since this test was a batch type test, injection over the entire length above the sintering bed was simulated as injection during the entire sintering time. The city gas was adjusted to a concentration of 0.4 volume % relative to the suction air and injected. The same amount of ore and auxiliary materials were used. The test conditions and results are shown in Table 2 and Figure 2. Based on T3 in Example 1, T4 was 7 minutes of gas fuel injection, which is 25% of the entire sintering time. In T8 to T10, the gas fuel injection time was 50%, 75%, and 100% of the entire sintering time. As a result, the yield increase effect was observed up to 50% of the entire sintering time, but the effect was almost flat at 75% and 100%. It is considered that the effect of city gas injection was difficult to manifest because the reaction zone reached the lower layer of the sintering bed in the latter half of the sintering time and sufficient heat was already obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Proposed is a method for producing a sintered ore, in which yield is improved when a carbon material with a low combustion initiation temperature is used in a sintering step. The present invention is a method for producing a sintered ore using a carbon material with a combustion initiation temperature of 550°C or below, wherein a gaseous fuel supplied above a charging layer of a sintering machine is drawn in from below the charging layer, together with air, and introduced into the charging layer. It is preferable that: the gaseous fuel is drawn in, in a direction of advancement of the sintering machine, in a one-half length range on a feed unit side over the charging layer; the carbon material with a combustion initiation temperature of 550°C or below is a non-fossil-fuel organic-based resource and/or a carbon material produced using the non-fossil-fuel organic-based resource as a raw material; the gaseous fuel included in the air introduced into the charging layer has a concentration below the lower limit of concentration for combustion; and when the gaseous fuel is being supplied, the amount of the carbon material is cut back to 10% or less, on a coke-equivalent calorie basis, of the total amount of all of the carbon material when the gaseous fuel is not being supplied.
Description
本発明は、鉄鋼業で用いる焼結鉱を製造する方法に関する。
The present invention relates to a method for producing sintered ore for use in the steel industry.
鉄鉱石焼結プロセスでは、鉄鉱石とフラックス、および固体燃料としての炭素材料を混合したものを焼結機内において、その炭素材料の燃焼熱を用いて焼き固めるプロセスである。一般的に炭素材料としては粉コークスが使用される。原料炭の価格変動やコークス製造設備のトラブル等へのリスク分散として粉コークス以外の無煙炭等が使用されることもある。
In the iron ore sintering process, a mixture of iron ore, flux, and carbon material as solid fuel is sintered in a sintering machine using the heat from the combustion of the carbon material. Coke powder is generally used as the carbon material. In order to spread the risk of price fluctuations in raw coal and problems with coke manufacturing equipment, anthracite and other coals are sometimes used instead of coke powder.
一方、近年の環境保全への意識の高まりを受け、リスク分散等の考え方とは別に環境への負担を低減するという意図を以って、炭素材料の多様化が進んでいる。
On the other hand, in response to the growing awareness of environmental conservation in recent years, the diversification of carbon materials is progressing with the intention of reducing the burden on the environment, apart from the idea of risk diversification, etc.
たとえば、特許文献1には、亜瀝青炭や褐炭を想定した鉄鉱石焼結用の炭素材料が開示されている。その炭材は、反応開始温度が550℃以下、揮発分(VM)が1.0%以上、水素と炭素の原子数比(H/C)が0.040以上、水銀圧入法で測定される孔径0.1~10μmの気孔量が50mm3/g以上というものである。
For example, Patent Document 1 discloses a carbon material for sintering iron ore, assuming subbituminous coal or lignite, which has a reaction initiation temperature of 550° C. or less, a volatile matter (VM) of 1.0% or more, a hydrogen to carbon atomic ratio (H/C) of 0.040 or more, and a pore volume of 0.1 to 10 μm in diameter measured by mercury intrusion porosimetry of 50 mm 3 /g or more.
特許文献2には、4.0質量%以上の結晶水を含有する高結晶水鉄鉱石を30%以上使用した際に、燃焼開始温度が450℃未満である固体燃料を10質量%以上含む方法が開示されている。
Patent Document 2 discloses a method in which 30% or more of high water of crystallization iron ore containing 4.0% or more water of crystallization is used, and 10% or more of solid fuel with a combustion start temperature of less than 450°C is included.
特許文献3には、焼結装入層を2段階で形成し、それぞれの表面に点火し焼結を行う2段点火焼結法において、下段側の原料にコークスや無煙炭とそれらよりも燃焼開始温度の低い炭材を用いる方法が開示されている。
Patent Document 3 discloses a two-stage ignition sintering method in which a sintering charge layer is formed in two stages and sintering is carried out by igniting the surface of each stage, using coke or anthracite and a carbonaceous material with a lower combustion start temperature as the raw material in the lower stage.
特許文献4には、凝結材として粉コークスや無煙炭に燃焼開始温度の低い炭材を合計炭素分の25~75%範囲で配合し、かつ低燃焼開始温度炭材、高燃焼開始温度炭材の少なくともいずれか一方を造粒工程後半で添加する方法が開示されている。
Patent Document 4 discloses a method in which a carbonaceous material with a low combustion start temperature is mixed with fine coke or anthracite as an agglomeration agent in an amount ranging from 25 to 75% of the total carbon content, and at least one of the low combustion start temperature carbonaceous material and the high combustion start temperature carbonaceous material is added in the latter half of the granulation process.
しかしながら、従来技術では、以下のような課題があった。
燃焼開始温度の低い炭材を焼結工程で使用すると歩留を低下させる。特許文献1や2に開示された技術は、反応開始温度や燃焼開始温度の低い炭材の使用について述べられている。ところが、燃焼開始温度が低い炭材を使用した際の焼結鉱製造プロセスにおける歩留の悪化影響については述べられておらず、歩留まり向上の対策等も考慮されていない。 However, the conventional technology has the following problems.
The use of carbonaceous materials with low combustion start temperatures in the sintering process reduces the yield. The techniques disclosed in Patent Documents 1 and 2 discuss the use of carbonaceous materials with low reaction start temperatures and combustion start temperatures. However, they do not discuss the effect of the use of carbonaceous materials with low combustion start temperatures on the deterioration of yield in the sintered ore manufacturing process, nor do they consider measures to improve the yield.
燃焼開始温度の低い炭材を焼結工程で使用すると歩留を低下させる。特許文献1や2に開示された技術は、反応開始温度や燃焼開始温度の低い炭材の使用について述べられている。ところが、燃焼開始温度が低い炭材を使用した際の焼結鉱製造プロセスにおける歩留の悪化影響については述べられておらず、歩留まり向上の対策等も考慮されていない。 However, the conventional technology has the following problems.
The use of carbonaceous materials with low combustion start temperatures in the sintering process reduces the yield. The techniques disclosed in Patent Documents 1 and 2 discuss the use of carbonaceous materials with low reaction start temperatures and combustion start temperatures. However, they do not discuss the effect of the use of carbonaceous materials with low combustion start temperatures on the deterioration of yield in the sintered ore manufacturing process, nor do they consider measures to improve the yield.
また、特許文献3に開示された技術では、2段点火焼結法という前提があり、一般的な焼結法に活用することはできない。特許文献4に開示された技術は、一律に炭素分で整理を行っている。一方、低燃焼開始温度の炭材にも多くの種類があり、その燃焼開始温度は様々であることを考慮できておらず、それに伴う歩留まりへの影響が考慮されていない。
Furthermore, the technology disclosed in Patent Document 3 is premised on a two-stage ignition sintering method, and cannot be used for general sintering methods. The technology disclosed in Patent Document 4 uniformly organizes materials by carbon content. On the other hand, there are many types of carbonaceous materials with low combustion start temperatures, and this does not take into account the fact that their combustion start temperatures vary, and the associated impact on yield is not taken into account.
本発明は、上記の事情を鑑みてなされたものであって、焼結工程で燃焼開始温度の低い炭材を使用する際に歩留りを向上させて焼結鉱を製造する方法を提案することを目的とするものである。
The present invention was made in consideration of the above circumstances, and aims to propose a method for producing sintered ore with improved yield when using carbonaceous material with a low combustion start temperature in the sintering process.
上記課題を有利に解決する本発明にかかる焼結鉱の製造方法は、燃焼開始温度が550℃以下の炭材を使用する焼結鉱の製造方法であって、焼結機の装入層の上方に供給した気体燃料を空気とともに、装入層の下方から吸引して装入層に導入することを特徴とする。
The method for producing sintered ore according to the present invention, which advantageously solves the above problems, is a method for producing sintered ore that uses a carbonaceous material with a combustion start temperature of 550°C or less, and is characterized in that gaseous fuel supplied above the charging bed of the sintering machine is sucked in together with air from below the charging bed and introduced into the charging bed.
なお、本発明にかかる焼結鉱の製造方法は、
(a)前記焼結機の進行方向で装入層上の給鉱部側1/2の長さ範囲で前記気体燃料を吸引すること、
(b)前記燃焼開始温度が550℃以下の炭材を、化石燃料を除く有機系資源、および、前記有機系資源を原料として製造された炭材のいずれかまたは両方とすること、
(c)前記装入層内に導入される空気に含まれる気体燃料を燃焼下限濃度未満の濃度とすること、
(d)前記気体燃料を供給するとき、コークス相当の熱量換算で、前記気体燃料を供給しないときの全ての炭材の合計量に対し10%以下の範囲で前記炭材を削減すること、
などがより好ましい解決手段になり得る。 The method for producing sintered ore according to the present invention is as follows:
(a) sucking the gaseous fuel in a range of 1/2 of the length of the ore feeding section side on the sintering bed in the traveling direction of the sintering machine;
(b) the carbonaceous material having a combustion start temperature of 550° C. or less is either or both of an organic resource other than fossil fuel and a carbonaceous material produced using the organic resource as a raw material;
(c) maintaining the concentration of the gaseous fuel contained in the air introduced into the sintering bed at less than the lower flammable limit concentration;
(d) when the gaseous fuel is supplied, the amount of the carbonaceous materials is reduced by 10% or less in terms of heat equivalent to coke relative to the total amount of all the carbonaceous materials when the gaseous fuel is not supplied;
This may be a more preferable solution.
(a)前記焼結機の進行方向で装入層上の給鉱部側1/2の長さ範囲で前記気体燃料を吸引すること、
(b)前記燃焼開始温度が550℃以下の炭材を、化石燃料を除く有機系資源、および、前記有機系資源を原料として製造された炭材のいずれかまたは両方とすること、
(c)前記装入層内に導入される空気に含まれる気体燃料を燃焼下限濃度未満の濃度とすること、
(d)前記気体燃料を供給するとき、コークス相当の熱量換算で、前記気体燃料を供給しないときの全ての炭材の合計量に対し10%以下の範囲で前記炭材を削減すること、
などがより好ましい解決手段になり得る。 The method for producing sintered ore according to the present invention is as follows:
(a) sucking the gaseous fuel in a range of 1/2 of the length of the ore feeding section side on the sintering bed in the traveling direction of the sintering machine;
(b) the carbonaceous material having a combustion start temperature of 550° C. or less is either or both of an organic resource other than fossil fuel and a carbonaceous material produced using the organic resource as a raw material;
(c) maintaining the concentration of the gaseous fuel contained in the air introduced into the sintering bed at less than the lower flammable limit concentration;
(d) when the gaseous fuel is supplied, the amount of the carbonaceous materials is reduced by 10% or less in terms of heat equivalent to coke relative to the total amount of all the carbonaceous materials when the gaseous fuel is not supplied;
This may be a more preferable solution.
本発明にかかる焼結鉱の製造方法では、焼結工程で燃焼開始温度の低い炭材を使用する際、焼結機の装入層の上方に供給した気体燃料を空気とともに、装入層の下方から吸引して装入層に導入することでヒートパターンを改善し、歩留の低下を抑制することができる。
In the sintered ore manufacturing method of the present invention, when carbonaceous material with a low combustion start temperature is used in the sintering process, the gaseous fuel supplied above the sintering machine's charging bed is sucked in together with air from below the charging bed and introduced into the charging bed, improving the heat pattern and preventing a decrease in yield.
以下、本発明の実施の形態について具体的に説明する。以下の実施形態は、本発明の技術的思想を具体化するための設備や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
Below, the embodiments of the present invention are specifically described. The following embodiments are intended to exemplify equipment and methods for embodying the technical ideas of the present invention, and are not intended to specify the configuration as described below. In other words, the technical ideas of the present invention can be modified in various ways within the technical scope described in the claims.
環境負荷低減のための炭素材料を多様化するにあたって、化石燃料を除く有機系資源やその有機系資源を原料として製造された炭材(以下、バイオマス炭と称する)が着目されている。バイオマス炭はその原料となる植物が成長するまでの間に炭酸ガスを吸収するので、そのバイオマス炭を用いた燃料はカーボンニュートラルの考え方から系外への炭酸ガスの排出量は無い物としてカウントすることができる。これにより通常粉コークスを使用する鉄鉱石焼結プロセスにおいてもバイオマス炭の使用が検討されている。バイオマス炭の特徴としてはその燃焼開始温度がコークスと比較して低いことにある。コークスの燃焼開始温度が650~750℃の範囲であるのに対し、バイオマス炭の燃焼開始温度はおおむね550℃以下である。
In diversifying carbon materials to reduce the environmental burden, attention is being paid to organic resources other than fossil fuels and carbonaceous materials produced using these organic resources as raw materials (hereinafter referred to as biomass charcoal). Biomass charcoal absorbs carbon dioxide gas while the plants that are its raw material grow, so fuels made from biomass charcoal can be counted as having no carbon dioxide gas emissions outside the system from the perspective of carbon neutrality. As a result, the use of biomass charcoal is being considered in iron ore sintering processes, which normally use coke powder. A characteristic of biomass charcoal is that it starts to burn at a lower temperature than coke. While the starting temperature for coke to burn is in the range of 650 to 750°C, the starting temperature for biomass charcoal to burn is generally below 550°C.
本実施形態では、焼結工程で鉄鉱石に副原料としてのフラックスと炭材とを加え焼結機上に連続的に装入し、焼結ベッド(装入層)を形成する。焼結ベッドは上端に点火した後、下端から排ガスを吸引することで炭材の燃焼がベッド上端から下端へ伝播し、その熱を用いて鉄鉱石とフラックスの反応・塊成化がなされる。下端からの排ガス吸引はブロワーを用いて行われる。吸引された排ガスはダクト内を通り、集塵機、脱硫・脱硝設備を経て煙突から排出される。
In this embodiment, flux and carbonaceous material are added to the iron ore as auxiliary raw materials during the sintering process, and the materials are continuously charged onto the sintering machine to form a sintering bed (charging layer). The sintering bed is ignited at the top end, and then exhaust gas is sucked in from the bottom end, causing the combustion of the carbonaceous material to spread from the top to the bottom of the bed, and the heat is used to cause the iron ore and flux to react and form into agglomerates. A blower is used to suck in the exhaust gas from the bottom end. The sucked in exhaust gas passes through a duct, passes through a dust collector and desulfurization and denitrification equipment, and is then discharged from the chimney.
バイオマス炭の特徴はその燃焼開始温度の低さにある。これはバイオマス炭が一般的に焼結工程で使用されている粉コークス(化石燃料由来)と比較し、多孔質でその比表面積が非常に大きいので、低い温度であっても高い燃焼速度を得られるためであるとされている。したがって、バイオマス炭は燃焼開始温度が低いだけではなく、燃焼を開始した後の燃焼速度も高い傾向を示す。
A distinctive feature of biomass charcoal is its low combustion initiation temperature. This is thought to be because, compared to powdered coke (derived from fossil fuels) that is generally used in the sintering process, biomass charcoal is porous and has a very large specific surface area, allowing it to achieve a high combustion rate even at low temperatures. Therefore, not only does biomass charcoal have a low combustion initiation temperature, it also tends to have a high combustion rate once combustion has begun.
炭素材料の燃焼反応は気固反応である。固体である炭素材料は周囲の気体中の酸素と反応し燃焼している。焼結のように気体が流れている条件での気固反応においては、固体表面にごく薄層のガス境膜と呼ばれる領域が存在する。ガス境膜は外側の乱流の影響を受けず層流が維持されている。炭素材料の燃焼はガス境膜の外側からガス境膜内を酸素が拡散し、炭素材料表面に達することで燃焼に使用される。ここで、炭素材料の燃焼速度が非常に早い場合、周囲の酸素濃度が高い場合でも、ガス境膜内の酸素拡散による酸素供給速度に対し、炭素材料の燃焼による表面での酸素消費速度が大きくなり、ガス境膜内の酸素濃度が低下する。このため、炭素材料は不完全燃焼を起こし、一酸化炭素の発生量が増加する。したがって、燃焼速度が非常に早い場合、炭素材料としての燃焼熱の一部が利用されず、一酸化炭素として系外に排出される。そのため、焼結に使用される反応熱が減少することで歩留が低下すると考えられる。また、燃焼速度が速いということは燃焼開始から燃焼終了までの時間が短いということを示している。燃焼開始後すぐに燃え尽きてしまい、上方から来る空気によって冷却が開始されてしまうことになる。そこで、焼結機内の装入層は急激に温度が上昇した後、短い時間で降下するようなヒートパターンを形成する。この効果により、高温領域での焼結反応が短時間でしかなされず、鉱石同士の結合が不十分となってしまう影響もある。
The combustion reaction of carbon materials is a gas-solid reaction. The solid carbon material reacts with oxygen in the surrounding gas and burns. In gas-solid reactions under conditions of gas flow, such as sintering, there is a very thin area called a gas film on the surface of the solid. The gas film is not affected by the turbulent flow outside and maintains a laminar flow. The combustion of carbon materials is used when oxygen diffuses from the outside of the gas film through the gas film and reaches the surface of the carbon material. Here, if the burning speed of the carbon material is very fast, even if the oxygen concentration in the surroundings is high, the oxygen consumption rate at the surface due to the burning of the carbon material is greater than the oxygen supply rate due to oxygen diffusion in the gas film, and the oxygen concentration in the gas film decreases. As a result, the carbon material undergoes incomplete combustion and the amount of carbon monoxide generated increases. Therefore, if the burning speed is very fast, part of the combustion heat of the carbon material is not used and is discharged outside the system as carbon monoxide. Therefore, it is thought that the yield decreases due to the decrease in reaction heat used for sintering. In addition, a fast burning speed indicates that the time from the start of combustion to the end of combustion is short. It burns out immediately after the start of combustion, and cooling begins with the air coming from above. Therefore, the sintering bed in the sintering machine forms a heat pattern in which the temperature rises rapidly and then drops in a short time. This effect means that the sintering reaction in the high-temperature area only occurs for a short period of time, which can result in insufficient bonding between the ores.
本実施形態では、焼結機の装入層の上方に供給した気体燃料を空気とともに、装入層の下方から吸引して装入層に導入する。導入された気体燃料は、装入層の高さ方向で炭材の燃焼している位置よりも上方で燃焼し、上層から流入する空気による冷却効果を緩和する。それにより、装入層の温度が下降することを抑制する。この効果により、装入層が高温に維持される時間、つまり、焼結反応の時間を長く保つことができる。したがって、鉱石同士の結合を強固なものとすることができる。本効果は通常の粉コークス等を使用した条件でも発現する。特に、バイオマス炭のような燃焼開始温度が低い炭材では気体燃料を吹込む前のベースのヒートパターンにおける高温領域での焼結反応時間が短い。それで、気体燃料を吹込みによる、高温領域での焼結反応時間の延長効果はコークス等を使用した際よりも大きく現れる。
In this embodiment, the gaseous fuel supplied above the sintering machine's charging bed is sucked in from below the sintering bed together with air and introduced into the sintering bed. The introduced gaseous fuel burns above the position where the carbonaceous material is burning in the height direction of the sintering bed, mitigating the cooling effect of the air flowing in from the upper layer. This prevents the temperature of the sintering bed from dropping. This effect makes it possible to extend the time during which the sintering bed is maintained at a high temperature, that is, the time of the sintering reaction. Therefore, the bonds between the ores can be strengthened. This effect is also manifested under conditions where ordinary coke powder is used. In particular, with carbonaceous materials such as biomass charcoal that have a low combustion start temperature, the sintering reaction time in the high temperature region in the base heat pattern before the gaseous fuel is injected is short. Therefore, the effect of extending the sintering reaction time in the high temperature region by injecting the gaseous fuel is greater than when coke is used.
さらに、装入層内の炭材が燃焼開始するよりも上方で気体燃料が燃焼することで酸素を消費し、装入層内の下方で燃焼する炭材に供給する酸素濃度を低下させることが可能である。この効果によって炭材の燃焼速度が遅くなる影響がある。その影響により粉コークスでは燃焼速度の低下により減産の可能性がある。一方、燃焼速度の高いバイオマス炭では、その悪影響を緩和することができる 。
Furthermore, by burning gaseous fuel above the point where the carbonaceous material in the sintering bed starts to burn, oxygen is consumed, making it possible to reduce the concentration of oxygen supplied to the carbonaceous material burning below in the sintering bed. This has the effect of slowing down the burning rate of the carbonaceous material. As a result, there is a possibility of reduced production of coke powder due to the slower burning rate. On the other hand, with biomass charcoal, which has a high burning rate, this adverse effect can be mitigated.
一般的に焼結機では上層部が熱不足により歩留が低下する傾向にあり、下層部は熱過剰となる傾向がある。これは上層部に装入層上から冷たい空気が直接流入しているためである。バイオマス炭の使用による熱不足の影響は上層部の方が受けやすくなる。したがって、気体燃料の吸引も反応帯が上層部に存在する装入層上の給鉱部側1/2の長さ範囲内で行われることが好ましい。気体燃料の吸引は、焼結機の給鉱部側1/4の長さ範囲以上とすることがより好ましく、1/3の長さ範囲以上とすることがさらに好ましい。
In general, in sintering machines, the upper layer tends to have a lower yield due to a lack of heat, while the lower layer tends to have an excess of heat. This is because cold air flows directly into the upper layer from above the charging layer. The upper layer is more susceptible to the effects of a lack of heat caused by the use of biomass coal. Therefore, it is preferable that the suction of gaseous fuel is also carried out within a range of 1/2 the length of the ore feeding section above the charging layer where the reaction zone is located in the upper layer. It is more preferable that the suction of gaseous fuel is carried out within a range of 1/4 or more of the length of the ore feeding section of the sintering machine, and even more preferable that it is carried out within a range of 1/3 or more of the length.
気体燃料は燃焼下限濃度未満に希釈することが好ましい。これは焼結機の装入層上の残火によって、装入層上方の外部で発火してしまった場合、気体燃料吹込みの効果を十分に得られなくなるどころか、火災などに繋がる可能性があるためである。また、気体燃料は都市ガス、天然ガス、プロパンガス、コークス炉ガス等いずれのガスを用いてもかまわない。毒性を含まない都市ガス、天然ガス、プロパンガス等が好ましい。たとえば、空気に対する各気体燃料の燃焼下限濃度は、都市ガス:4.5体積%、天然ガス:4.4体積%、プロパンガス:2.4体積%などである。気体燃料の濃度下限は必要とする熱量により定まる。気体燃料を有効活用する観点から、装入層内に導入される空気に含まれる気体燃料の濃度下限は0体積%超えが好ましく、燃焼下限濃度の1/20以上の濃度とすることがより好ましい。
It is preferable to dilute the gaseous fuel below the lower limit of flammability. This is because if residual fires on the sintering bed ignite the outside above the sintering bed, not only will the effect of gaseous fuel injection not be fully achieved, but it may also lead to a fire. Any gas may be used as the gaseous fuel, such as city gas, natural gas, propane gas, or coke oven gas. Non-toxic city gas, natural gas, or propane gas is preferable. For example, the lower limit of flammability of each gaseous fuel relative to air is city gas: 4.5 vol.%, natural gas: 4.4 vol.%, propane gas: 2.4 vol.%, etc. The lower limit of the concentration of the gaseous fuel is determined by the required amount of heat. From the viewpoint of effective use of the gaseous fuel, the lower limit of the concentration of the gaseous fuel contained in the air introduced into the sintering bed is preferably more than 0 vol.%, and more preferably 1/20 or more of the lower limit of flammability.
また、気体燃料の装入層への導入により歩留が上昇した場合は、全ての炭材の合計量に対し10%以下の範囲で炭材の配合量を低下させてもかまわない。これは気体燃料吹込みによって、装入層の上層部の熱不足が解消されることで、下層部の熱過剰分の熱を下げることができるようになるためである。
In addition, if the yield increases due to the introduction of gaseous fuel into the sintering bed, the amount of carbonaceous material may be reduced by up to 10% of the total amount of all carbonaceous materials. This is because the injection of gaseous fuel eliminates the heat shortage in the upper layer of the sintering bed, making it possible to reduce the excess heat in the lower layer.
(実施例1)
バッチ式の焼結試験装置を使用し、本発明の効果を検証した。T1は一般的に使用されるコークスのみを使用した水準とし、T3はコークスの20%をバイオマス炭に振り替えた水準とした。T2、T4~T7は気体燃料として都市ガスを吸引空気に対して0.4体積%の濃度となるように調整して、点火炉消火後30秒から7分間吹き込んだ。なお、鉱石や副原料には同じ配合量のものを使用した。試験条件と結果を表1、図1に示す。参考例であるコークスのみを用いたT1に対し、都市ガスを吹き込んだT2では歩留が約3%向上した。一方、コークスの20%をバイオマス炭に振り替えた水準のT3ではベース(T1)に対して約8%歩留が低下した。これに対し都市ガスを吹き込んだT4では歩留は約10%向上した。同一熱量条件であるT1に対する都市ガス吹込みの水準であるT2の効果よりも大きい効果をT4では確認することができた。一方、T5,T6、T7は、T4からコークス相当の熱量換算で0.2%ずつ加算して削減した水準である。なおこの時コークスとバイオマス炭との比率に変化が無いように削減した。T5,T6、T7と削減幅が大きくなるに伴い歩留が低下した。全コークス量に対して12%削減したT7ではベース(T1)の歩留を下回る結果となった。 Example 1
The effect of the present invention was verified using a batch-type sintering test device. T1 was a level where only commonly used coke was used, and T3 was a level where 20% of the coke was replaced with biomass charcoal. In T2, T4 to T7, city gas was adjusted to a concentration of 0.4 volume% relative to the intake air as the gaseous fuel, and was injected for 30 seconds to 7 minutes after the ignition furnace was extinguished. The same amounts of ore and auxiliary materials were used. The test conditions and results are shown in Table 1 and Figure 1. Compared to T1, which is a reference example where only coke was used, T2, where city gas was injected, had a yield improvement of about 3%. On the other hand, in T3, where 20% of the coke was replaced with biomass charcoal, the yield decreased by about 8% compared to the base (T1). In contrast, in T4, where city gas was injected, the yield improved by about 10%. It was possible to confirm a greater effect in T4 than the effect of T2, which is a level of city gas injection for T1 under the same heat quantity conditions. On the other hand, T5, T6, and T7 are levels where the amount of coke equivalent heat equivalent to T4 is reduced by 0.2% each. The reduction was made so that the ratio of coke to biomass coal would not change. As the reduction amount increased from T5 to T6 to T7, the yield decreased. In T7, where the total amount of coke was reduced by 12%, the yield was lower than that of the base (T1).
バッチ式の焼結試験装置を使用し、本発明の効果を検証した。T1は一般的に使用されるコークスのみを使用した水準とし、T3はコークスの20%をバイオマス炭に振り替えた水準とした。T2、T4~T7は気体燃料として都市ガスを吸引空気に対して0.4体積%の濃度となるように調整して、点火炉消火後30秒から7分間吹き込んだ。なお、鉱石や副原料には同じ配合量のものを使用した。試験条件と結果を表1、図1に示す。参考例であるコークスのみを用いたT1に対し、都市ガスを吹き込んだT2では歩留が約3%向上した。一方、コークスの20%をバイオマス炭に振り替えた水準のT3ではベース(T1)に対して約8%歩留が低下した。これに対し都市ガスを吹き込んだT4では歩留は約10%向上した。同一熱量条件であるT1に対する都市ガス吹込みの水準であるT2の効果よりも大きい効果をT4では確認することができた。一方、T5,T6、T7は、T4からコークス相当の熱量換算で0.2%ずつ加算して削減した水準である。なおこの時コークスとバイオマス炭との比率に変化が無いように削減した。T5,T6、T7と削減幅が大きくなるに伴い歩留が低下した。全コークス量に対して12%削減したT7ではベース(T1)の歩留を下回る結果となった。 Example 1
The effect of the present invention was verified using a batch-type sintering test device. T1 was a level where only commonly used coke was used, and T3 was a level where 20% of the coke was replaced with biomass charcoal. In T2, T4 to T7, city gas was adjusted to a concentration of 0.4 volume% relative to the intake air as the gaseous fuel, and was injected for 30 seconds to 7 minutes after the ignition furnace was extinguished. The same amounts of ore and auxiliary materials were used. The test conditions and results are shown in Table 1 and Figure 1. Compared to T1, which is a reference example where only coke was used, T2, where city gas was injected, had a yield improvement of about 3%. On the other hand, in T3, where 20% of the coke was replaced with biomass charcoal, the yield decreased by about 8% compared to the base (T1). In contrast, in T4, where city gas was injected, the yield improved by about 10%. It was possible to confirm a greater effect in T4 than the effect of T2, which is a level of city gas injection for T1 under the same heat quantity conditions. On the other hand, T5, T6, and T7 are levels where the amount of coke equivalent heat equivalent to T4 is reduced by 0.2% each. The reduction was made so that the ratio of coke to biomass coal would not change. As the reduction amount increased from T5 to T6 to T7, the yield decreased. In T7, where the total amount of coke was reduced by 12%, the yield was lower than that of the base (T1).
(実施例2)
次に気体燃料の吹込み範囲について検証を行った。本試験はバッチ式の試験であるため、装入層上の全長での吹込みを全焼結時間での吹込みと模擬した。都市ガスを吸引空気に対して0.4体積%の濃度となるように調整して吹き込んだ。なお、鉱石や副原料には同じ配合量のものを使用した。試験条件と結果を表2、図2に示す。実施例1のT3をベースとすると、T4は7分間の気体燃料吹込みであり、全体の焼結時間の25%である。T8~T10は、気体燃料吹込み時間を全体の焼結時間の50%、75%、100%とした。この結果気体燃料吹込み時間が全体の焼結時間の50%までは歩留りの上昇効果が認められたが、75%、100%の条件ではほぼ効果は横ばいであった。焼結時間後半では反応帯が装入層の下層部に達しており、既に十分な熱が得られているため、都市ガス吹込みの効果が発現しにくかったと考えられる。 Example 2
Next, the gas fuel injection range was verified. Since this test was a batch type test, injection over the entire length above the sintering bed was simulated as injection during the entire sintering time. The city gas was adjusted to a concentration of 0.4 volume % relative to the suction air and injected. The same amount of ore and auxiliary materials were used. The test conditions and results are shown in Table 2 and Figure 2. Based on T3 in Example 1, T4 was 7 minutes of gas fuel injection, which is 25% of the entire sintering time. In T8 to T10, the gas fuel injection time was 50%, 75%, and 100% of the entire sintering time. As a result, the yield increase effect was observed up to 50% of the entire sintering time, but the effect was almost flat at 75% and 100%. It is considered that the effect of city gas injection was difficult to manifest because the reaction zone reached the lower layer of the sintering bed in the latter half of the sintering time and sufficient heat was already obtained.
次に気体燃料の吹込み範囲について検証を行った。本試験はバッチ式の試験であるため、装入層上の全長での吹込みを全焼結時間での吹込みと模擬した。都市ガスを吸引空気に対して0.4体積%の濃度となるように調整して吹き込んだ。なお、鉱石や副原料には同じ配合量のものを使用した。試験条件と結果を表2、図2に示す。実施例1のT3をベースとすると、T4は7分間の気体燃料吹込みであり、全体の焼結時間の25%である。T8~T10は、気体燃料吹込み時間を全体の焼結時間の50%、75%、100%とした。この結果気体燃料吹込み時間が全体の焼結時間の50%までは歩留りの上昇効果が認められたが、75%、100%の条件ではほぼ効果は横ばいであった。焼結時間後半では反応帯が装入層の下層部に達しており、既に十分な熱が得られているため、都市ガス吹込みの効果が発現しにくかったと考えられる。 Example 2
Next, the gas fuel injection range was verified. Since this test was a batch type test, injection over the entire length above the sintering bed was simulated as injection during the entire sintering time. The city gas was adjusted to a concentration of 0.4 volume % relative to the suction air and injected. The same amount of ore and auxiliary materials were used. The test conditions and results are shown in Table 2 and Figure 2. Based on T3 in Example 1, T4 was 7 minutes of gas fuel injection, which is 25% of the entire sintering time. In T8 to T10, the gas fuel injection time was 50%, 75%, and 100% of the entire sintering time. As a result, the yield increase effect was observed up to 50% of the entire sintering time, but the effect was almost flat at 75% and 100%. It is considered that the effect of city gas injection was difficult to manifest because the reaction zone reached the lower layer of the sintering bed in the latter half of the sintering time and sufficient heat was already obtained.
Claims (5)
- 燃焼開始温度が550℃以下の炭材を使用する焼結鉱の製造方法であって、焼結機の装入層の上方に供給した気体燃料を空気とともに、装入層の下方から吸引して装入層に導入する、焼結鉱の製造方法。 A method for producing sintered ore using carbonaceous material with a combustion start temperature of 550°C or less, in which gaseous fuel supplied above the sintering machine's charging bed is sucked in from below the charging bed together with air and introduced into the charging bed.
- 前記焼結機の進行方向で装入層上の給鉱部側1/2の長さ範囲で前記気体燃料を吸引する、請求項1に記載の焼結鉱の製造方法。 The method for producing sintered ore according to claim 1, in which the gaseous fuel is sucked in within a range of 1/2 the length of the ore feeding section on the charging bed in the direction of travel of the sintering machine.
- 前記燃焼開始温度が550℃以下の炭材を、化石燃料を除く有機系資源、および、前記有機系資源を原料として製造された炭材のいずれかまたは両方とする、請求項1に記載の焼結鉱の製造方法。 The method for producing sintered ore according to claim 1, wherein the carbonaceous material having a combustion start temperature of 550°C or less is either or both of an organic resource other than fossil fuel and a carbonaceous material produced using the organic resource as a raw material.
- 前記装入層内に導入される空気に含まれる気体燃料を燃焼下限濃度未満の濃度とする、請求項1に記載の焼結鉱の製造方法。 The method for producing sintered ore according to claim 1, in which the gaseous fuel contained in the air introduced into the sintering bed has a concentration below the lower limit of combustion.
- 前記気体燃料を供給するとき、コークス相当の熱量換算で、前記気体燃料を供給しないときの全ての炭材の合計量に対し10%以下の範囲で前記炭材を削減する、請求項1に記載の焼結鉱の製造方法。 The method for producing sintered ore according to claim 1, wherein when the gaseous fuel is supplied, the amount of the carbonaceous material is reduced by 10% or less, in terms of heat equivalent to coke, relative to the total amount of all the carbonaceous materials when the gaseous fuel is not supplied.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022193243 | 2022-12-02 | ||
JP2022-193243 | 2022-12-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024116778A1 true WO2024116778A1 (en) | 2024-06-06 |
Family
ID=91323426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/040407 WO2024116778A1 (en) | 2022-12-02 | 2023-11-09 | Method for producing sintered ore |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202428888A (en) |
WO (1) | WO2024116778A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170103503A (en) * | 2016-03-04 | 2017-09-13 | 주식회사 포스코 | Sintering method and apparatus |
JP2020002457A (en) * | 2018-06-25 | 2020-01-09 | 日本製鉄株式会社 | Dl sintering machine and manufacturing method of sintered ore using dl sintering machine |
JP2022033594A (en) * | 2020-08-17 | 2022-03-02 | 日本製鉄株式会社 | Method for manufacturing sintered ore |
-
2023
- 2023-11-09 WO PCT/JP2023/040407 patent/WO2024116778A1/en unknown
- 2023-11-23 TW TW112145251A patent/TW202428888A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170103503A (en) * | 2016-03-04 | 2017-09-13 | 주식회사 포스코 | Sintering method and apparatus |
JP2020002457A (en) * | 2018-06-25 | 2020-01-09 | 日本製鉄株式会社 | Dl sintering machine and manufacturing method of sintered ore using dl sintering machine |
JP2022033594A (en) * | 2020-08-17 | 2022-03-02 | 日本製鉄株式会社 | Method for manufacturing sintered ore |
Also Published As
Publication number | Publication date |
---|---|
TW202428888A (en) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101353113B1 (en) | Process for producing sintered ore | |
JP2008095170A (en) | Method for producing sintered ore and sintering machine therefor | |
JP2020186436A (en) | Manufacturing method of sintered ore | |
JP2015157980A (en) | Production method of sintered ore | |
JP2018003153A (en) | Production method of sinter | |
WO2024116778A1 (en) | Method for producing sintered ore | |
JP5815196B2 (en) | Method for producing sintered ore | |
WO2014020964A1 (en) | Method for producing pig iron and blast furnace facility using same | |
JP5561443B2 (en) | Method for producing sintered ore | |
JP5561032B2 (en) | Method for producing sintered ore | |
WO2024084749A1 (en) | Method for producing sintered ore | |
WO2024116777A1 (en) | Method for manufacturing sintered ore | |
JP7456560B1 (en) | Method for producing carbonaceous material for sintering, sintered ore, and carbonaceous material for sintering | |
JP2011168883A (en) | Method for operating blast furnace | |
JP3855635B2 (en) | Blast furnace operation method | |
JP6551471B2 (en) | Blast furnace operation method | |
JP2015157979A (en) | Production method of sintered ore | |
JP2018024941A (en) | Blast furnace operation method | |
WO2024106251A1 (en) | Carbon material for sintering, sintered ore, and production method for carbon material for sintering | |
JP2010132968A (en) | Method for producing sintered ore | |
JP5803454B2 (en) | Oxygen-gas fuel supply device for sintering machine | |
JP5825478B2 (en) | Sintering machine | |
KR100398278B1 (en) | Method of reducing sinter with Low Oxidation Degree | |
JPH08100222A (en) | Production of sintered ore | |
JP4714544B2 (en) | Blast furnace operation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23897430 Country of ref document: EP Kind code of ref document: A1 |