JP4714544B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP4714544B2
JP4714544B2 JP2005290979A JP2005290979A JP4714544B2 JP 4714544 B2 JP4714544 B2 JP 4714544B2 JP 2005290979 A JP2005290979 A JP 2005290979A JP 2005290979 A JP2005290979 A JP 2005290979A JP 4714544 B2 JP4714544 B2 JP 4714544B2
Authority
JP
Japan
Prior art keywords
pulverized coal
ratio
gaseous fuel
blast furnace
pcr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005290979A
Other languages
Japanese (ja)
Other versions
JP2007100160A (en
Inventor
和也 国友
恒久 西村
浩一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005290979A priority Critical patent/JP4714544B2/en
Publication of JP2007100160A publication Critical patent/JP2007100160A/en
Application granted granted Critical
Publication of JP4714544B2 publication Critical patent/JP4714544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Manufacture Of Iron (AREA)

Description

本発明は、羽口より微粉炭吹き込みを行う高炉操業方法に関し、特に、微粉炭と共に気体燃料を吹き込む高炉操業に関する。   The present invention relates to a blast furnace operation method in which pulverized coal is blown from a tuyere, and particularly to a blast furnace operation in which gaseous fuel is blown together with pulverized coal.

高炉操業においては、安価で燃焼性が良く、発熱量の高い、例えば、微粉炭のような固体燃料、石油、重油、タールなどの液体燃料、天然ガスコークス炉ガス、還元ガスなどの気体燃料を羽口部から吹き込むことにより、溶銑製造コストの低減、生産性の向上を図っている。吹き込まれた微粉炭などの固体燃料、液体や気体の燃料は、高炉内において一部のコークスの代わりとして燃焼し、その良好な燃焼性と高い発熱量のために、高温で多量の還元ガスを生成し、効率的な還元反応を行ものである。   In blast furnace operation, inexpensive, highly combustible, high calorific value, for example, solid fuel such as pulverized coal, liquid fuel such as petroleum, heavy oil, tar, etc., gas fuel such as natural gas coke oven gas, reducing gas, etc. By blowing from the tuyere, hot metal production costs are reduced and productivity is improved. Injected solid fuel such as pulverized coal, liquid or gaseous fuel burns in place of some coke in the blast furnace, and because of its good flammability and high calorific value, it produces a large amount of reducing gas at high temperatures. It produces and performs an efficient reduction reaction.

最近では、安価な微粉炭吹き込む操業が主流となっているが、微粉炭吹き込み操業では、吹き込んだ微粉炭が完全に燃焼せず、一部が未燃チャー(炭素)として残留する。
この未燃チャーは、炉内を上昇するガス流よって炉頂より排出されるため微粉炭のコークスに対する置換率を低下させ、コークス比の上昇、生産量の低下を引き起こす。また、この未燃チャーは高炉の炉下部中心(炉芯)のコークス層に捕捉されるため、この部分での溶銑、溶滓の通液性を阻害し、ひいてはガスの通気性をも阻害することとなり、高炉の生産性はさらに低下する。
このようなことから、微粉炭吹き込み操業に当たっては、過剰酸素率(=(羽口部より吹き込まれる空気、純酸素および微粉炭中の酸素の量)/(微粉炭中の炭素及び水素を燃焼させてCO及びHOとするのに必要な酸素の量))を1.0以上に維持することが好ましい。
過剰酸素率が1.0以上では微粉炭中の炭素、水素の全量が燃焼によりCO及びHOとなり、未撚チャーは発生しないが、過剰酸素率が1.0未満であると一部の炭素が燃焼せず、未撚チャーとなり、上述のような問題の原因となる可能性がある。
したがって、微粉炭の吹き込み量には上限があり、コークス比の低減、銑鉄の製造コストの低減には限度があった。
このように、微粉炭吹き込み操業においては、その効果を十分なものとするには未燃チャーの発生を抑制することが重要であり、種々の技術が提案されている。
Recently, the operation of injecting cheap pulverized coal has become the mainstream, but in the operation of injecting pulverized coal, the injected pulverized coal does not completely burn, and a part of it remains as unburned char (carbon).
Since the unburned char is discharged from the top of the furnace by the gas flow rising in the furnace, the replacement rate of pulverized coal with respect to coke is lowered, and the coke ratio is increased and the production amount is decreased. In addition, since this unburned char is trapped in the coke layer at the center of the bottom of the blast furnace (core), the hot metal and the liquid permeability of the hot metal in this part are obstructed, and consequently the gas permeability is also obstructed. As a result, the productivity of the blast furnace is further reduced.
For this reason, in the operation of blowing pulverized coal, the excess oxygen rate (= (amount of air blown from the tuyere, pure oxygen and oxygen in the pulverized coal) / (burning carbon and hydrogen in the pulverized coal) It is preferable to maintain the amount of oxygen necessary for CO 2 and H 2 O) at 1.0 or more.
When the excess oxygen ratio is 1.0 or more, the total amount of carbon and hydrogen in the pulverized coal becomes CO 2 and H 2 O by combustion, and untwisted char is not generated, but part of the excess oxygen ratio is less than 1.0. Carbon does not burn and becomes untwisted char, which may cause the above-mentioned problems.
Therefore, there is an upper limit to the amount of pulverized coal blown, and there has been a limit to the reduction of the coke ratio and the production cost of pig iron.
Thus, in the operation of blowing pulverized coal, it is important to suppress the generation of unburned char in order to obtain sufficient effects, and various techniques have been proposed.

例えば、特許文献1には、羽口部から微粉炭を高炉の内部に吹き込む高炉操業方法において、微粉炭と共に燃料ガスを吹き込むことが開示されている。
燃料ガスの燃焼により形成される高温場において、微粉炭が急速に熱分解され、通常の場合よりも燃焼速度の大きいガスが多量に生成し、チャーの発生が減少すると共に、生成したチャーも膨張して燃焼速度が大きくなるため、過剰酸素率が1.0未満の場合でも、未撚チャーの発生が抑制できるとされている。
また、特許文献2には、高炉の羽口から、微粉炭や重油、タール、天然ガスなどの補助燃料と共に、合成樹脂粒を、補助燃料の吹き込み位置より上流側から吹き込む方法が開示されおり、特定の位置で吹き込むことにより、合成樹脂粒を燃焼性の向上を図り、未撚のまま炉内に残留することによる通気性、通液性の低下を抑制することが開示されている。
また、特許文献3や特許文献4には、微粉炭をガス化炉に導入して還元ガスとし、或いは、ガス化炉からの還元ガスを改質炉で微粉炭や水蒸気を加えてさらに高カロリー、高還元性の還元ガスに改質し、これを高炉に吹き込むことが開示されている。
For example, Patent Document 1 discloses that a fuel gas is blown together with pulverized coal in a blast furnace operating method in which pulverized coal is blown into a blast furnace from a tuyere.
In a high-temperature field formed by the combustion of fuel gas, pulverized coal is rapidly pyrolyzed, generating a large amount of gas with a higher combustion rate than usual, reducing the generation of char and expanding the generated char. Since the combustion rate is increased, the generation of untwisted char can be suppressed even when the excess oxygen ratio is less than 1.0.
Patent Document 2 discloses a method of blowing synthetic resin particles from the upstream side of the auxiliary fuel blowing position together with auxiliary fuel such as pulverized coal, heavy oil, tar, natural gas, etc. from the tuyere of the blast furnace, It is disclosed that by blowing at a specific position, the combustibility of the synthetic resin particles is improved, and deterioration of air permeability and liquid permeability due to remaining untwisted in the furnace is disclosed.
In Patent Document 3 and Patent Document 4, pulverized coal is introduced into a gasification furnace as a reducing gas, or the reducing gas from the gasification furnace is added with pulverized coal or water vapor in a reforming furnace to further increase the calories. It is disclosed that the gas is reformed into highly reducing gas and blown into a blast furnace.

特開平5−179323号公報Japanese Patent Laid-Open No. 5-179323 特開2000−178614号号公報JP 2000-178614 A 特開平2001−240906号公報Japanese Patent Laid-Open No. 2001-240906 特開平11−241909号公報JP-A-11-241909

上述のように、微粉炭と他の燃料を吹き込んでコークス比を下げることは、溶銑の製造コストを低減するための手段として重要であり、これに伴う種々の制限を取り除いていくことが必要である。
特許文献1では、微粉炭と共に気体燃料を吹き込むことによって、微粉炭吹き込みの際の過剰酸素率の制限を解消できるとしている。しかしながら、微粉炭と共に天然ガス、コークス炉ガスおよび還元ガスなどの気体燃料を吹き込む場合においても、微粉炭に由来する未燃チャーが発生を十分抑制するには至らず、未燃チャーが炉芯部に滞留して炉芯部の通気性、通液性を低下させ、炉況の悪化を招く虞がある。
これは、気体燃料の燃焼速度が微粉炭中の固定炭素の燃焼速度に比べて極めて大きいので、羽口前の燃焼においては、酸素が気体燃料の燃焼に優先的に消費され、固定炭素の燃焼に必要な酸素が十分に供給されず、未燃チャーが発生しやすくなるためと考えられる。
本発明は、このような状況に鑑み、高炉に微粉炭と共に気体燃料を吹き込んで操業する高炉操業方法において、未燃チャーを発生させることなく、安定した高炉操業が可能な高炉操業方法を提供することを課題とする。
As described above, it is important to reduce the coke ratio by blowing pulverized coal and other fuels as a means for reducing the manufacturing cost of hot metal, and it is necessary to remove various limitations associated therewith. is there.
In patent document 1, it is supposed that the restriction | limiting of the excess oxygen rate in the case of pulverized coal blowing can be eliminated by blowing gaseous fuel with pulverized coal. However, even when gaseous fuel such as natural gas, coke oven gas and reducing gas is blown together with pulverized coal, unburned char derived from pulverized coal does not sufficiently suppress generation, and unburned char is It may stay in the furnace and reduce the air permeability and liquid permeability of the furnace core, leading to deterioration of the furnace condition.
This is because the combustion speed of gaseous fuel is extremely high compared to the combustion speed of fixed carbon in pulverized coal, so in the combustion before the tuyere, oxygen is preferentially consumed for the combustion of gaseous fuel, and the combustion of fixed carbon This is considered to be because the oxygen necessary for this is not sufficiently supplied, and unburned char is likely to be generated.
In view of such a situation, the present invention provides a blast furnace operation method capable of stable blast furnace operation without generating unburned char in a blast furnace operation method in which gaseous fuel is blown into a blast furnace together with pulverized coal. This is the issue.

本発明は、上記の課題を解決するためになされたものであって、その要旨とするところは以下の通りである。
(1)高炉の炉内に同一の羽口から微粉炭と気体燃料を吹き込む操業において、気体燃料の量が下記の式を満たすようにして吹き込むことを特徴とする高炉操業方法。
GR<PCR(0.9×FC−VM) … <1>
但し、GR≧10 及び、 GR≧PCR(33/67100/67×VM)を除く
ここに、GR:気体燃料比(kg/t)
PCR:微粉炭比(kg/t)
FC:微粉炭中の固定炭素比率(質量比)
VM:微粉炭中の揮発分比率(質量比)
The present invention has been made to solve the above-described problems, and the gist thereof is as follows.
(1) A blast furnace operating method characterized in that in the operation of blowing pulverized coal and gaseous fuel from the same tuyere into the furnace of the blast furnace, the amount of gaseous fuel is blown so as to satisfy the following formula.
GR <PCR (0.9 × FC-VM) <1>
However, GR: Gaseous fuel ratio (kg / t) except GR ≧ 10 and GR ≧ PCR ( 33 / 67-100 / 67 × VM)
PCR: Pulverized coal ratio (kg / t)
FC: Fixed carbon ratio in pulverized coal (mass ratio)
VM: Ratio of volatile matter in pulverized coal (mass ratio)

本発明によれば、高炉の炉内に同一の羽口から微粉炭と気体燃料を吹き込む操業において、吹き込む気体燃料と微粉炭の量が特定の式<1>を満たすように、すなわち、吹き込む気体燃料の量と微粉炭中の揮発分の量の合計の吹き込む微粉炭中の固定炭素の量に対する比率が所定の比率α以下の値となるように、気体燃料の量、微粉炭の量、或いは微粉炭の組成を調整するので、未燃チャーの発生が抑制される。従って、従来、微粉炭と共に気体燃料を吹き込む操業の場合に懸念されていた未燃チャーの発生による炉況の悪化を抑制することができ、安定した高炉操業が可能となる。
また、微粉炭と共に、天然ガスやコークス炉発生ガス、還元ガスなど、コークスに比べて相対的に炭素分の少ない気体燃料を利用することができるので、高炉内での還元ガスの発生量を確保しつつ、コークス比を低減することができる。
従って、相対的に炭素分の少ない燃料への代替により二酸化炭素の発生を抑制することができるほか、コークスの代替資源を拡大することができる。
According to the present invention, in the operation of blowing pulverized coal and gaseous fuel from the same tuyere into the furnace of the blast furnace, the amount of gaseous fuel and pulverized coal to be blown satisfies the specific formula <1>, that is, the gas to be blown The amount of gaseous fuel, the amount of pulverized coal, or the ratio of the total amount of fuel and the amount of volatiles in the pulverized coal to the amount of fixed carbon in the pulverized coal to be blown is a predetermined ratio α or less, or Since the composition of pulverized coal is adjusted, the generation of unburned char is suppressed. Therefore, the deterioration of the furnace condition due to the generation of unburned char, which has been a concern in the case of operation in which gaseous fuel is blown together with pulverized coal, can be suppressed, and stable blast furnace operation becomes possible.
In addition, pulverized coal, natural gas, coke oven generated gas, reducing gas, etc., can be used for gaseous fuels with relatively little carbon content compared to coke, ensuring the amount of reducing gas generated in the blast furnace. However, the coke ratio can be reduced.
Therefore, it is possible to suppress the generation of carbon dioxide by substituting with a fuel having a relatively low carbon content, and it is possible to expand coke alternative resources.

発明者らは、同一の羽口から微粉炭と共に気体燃料を吹き込んで燃焼させる操業に関して、実験により、種々の微粉炭と気体燃料との競合燃焼を行い、未燃チャーが増加しない条件を検討した。
競合燃焼実験では、微粉炭として固定炭素比率FC(45〜79%)および揮発分比率VM(11〜45%)の異なる10種の石炭を用い、微粉炭吹き込み量は40〜250kg/tの範囲で変化させた。また、気体燃料としてはメタンガスを用い、吹き込み量は0〜140kg/tの範囲で変化させた。送風温度1280℃の条件で、微粉炭およびガス吹込みランスから800mm先での未燃チャーの量(重量比)を測定した。未燃チャーの量は、当該位置で採取したダスト中の灰分の分析よりバランス計算により求めた。
The inventors have studied the conditions under which the unburned char does not increase by performing competitive combustion of various pulverized coals and gaseous fuels by experiments, with regard to the operation of injecting and burning gaseous fuel together with pulverized coal from the same tuyere. .
In the competitive combustion experiment, 10 types of coal having different fixed carbon ratio FC (45 to 79%) and volatile content ratio VM (11 to 45%) were used as pulverized coal, and the amount of pulverized coal injection ranged from 40 to 250 kg / t. It was changed with. Moreover, methane gas was used as gaseous fuel, and the amount of blowing was changed in the range of 0-140 kg / t. The amount (weight ratio) of unburned char at a distance of 800 mm from the pulverized coal and the gas blowing lance was measured under the condition of a blowing temperature of 1280 ° C. The amount of unburned char was obtained by balance calculation from the analysis of ash content in dust collected at this position.

その結果を図1に示す。図1は、吹き込んだ気体燃料比GR(kg/t)と、[(気体燃料の量GRと微粉炭の揮発分(PCR×VM)の合計)/(微粉炭の固定炭素分(PCR×VM))]との関係を示したものであり、この関係において未燃チャーが5質量%以上と5質量%未満の場合を示している。   The result is shown in FIG. FIG. 1 shows the ratio of injected gaseous fuel GR (kg / t) and [(total amount of gaseous fuel GR and volatile content of pulverized coal (PCR × VM)) / (fixed carbon content of pulverized coal (PCR × VM). ))], And in this relationship, the unburned char is 5 mass% or more and less than 5 mass%.

図1から判るように、微粉炭比(PCR)、気体燃料比(GR)、微粉炭中の固定炭素比率(FC)、微粉炭中の揮発分比率(VM)の関係において、一定の条件を満足させれば未燃チャーの発生率を増加させることなく、一定値以下に維持しつつ、微粉炭と気体燃料を同時に吹き込むことができることが判った。
すなわち、微粉炭中の揮発分は羽口前では直ちにガス化し、気体燃料の挙動と同等に扱えることが判り、下式に示すように、微粉炭の固定炭素量(PCR×FC)に対する気体燃料(GR)と微粉炭の揮発分量(PCR×VM)の合計(GR+PCR×VM)の比(α)を一定以下にするものである。
(GR+PCR×VM)/PCR×FC≦α
すなわち、GR≦PCR(α×FC−VM) … <1>
但し、GR:気体燃料比(kg/t)
PCR:微粉炭比(kg/t)
FC:微粉炭中の固定炭素比率(質量比)
VM:微粉炭中の揮発分比率(質量比)
α:定数 とするものである。
As can be seen from FIG. 1, certain conditions are set in relation to the pulverized coal ratio (PCR), the gas fuel ratio (GR), the fixed carbon ratio (FC) in the pulverized coal, and the volatile content ratio (VM) in the pulverized coal. It was found that if satisfied, pulverized coal and gaseous fuel can be injected simultaneously while maintaining the value below a certain value without increasing the generation rate of unburned char.
In other words, the volatile matter in pulverized coal is immediately gasified before the tuyere and can be handled in the same way as the behavior of gaseous fuel. As shown in the following equation, gaseous fuel relative to the fixed carbon content of pulverized coal (PCR × FC) The ratio (α) of the sum (GR + PCR × VM) of (GR) and the amount of volatile matter (PCR × VM) of pulverized coal is set to a certain value or less.
(GR + PCR × VM) / PCR × FC ≦ α
That is, GR ≦ PCR (α × FC-VM) (1)
However, GR: Gaseous fuel ratio (kg / t)
PCR: Pulverized coal ratio (kg / t)
FC: Fixed carbon ratio in pulverized coal (mass ratio)
VM: Ratio of volatile matter in pulverized coal (mass ratio)
α: Constant.

なお、αは、実験により決まる値であり、未燃チャーの発生率をどの程度に抑えるかによって設定しうる値であるが、安定した操業を行うには、未燃チャーの発生率は5%未満とすることが好ましく、そのためには、図1から判るように、αを0.9以下とすることが好ましいといえる。   Note that α is a value determined by experiments, and is a value that can be set depending on how much the rate of occurrence of unburned char is suppressed. However, in order to perform stable operation, the rate of occurrence of unburned char is 5%. For this purpose, it can be said that α is preferably 0.9 or less, as can be seen from FIG.

本発明においては、石炭の種類、あるいは複数の石炭を混合する場合はその混合比などを変更して、微粉炭中の固定炭素比率(FC)、微粉炭中の揮発分比率(VM)を調整すること、或いは、微粉炭比(PCR)を調整すること、また或いは、気体燃料比(GR)を調整することなど、上記の要素の1種または2種以上を調整することにより、上述の<1>式を満たすようにして、操業することにより安定した操業が可能となる。   In the present invention, the type of coal, or when mixing a plurality of coals, the mixing ratio thereof is changed to adjust the fixed carbon ratio (FC) in the pulverized coal and the volatile content ratio (VM) in the pulverized coal. Or by adjusting one or more of the above factors, such as adjusting the pulverized coal ratio (PCR), or adjusting the gaseous fuel ratio (GR). Stable operation is possible by operating so as to satisfy 1>.

気体燃料の種類は、特に限定するものではないが、天然ガスやコークス炉発生ガス、還元ガスなどが安価であり好ましい。なお、これらのガスを改質したガスでもよい。   The type of gaseous fuel is not particularly limited, but natural gas, coke oven generated gas, reducing gas, and the like are inexpensive and preferable. A gas obtained by modifying these gases may be used.

ここで、同一の羽口とは、吹き込まれた微粉炭と気体燃料とが同時に羽口前で燃焼する状況であればよく、微粉炭と気体燃料とが同一の羽口内に供給され、羽口から炉内に吹き込まれる場合を意味する。
なお、本発明においては、式<1>を満たすように、微粉炭比率(PCR)、気体燃料比率(GR)、或いは更に微粉炭の固定炭素比率(FC)および/または揮発分比率(VM)を調整することによって、羽口前での燃焼時の未撚チャーの発生量が抑制できるので、特に羽口内での微粉炭の吹き込み位置と気体燃料の吹き込み位置を限定するものはない。従って羽口内においては、微粉炭の吹き込み位置と気体燃料の吹き込み位置がほぼ同一の位置にあってもよく、或いは、微粉炭吹き込み位置が気体燃料の吹きこみ位置に対して羽口の吹き込み軸に関して、炉内方向に前後して配置されていてもよい。
Here, the same tuyere may be a situation in which the injected pulverized coal and the gaseous fuel are simultaneously burned in front of the tuyere, and the pulverized coal and the gaseous fuel are supplied into the same tuyere, and the tuyere Means to be blown into the furnace.
In the present invention, pulverized coal ratio (PCR), gaseous fuel ratio (GR), or even fixed carbon ratio (FC) and / or volatile content ratio (VM) of pulverized coal so as to satisfy the formula <1>. Since the amount of untwisted char generated during combustion in front of the tuyere can be suppressed by adjusting the, the pulverized coal blowing position and the gaseous fuel blowing position in the tuyere are not particularly limited. Accordingly, in the tuyere, the pulverized coal blowing position and the gaseous fuel blowing position may be substantially the same position, or the pulverized coal blowing position is relative to the gaseous fuel blowing position with respect to the tuyere blowing shaft. Further, they may be arranged back and forth in the furnace direction.

以下本発明を実施例により詳細に説明する。
内容積3273mを有する高炉に本発明の方法を適用した。
気体燃料として、天然ガス、コークス炉ガス(COG)、還元ガスを使用した。微粉炭は、固定炭素(FC)、揮発分(VM)の異なる3種類の石炭を使用した。定数αは、上記の実験や高炉の操業実績を勘案して、0.9とした。
実施例においては、式<1>を満たすように微粉炭比及び気体燃料比を変化させて操業を行った。
一方、比較例1〜7においては、実施例に使用したものと同じ種類の石炭の他に、固定炭素(FC)、揮発分(VM)の異なる2種類の石炭を一部の比較例において使用したが、いずれにおいても、式<1>を満たしていないものである。
実施例及び比較例とも、高炉下部通気抵抗指数および送風圧力の変動を調査した。その結果を表1に示す。ここで高炉下部通気抵抗指数KLは、ボッシュガス量VB(Nm3/min)、送風圧力PB(kg/cm2)および羽口から5.8m上方の炉腹部圧力PM(kg/cm2)をもとに、式<2>により計算した通気抵抗に関する指標である。
KL=(PB2−PM2)/VB1.7 … <2>
Hereinafter, the present invention will be described in detail with reference to examples.
The method of the present invention was applied to a blast furnace having an internal volume of 3273 m 3 .
Natural gas, coke oven gas (COG), and reducing gas were used as gaseous fuel. Three types of coal with different fixed carbon (FC) and volatile matter (VM) were used as pulverized coal. The constant α was set to 0.9 in consideration of the above experiments and the operation results of the blast furnace.
In Example 3 , the operation was performed by changing the pulverized coal ratio and the gaseous fuel ratio so as to satisfy the formula <1>.
On the other hand, in Comparative Examples 1-7, in addition to the same type of coal used in the examples, two types of coal with different fixed carbon (FC) and volatile content (VM) are used in some comparative examples. However, in either case, the formula <1> is not satisfied.
In both the examples and comparative examples, fluctuations in the blast furnace lower ventilation resistance index and the blowing pressure were investigated. The results are shown in Table 1. Here, the blast furnace lower ventilation resistance index KL is the Bosch gas amount VB (Nm 3 / min), the blowing pressure PB (kg / cm 2 ), and the furnace belly pressure PM (kg / cm 2 ) 5.8 m above the tuyere. Based on the index of airflow resistance calculated by the formula <2>.
KL = (PB 2 −PM 2 ) / VB 1.7 ... <2>

表1から判るように、本発明を適用した実施例の場合は、高炉下部通気抵抗指数や送風圧力の変動は、いずれも小さく、安定した操業となっている。
一方、式<1>を満たさず、本発明の範囲外となった比較例1〜7は、上記の高炉下部通気抵抗指数や送風圧力の変動は、実施例と比べていずれも大きく、安定した操業は行えなかった。
As can be seen from Table 1, in the case of Example 3 to which the present invention was applied, the blast furnace lower ventilation resistance index and the variation of the blowing pressure were both small and stable.
On the other hand, in Comparative Examples 1 to 7 that did not satisfy the formula <1> and were out of the scope of the present invention, the fluctuations in the blast furnace lower part ventilation resistance index and the blowing pressure were both large and stable compared to the examples. The operation was not possible.

Figure 0004714544
Figure 0004714544

吹き込んだ気体燃料比GR(kg/t)と、[(気体燃料の量GRと微粉炭の揮発分(PCR×VM)の合計)/(微粉炭の固定炭素分(PCR×VM))]との関係を示す図である。Injected gaseous fuel ratio GR (kg / t), [(total amount of gaseous fuel GR and volatile content of pulverized coal (PCR × VM)) / (fixed carbon content of pulverized coal (PCR × VM))] It is a figure which shows the relationship.

Claims (1)

高炉の炉内に同一の羽口から微粉炭と気体燃料を吹き込む操業において、気体燃料の量が下記の式を満たすようにして吹き込むことを特徴とする高炉操業方法。
GR<PCR(0.9×FC−VM) … <1>
但し、GR≧10 及び、 GR≧PCR(33/67100/67×VM)を除く
ここに、GR:気体燃料比(kg/t)
PCR:微粉炭比(kg/t)
FC:微粉炭中の固定炭素比率(質量比)
VM:微粉炭中の揮発分比率(質量比)
A method of operating a blast furnace, characterized in that in the operation of blowing pulverized coal and gaseous fuel into the furnace of a blast furnace from the same tuyere, the amount of gaseous fuel is blown so as to satisfy the following formula.
GR <PCR (0.9 × FC-VM) <1>
However, GR: Gaseous fuel ratio (kg / t) except GR ≧ 10 and GR ≧ PCR ( 33 / 67-100 / 67 × VM)
PCR: Pulverized coal ratio (kg / t)
FC: Fixed carbon ratio in pulverized coal (mass ratio)
VM: Ratio of volatile matter in pulverized coal (mass ratio)
JP2005290979A 2005-10-04 2005-10-04 Blast furnace operation method Active JP4714544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290979A JP4714544B2 (en) 2005-10-04 2005-10-04 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005290979A JP4714544B2 (en) 2005-10-04 2005-10-04 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2007100160A JP2007100160A (en) 2007-04-19
JP4714544B2 true JP4714544B2 (en) 2011-06-29

Family

ID=38027385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290979A Active JP4714544B2 (en) 2005-10-04 2005-10-04 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP4714544B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268003A (en) * 1991-02-21 1992-09-24 Nippon Steel Corp Method for operating blast furnace
JP2006152434A (en) * 2004-10-28 2006-06-15 Jfe Steel Kk Method for operating blast furnace
JP2006233332A (en) * 2005-01-31 2006-09-07 Jfe Steel Kk Method for operating blast furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268003A (en) * 1991-02-21 1992-09-24 Nippon Steel Corp Method for operating blast furnace
JP2006152434A (en) * 2004-10-28 2006-06-15 Jfe Steel Kk Method for operating blast furnace
JP2006233332A (en) * 2005-01-31 2006-09-07 Jfe Steel Kk Method for operating blast furnace

Also Published As

Publication number Publication date
JP2007100160A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP6229863B2 (en) Oxygen blast furnace operation method
JP3771728B2 (en) Blowing pulverized coal and reducing gas into the blast furnace
JP5677095B2 (en) Coal gasification reactor start-up method
JP5011702B2 (en) Blast furnace operation method
JP5522325B1 (en) Blast furnace operation method
JP2003286511A (en) Method for improving flammability of low-volatile pulverized coal in blast furnace
JP2006207009A (en) Method for operating blast furnace
JP3176680B2 (en) Blast furnace operation method
JP4992235B2 (en) Method and apparatus for injecting reducing material into blast furnace
JP5200618B2 (en) Blast furnace operation method
JP6098765B2 (en) Method of injecting pulverized coal into oxygen blast furnace
JP4714544B2 (en) Blast furnace operation method
JP4392100B2 (en) Method of injecting reducing gas into the blast furnace
KR101322903B1 (en) Apparatus for manufacturing molten iron and method for manufacturing the same
WO2018180892A1 (en) Method for operating blast furnace
JP4980110B2 (en) Blast furnace blowing pulverized coal, blast furnace blowing pulverized coal manufacturing method, and pulverized coal blowing blast furnace operating method
TWI775216B (en) Blast furnace operation method and blast furnace accessory equipment
TW202140802A (en) Blast furnace operation method and auxiliary facility for blast furnace
JP3855635B2 (en) Blast furnace operation method
JP6489060B2 (en) Blast furnace operation method
JP2020045508A (en) Operation method of blast furnace
JP2004263256A (en) Method for charging raw material into blast furnace
TWI765510B (en) Blast furnace operation method and blast furnace accessory equipment
WO2024209801A1 (en) Blast furnace operation method, and ancillary equipment
TW202428888A (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

R151 Written notification of patent or utility model registration

Ref document number: 4714544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350