JP3176680B2 - Blast furnace operation method - Google Patents

Blast furnace operation method

Info

Publication number
JP3176680B2
JP3176680B2 JP01817292A JP1817292A JP3176680B2 JP 3176680 B2 JP3176680 B2 JP 3176680B2 JP 01817292 A JP01817292 A JP 01817292A JP 1817292 A JP1817292 A JP 1817292A JP 3176680 B2 JP3176680 B2 JP 3176680B2
Authority
JP
Japan
Prior art keywords
pulverized coal
gas
blown
blast furnace
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01817292A
Other languages
Japanese (ja)
Other versions
JPH05179323A (en
Inventor
一良 山口
浩光 上野
健二 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP01817292A priority Critical patent/JP3176680B2/en
Publication of JPH05179323A publication Critical patent/JPH05179323A/en
Application granted granted Critical
Publication of JP3176680B2 publication Critical patent/JP3176680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高炉の羽口部から微粉
炭をその内部に多量に吹込むに当たり、その燃焼性を確
保してコークスに対する置換率を高め、生産性向上と燃
料比低減を図る高炉操業法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for injecting a large amount of pulverized coal into a blast furnace from the tuyere of a blast furnace. The blast furnace operation method for achieving

【0002】[0002]

【従来の技術】高炉操業においては、コークスの代替と
して安価で燃焼性が良く発熱量の高い燃料(微粉炭、石
油、重油、ナフサ等)を羽口部から吹込み、溶銑製造コ
スト低減、生産性向上を図ってきており、特公昭40−
23763号公報にはその技術が開示されている。特に
直近では、価格の点から微粉炭吹込みが主流となってお
り、燃料比低減(溶銑製造コストの低減)、生産性向上
に大きく寄与している。
2. Description of the Related Art In blast furnace operation, inexpensive, highly flammable and high calorific value fuel (pulverized coal, petroleum, heavy oil, naphtha, etc.) is blown from the tuyere as an alternative to coke to reduce hot metal production cost and production. To improve the quality,
No. 23,763 discloses the technique. Particularly recently, pulverized coal injection has become the mainstream in terms of price, which greatly contributes to a reduction in fuel ratio (reduction of hot metal production cost) and improvement in productivity.

【0003】このようにして吹込まれた微粉炭は高炉内
で一部のコークスの代わりとして燃焼し、その良好な燃
焼性と高い発熱量のために、高温で多量の還元ガスを生
成し効率的な還元反応を行なう。したがって炉頂より装
入された鉄鉱石は迅速に金属状態まで還元されるととも
に、溶融して高温の溶銑となり、全体として高炉の炉熱
を高めるため、生産性が向上する。
[0003] The pulverized coal injected in this way burns as a substitute for some coke in the blast furnace, and because of its good flammability and high calorific value, generates a large amount of reducing gas at high temperatures and is efficient. Perform a suitable reduction reaction. Therefore, the iron ore charged from the furnace top is rapidly reduced to a metallic state, and is melted into high-temperature hot metal. The furnace heat of the blast furnace is increased as a whole, so that productivity is improved.

【0004】[0004]

【発明が解決しようとする課題】ところで従来の高炉操
業において、微粉炭を多量に吹込むと、吹込んだ微粉炭
全量が燃焼せずに一部未燃チャーが発生する。この未燃
チャーは上昇ガス流に乗って炉頂より排出されるため、
微粉炭のコークスに対する置換率を低下させ、燃料比上
昇、生産量低下を引き起こす。また、この未燃チャーは
高炉炉下部中心のコークス層(炉芯と称する)に捕捉さ
れるため、この部分を流下する溶銑、滓の通液性を阻害
し、ひいてはこの部分のガスの通気性を阻害することに
なり、高炉の生産性はさらに低下する。
In the conventional blast furnace operation, if a large amount of pulverized coal is blown, the whole amount of the pulverized coal does not burn, and some unburned char is generated. Since this unburned char is discharged from the furnace top on the rising gas flow,
It lowers the replacement ratio of pulverized coal to coke, causing an increase in fuel ratio and a decrease in production. In addition, since the unburned char is trapped in the coke layer (furnace core) at the center of the lower part of the blast furnace, it impairs the liquid permeability of hot metal and slag flowing down this part, and consequently the gas permeability of this part. And the productivity of the blast furnace further decreases.

【0005】以上の理由から、微粉炭の吹込み量には上
限が存在し、操業にあたっては次に示す過剰酸素率を
1.0以上に維持している。 (過剰酸素率)=(羽口部より吹込まれる空気、純酸
素、微粉炭中の酸素量)/(微粉炭中の炭素、水素を燃
焼させてCO2 、H2 Oにするのに必要な酸素量)
For the above reasons, there is an upper limit to the amount of pulverized coal to be blown, and the following excess oxygen ratio is maintained at 1.0 or more during operation. (Excess oxygen rate) = (Air blown from the tuyere, pure oxygen, amount of oxygen in pulverized coal) / (necessary to burn carbon and hydrogen in pulverized coal to CO 2 and H 2 O) Oxygen content)

【0006】過剰酸素率が1.0以上の場合は微粉炭中
の炭素、水素が全量C+O2 =CO2 ,2H+(1/
2)O2 =H2 Oの反応によりCO2 ,H2 Oとなり、
これが全量レースウェイ内のコークスとCO2 +C=2
CO,H2 O+C=H2 +COの反応によりCO,H2
となるため、未燃チャーは発生しない。ところが過剰酸
素率が1.0未満の場合は全量がCO2 ,H2 Oになら
ず、一部C(未燃チャー)が生成する。この未燃チャー
が前述したように、置換率低下、通気不良の原因とな
る。
When the excess oxygen ratio is 1.0 or more, the total amount of carbon and hydrogen in pulverized coal is C + O 2 = CO 2 , 2H + (1 /
2) O 2 = H 2 O reacts to CO 2 , H 2 O,
This is the total amount of coke in the raceway and CO 2 + C = 2
CO, H 2 O + C = H 2 + CO, CO, H 2
Therefore, no unburned char is generated. However, when the excess oxygen ratio is less than 1.0, the entire amount does not become CO 2 and H 2 O, and a part of C (unburned char) is generated. As described above, this unburned char causes a reduction in the replacement rate and poor ventilation.

【0007】高炉の送風温度は最高1300℃程度であ
るが、送風支管側壁部よりバーナーを挿入して微粉炭を
吹込む場合は、1300℃の温度場で微粉炭の熱分解
(ガスとチャーの生成)、生成ガスの燃焼、生成チャー
の燃焼が起こる。ガスの燃焼は非常に速いが、チャーの
燃焼は遅い。そのためガスは送風支管中で燃焼をほぼ完
了するが、チャーはレースウェイ内に進入してからも燃
焼を継続する。そして過剰酸素率が1.0未満の場合は
未燃チャーが発生し、チャーの燃焼性、反応性が低いこ
とから、CO2 ,H2 Oとは反応せずにレースウェイ外
に放出されることになる。
[0007] The blast furnace has a maximum blast temperature of about 1300 ° C. However, when pulverized coal is blown into the blast furnace by inserting a burner from the side wall of the blast tube, the thermal decomposition of the pulverized coal (gas and char Generation), combustion of the generated gas, and combustion of the generated char. Gas burning is very fast, but char burning slowly. As a result, the gas almost completely burns in the ventilation duct, but the char continues burning even after entering the raceway. When the excess oxygen ratio is less than 1.0, unburned char is generated, and the char has low flammability and reactivity. Therefore, the char is released outside the raceway without reacting with CO 2 and H 2 O. Will be.

【0008】過剰酸素率が1.0のときの微粉炭吹込み
量は、高炉の燃料比が500kg/tのとき、170k
g/t程度であり、この量が吹込み限界である。すなわ
ち、この値が高炉生産量、燃料比の限界であり、これ以
上の生産性向上、燃料比低減は望めない。そこで本発明
は、微粉炭を170kg/t以上吹込んでも未燃チャー
を発生させずにその燃焼性を確保し、コークスに対する
置換率を高くしても、生産量、燃料比を維持することを
可能とする方法を提供することを目的とする。
When the excess oxygen ratio is 1.0, the pulverized coal injection amount is 170 kPa when the fuel ratio of the blast furnace is 500 kg / t.
g / t, which is the blowing limit. That is, this value is the limit of blast furnace production and fuel ratio, and further improvement in productivity and reduction in fuel ratio cannot be expected. Therefore, the present invention aims to secure the flammability of unburned char even when pulverized coal is blown at 170 kg / t or more, and to maintain the production amount and the fuel ratio even if the replacement ratio for coke is increased. The purpose is to provide a method that enables it.

【0009】[0009]

【課題を解決するための手段】本発明は、前記目的を達
成するために、羽口部から微粉炭を高炉の内部に吹込む
高炉操業法において、吹込みバーナーを2重管とし、2
重管の内管より燃料ガスを、外管より微粉炭を吹込む
ともに、外管より吹込まれる微粉炭の送風支管内放出位
置における雰囲気温度が1500〜2000℃となるよ
うに燃料ガス吹込み量を調整すること特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a blast furnace operating method in which pulverized coal is blown into a blast furnace from a tuyere by using a double-pipe burner.
When fuel gas is injected from the inner pipe of the heavy pipe and pulverized coal is injected from the outer pipe
Both are characterized in that the fuel gas injection amount is adjusted such that the ambient temperature at the discharge position of the pulverized coal blown from the outer pipe into the air blowing branch pipe is 1500 to 2000 ° C.

【0010】[0010]

【作用】本発明においては、送風支管側壁部より挿入す
るバーナーを2重管とし、2重管の内管より燃料ガスを
吹込み、外管より微粉炭を吹込む。2重管の内管より吹
込まれた燃料ガスの燃焼熱により、外管より吹込まれる
微粉炭の放出位置における雰囲気温度が1500〜20
00℃となるように、燃料ガス吹込み量を調整する。1
500℃以上の高温場では微粉炭の熱分解が急速に起こ
り、通常の1300℃の場合よりも燃焼速度が大きいガ
スの生成量が増加する(すなわちチャーの生成量が減少
する)とともに、生成したチャーも膨張し、その燃焼速
度が大きくなる。
In the present invention, the burner inserted from the side wall of the blower branch pipe is a double pipe, and fuel gas is blown from the inner pipe of the double pipe and pulverized coal is blown from the outer pipe. Due to the heat of combustion of the fuel gas blown from the inner pipe of the double pipe, the ambient temperature at the discharge position of the pulverized coal blown from the outer pipe becomes 1500 to 20
The fuel gas injection amount is adjusted so as to be 00 ° C. 1
In a high-temperature field of 500 ° C. or more, pyrolysis of pulverized coal occurs rapidly, and the amount of generated gas having a higher combustion rate than that of normal 1300 ° C. increases (that is, the amount of generated char decreases). The char also expands, increasing its burning rate.

【0011】したがって、生成量の増加したガスは送風
支管中で燃焼をほぼ完了するとともに、送風支管中での
チャーの燃焼量も多くなり、レースウェイ内に進入する
チャーの量が減少する。さらに、このチャーは燃焼性、
反応性が高いので、CO2 ,H2 Oと容易に反応して、
CO2 +C=2CO、H2 O+C=H2 +COの反応に
よりCO,H2 となるため、過剰酸素率が1.0未満の
場合でも未燃チャーは発生しない。すなわち、未燃チャ
ーはすべてレースウェイ内で消滅し、炉頂よりの排出、
炉芯内への捕捉がない。このため、コークスに対する置
換率の低下、通気不良は起こらない。
[0011] Therefore, the gas whose generation amount is increased substantially completes combustion in the blower branch pipe, the amount of char combustion in the blower branch pipe increases, and the amount of char entering the raceway decreases. In addition, this char is flammable,
Because of its high reactivity, it easily reacts with CO 2 and H 2 O,
Since CO and H 2 are formed by the reaction of CO 2 + C = 2CO and H 2 O + C = H 2 + CO, no unburned char is generated even when the excess oxygen rate is less than 1.0. In other words, all unburned chars disappear in the raceway, and are discharged from the furnace top,
There is no capture in the furnace core. For this reason, the replacement rate of coke does not decrease and poor ventilation does not occur.

【0012】前記微粉炭の放出位置における雰囲気温度
が1500℃未満の場合は、前述した燃焼速度が大きい
ガスの生成量増加(チャーの生成量減少)、並びに生成
したチャーの膨張による燃焼速度増大が起こらず、効果
が少ない。雰囲気温度が1500℃以上の場合は、温度
が高いほど効果は大きいが、次に述べる理由により20
00℃以下に制限される。すなわち燃料ガスの吹込み量
が大きくなり過ぎ、この燃料ガスの燃焼にも酸素が必要
であることから、微粉炭の過剰酸素率が大きく低下し、
未燃チャーが発生するようになるためである。雰囲気温
度の計算には、次の式を用いることができるが、実際に
測温してもよい。
If the ambient temperature at the pulverized coal discharge position is less than 1500 ° C., the above-described increase in the amount of gas with a high combustion rate (decrease in the amount of char generation) and the increase in the combustion rate due to expansion of the generated char will occur. It does not occur and has little effect. When the ambient temperature is 1500 ° C. or higher, the effect is higher as the temperature is higher.
Limited to 00 ° C or less. That is, the injection amount of the fuel gas becomes too large, and since the combustion of the fuel gas also requires oxygen, the excess oxygen ratio of the pulverized coal is significantly reduced,
This is because unburned chars are generated. The following equation can be used for calculating the ambient temperature, but the temperature may be actually measured.

【0013】(雰囲気温度;℃)={(燃料ガス発熱
量;kcal/Nm3 )×(燃料ガス吹込み量;Nm3
/分)+(送風量;Nm3 )×(送風温度;℃)×0.
345}/[{(燃料ガス燃焼排ガス量;Nm3 /分)
+(送風量;Nm3 /分)}×0.360]
(Atmospheric temperature; ° C.) = {(Calorific value of fuel gas; kcal / Nm 3 ) × (fuel gas blowing amount; Nm 3
/ Min) + (air volume; Nm 3 ) x (air temperature; ° C) x 0.
345 ° / [{(fuel gas combustion exhaust gas amount; Nm 3 / min)
+ (Blowing amount; Nm 3 /min)}×0.360]

【0014】(燃料ガス燃焼排ガス量;Nm3 /分)=
(燃料ガス吹込み量;Nm3 /分)×{(ガス中C量;
kg/Nm3 )×(22.4/12)+(ガス中H量;
kg/Nm3 )×(22.4/2)}
(Fuel gas combustion exhaust gas amount; Nm 3 / min) =
(Fuel gas injection amount; Nm 3 / min) × {(C amount in gas;
kg / Nm 3 ) × (22.4 / 12) + (H content in gas;
kg / Nm 3 ) × (22.4 / 2)}

【0015】また燃料ガスとしては、発熱量の高いガス
なら何でもよく、天然ガス(LNG)、コークス炉ガス
(COG)、プロパンガス(LPG)などを使用するこ
とができる。
As the fuel gas, any gas having a high calorific value may be used, and natural gas (LNG), coke oven gas (COG), propane gas (LPG) and the like can be used.

【0016】さらに2重管バーナーの内管より燃料ガス
を吹込み、外管より微粉炭を吹込む方法を採用している
理由は、外管より燃料ガスを吹込むと、燃料ガスの燃焼
により酸素を消費し、酸素不足のガスが内管より吹込ま
れた微粉炭を包囲し、微粉炭燃焼に必要な酸素が非常に
不足して未燃チャーが発生するためである。
Further, the reason why the method of injecting fuel gas from the inner pipe of the double pipe burner and pulverized coal from the outer pipe is adopted is that when the fuel gas is blown from the outer pipe, the fuel gas is burned. This is because oxygen is consumed, and oxygen-deficient gas surrounds the pulverized coal blown from the inner pipe, and the oxygen required for pulverized coal combustion is extremely insufficient, and unburned char is generated.

【0017】[0017]

【実施例】以下、実施例により本発明の特徴を具体的に
説明する。なお、表1に操業結果を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The features of the present invention will be specifically described below with reference to embodiments. Table 1 shows the operation results.

【0018】[0018]

【表1】 [Table 1]

【0019】実施例1 送風温度1300℃、過剰酸素率=0.70で微粉炭2
00kg/tを吹込むに当たり、2重管バーナーの内管
より天然ガスを吹込み、外管より微粉炭を吹込んだ操業
であり、天然ガス(発熱量=9600kcal/Nm
3 、ガス中C量=0.62kg/Nm3 、ガス中H量=
0.19kg/Nm3 )吹込み量は75〜100Nm3
/分(計算雰囲気温度1600〜1700℃)である。
Example 1 Pulverized coal 2 at a blast temperature of 1300 ° C. and an excess oxygen ratio of 0.70
At the time of blowing 00 kg / t, natural gas was blown from the inner pipe of the double pipe burner and pulverized coal was blown from the outer pipe, and natural gas (calorific value = 9600 kcal / Nm)
3 , C content in gas = 0.62kg / Nm 3 , H content in gas =
0.19kg / Nm 3 ) 75-100Nm 3
/ Min (calculated atmospheric temperature: 1600-1700 ° C.).

【0020】実施例2 送風温度1300℃、過剰酸素率=0.70で微粉炭2
00kg/tを吹込むに当たり、2重管バーナーの内管
よりコークス炉ガスを吹込み、外管より微粉炭を吹込ん
だ操業であり、コークス炉ガス(発熱量=4750kc
al/Nm3 、ガス中C量=0.23kg/Nm3 、ガ
ス中H量=0.11kg/Nm3 )吹込み量は110〜
160Nm3 /分(計算雰囲気温度1600〜1700
℃)である。コークス炉ガスのみを吹込んだときに、熱
電対を挿入してガス温度を測定し、雰囲気温度が計算値
と同様に1500〜1600℃であることを確認した。
Example 2 Pulverized coal 2 at a blast temperature of 1300 ° C. and an excess oxygen ratio = 0.70
When blowing 00 kg / t, the coke oven gas was blown from the inner pipe of the double pipe burner and pulverized coal was blown from the outer pipe, and the coke oven gas (calorific value = 4750 kc)
al / Nm 3 , C content in gas = 0.23 kg / Nm 3 , H content in gas = 0.11 kg / Nm 3 )
160 Nm 3 / min (calculated atmospheric temperature 1600 to 1700
° C). When only the coke oven gas was blown, a thermocouple was inserted to measure the gas temperature, and it was confirmed that the ambient temperature was 1500 to 1600 ° C. in the same manner as the calculated value.

【0021】実施例3 送風温度1300℃、過剰酸素率=0.70で微粉炭2
00kg/tを吹込むに当たり、2重管バーナーの内管
よりプロパンガスを吹込み、外管より微粉炭を吹込んだ
操業であり、プロパンガス(発熱量=21800kca
l/Nm3 、ガス中C量=1.61kg/Nm3 、ガス
中H量=0.36kg/Nm3 )吹込み量は60〜75
Nm3 /分(計算雰囲気温度1900〜2000℃)で
ある。
Example 3 Pulverized coal 2 at a blast temperature of 1300 ° C. and an excess oxygen ratio = 0.70
At the time of injecting 00 kg / t, the operation is such that propane gas is blown from the inner pipe of the double pipe burner and pulverized coal is blown from the outer pipe, and propane gas (calorific value = 21800 kca)
1 / Nm 3 , C content in gas = 1.61 kg / Nm 3 , H content in gas = 0.36 kg / Nm 3 )
Nm 3 / min (calculated atmospheric temperature 1900 to 2000 ° C.).

【0022】実施例4 送風温度1300℃、過剰酸素率=0.70で微粉炭2
00kg/tを吹込むに当たり、2重管バーナーの内管
より天然ガスを吹込み、外管より微粉炭を吹込んだ操業
であり、天然ガス(発熱量=9600kcal/Nm
3 、ガス中C量=0.62kg/Nm3 、ガス中H量=
0.19kg/Nm3 )吹込み量は10〜125Nm3
/分(計算雰囲気温度1700〜1800℃)である。
Example 4 Pulverized coal 2 at a blast temperature of 1300 ° C. and an excess oxygen ratio of 0.70
At the time of blowing 00 kg / t, natural gas was blown from the inner pipe of the double pipe burner and pulverized coal was blown from the outer pipe, and natural gas (calorific value = 9600 kcal / Nm)
3 , C content in gas = 0.62kg / Nm 3 , H content in gas =
0.19 kg / Nm 3 ) Blowing amount is 10 to 125 Nm 3
/ Min (calculated atmospheric temperature 1700-1800 ° C.).

【0023】実施例5 送風温度1300℃、過剰酸素率=0.70で微粉炭2
00kg/tを吹込むに当たり、2重管バーナーの内管
よりプロパンガスを吹込み、外管より微粉炭を吹込んだ
操業であり、プロパンガス(発熱量=21800kca
l/Nm3 、ガス中C量=1.61kg/Nm3 、ガス
中H量=0.36kg/Nm3 )吹込み量は55〜60
Nm3 /分(計算雰囲気温度1800〜1900℃)で
ある。
Example 5 Pulverized coal 2 at a blast temperature of 1300 ° C. and an excess oxygen ratio of 0.70
At the time of injecting 00 kg / t, the operation is such that propane gas is blown from the inner pipe of the double pipe burner and pulverized coal is blown from the outer pipe, and propane gas (calorific value = 21800 kca)
1 / Nm 3 , C content in gas = 1.61 kg / Nm 3 , H content in gas = 0.36 kg / Nm 3 ) The blowing amount is 55-60
Nm 3 / min (calculated atmospheric temperature 1800 to 1900 ° C.).

【0024】比較例1は送風温度1300℃、過剰酸素
率=0.70で微粉炭200kg/tを吹込み時、燃料
ガスを吹込んでいない場合であり、実施例1〜5に比べ
ると、高炉の通風性を示す送風圧力が高く、出銑量が少
なく、燃料比が高い。また比較例2は送風温度1300
℃、過剰酸素率=1.0で微粉炭170kg/t吹き込
み時に、燃料ガスを吹込んでいない場合であり、実施例
1〜5に比べると、送風圧力はほぼ同じであるが、出銑
量が少なく、燃料比が高い。
Comparative Example 1 is a case where the fuel gas was not blown when pulverized coal was blown at a blowing temperature of 1300 ° C. and an excess oxygen rate = 0.70 and 200 kg / t was blown. The blowing pressure, which indicates the ventilation, is high, the tapping amount is small, and the fuel ratio is high. Comparative Example 2 has a blowing temperature of 1300.
° C, excess oxygen rate = 1.0, when pulverized coal is blown at 170 kg / t, and no fuel gas is blown. Compared with Examples 1 to 5, the blowing pressure is almost the same, but the tapping amount is Low, high fuel ratio.

【0025】[0025]

【発明の効果】以上説明したように、本発明において
は、微粉炭を多量に吹込んだときに発生する未燃チャー
をレースウェイ内で消滅させるために、微粉炭とともに
燃料ガスを吹込む。これによって置換率低下、通気不良
を回避し、生産性向上、燃料比低減を図ることができ
て、安定した溶銑供給が可能となる。
As described above, in the present invention, fuel gas is blown together with pulverized coal in order to eliminate unburned char generated when a large amount of pulverized coal is blown in the raceway. As a result, it is possible to avoid a decrease in the replacement rate and poor ventilation, improve the productivity, and reduce the fuel ratio, thereby enabling a stable hot metal supply.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−11608(JP,A) 特開 平4−268003(JP,A) 特公 昭63−32842(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C21B 5/00 319 C21B 7/00 309 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-11608 (JP, A) JP-A-4-268003 (JP, A) JP-B-63-32842 (JP, B1) (58) Field (Int. Cl. 7 , DB name) C21B 5/00 319 C21B 7/00 309

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 羽口部から微粉炭を高炉の内部に吹込む
高炉操業法において、吹込みバーナーを2重管とし、2
重管の内管より燃料ガスを、外管より微粉炭を吹込むと
ともに、外管より吹込まれる微粉炭の送風支管内放出位
置における雰囲気温度が1500〜2000℃となるよ
うに燃料ガス吹込み量を調整することを特徴とする高炉
操業法。
In a blast furnace operating method in which pulverized coal is blown into a blast furnace from a tuyere, a blowing burner is double-pipe.
When fuel gas is injected from the inner pipe of the heavy pipe and pulverized coal is injected from the outer pipe
In both cases, the discharge position of the pulverized coal blown from the outer pipe into the air duct
The ambient temperature in the place will be 1500-2000 ° C
A blast furnace operating method characterized by adjusting the amount of fuel gas injected .
JP01817292A 1992-01-06 1992-01-06 Blast furnace operation method Expired - Fee Related JP3176680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01817292A JP3176680B2 (en) 1992-01-06 1992-01-06 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01817292A JP3176680B2 (en) 1992-01-06 1992-01-06 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH05179323A JPH05179323A (en) 1993-07-20
JP3176680B2 true JP3176680B2 (en) 2001-06-18

Family

ID=11964197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01817292A Expired - Fee Related JP3176680B2 (en) 1992-01-06 1992-01-06 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP3176680B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098714A1 (en) 2011-01-18 2012-07-26 Jfeスチール株式会社 Blast furnace operation method
WO2015029424A1 (en) 2013-08-28 2015-03-05 Jfeスチール株式会社 Method for operating blast furnace

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI277654B (en) * 2005-01-31 2007-04-01 Jfe Steel Corp Method for operating blast furnace
JP5070706B2 (en) * 2005-01-31 2012-11-14 Jfeスチール株式会社 Blast furnace operation method
JP4984396B2 (en) * 2005-01-31 2012-07-25 Jfeスチール株式会社 Blast furnace operation method
US7837928B2 (en) 2007-01-16 2010-11-23 U.S. Steel Canada Inc. Apparatus and method for injection of fluid hydrocarbons into a blast furnace
JP2011168885A (en) * 2010-01-19 2011-09-01 Jfe Steel Corp Blast furnace operation method
JP2011168886A (en) * 2010-01-19 2011-09-01 Jfe Steel Corp Blast furnace operation method
JP5824813B2 (en) * 2010-01-19 2015-12-02 Jfeスチール株式会社 Blast furnace operation method
JP5824812B2 (en) * 2010-01-19 2015-12-02 Jfeスチール株式会社 Blast furnace operation method
JP5824811B2 (en) * 2010-01-19 2015-12-02 Jfeスチール株式会社 Blast furnace operation method
JP5699833B2 (en) * 2011-07-08 2015-04-15 Jfeスチール株式会社 Blast furnace operation method
JP6258039B2 (en) 2014-01-07 2018-01-10 新日鐵住金株式会社 Blast furnace operation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098714A1 (en) 2011-01-18 2012-07-26 Jfeスチール株式会社 Blast furnace operation method
WO2015029424A1 (en) 2013-08-28 2015-03-05 Jfeスチール株式会社 Method for operating blast furnace

Also Published As

Publication number Publication date
JPH05179323A (en) 1993-07-20

Similar Documents

Publication Publication Date Title
JP3176680B2 (en) Blast furnace operation method
TWI481721B (en) Blast furnace operation method
JP5824810B2 (en) Blast furnace operation method
JP3771728B2 (en) Blowing pulverized coal and reducing gas into the blast furnace
KR101559386B1 (en) Method for operating blast furnace
JP5522325B1 (en) Blast furnace operation method
JP2016222949A (en) Method for operating oxygen blast furnace
JP4992235B2 (en) Method and apparatus for injecting reducing material into blast furnace
JPH04268003A (en) Method for operating blast furnace
WO2018180892A1 (en) Method for operating blast furnace
JP4720260B2 (en) Method and apparatus for injecting reducing material into blast furnace
JPS591606A (en) Method of raising hot blast temperature
JP5824812B2 (en) Blast furnace operation method
JP4392100B2 (en) Method of injecting reducing gas into the blast furnace
JP4077584B2 (en) Method of injecting fuel gas into a waste melting furnace
JPH06128614A (en) Operation of blast furnace
JP2933809B2 (en) Operating method of moving bed type scrap melting furnace
JP3964963B2 (en) Pulverized coal injection method in blast furnace
JPH08260010A (en) Operation for blowing large quanty of pulverized coal in blast furnace
JPH05271723A (en) Method for operating blast furnace
JPH11241108A (en) Method for injecting pulverized fine coal into blast furnace
JPH06108125A (en) Operation of blast furnace
JP2020020012A (en) Pig-iron manufacturing facility and method for manufacturing pig-iron using the same
JP5824811B2 (en) Blast furnace operation method
JP2627232B2 (en) Blast furnace operation method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010321

LAPS Cancellation because of no payment of annual fees