JP5070706B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP5070706B2
JP5070706B2 JP2006020311A JP2006020311A JP5070706B2 JP 5070706 B2 JP5070706 B2 JP 5070706B2 JP 2006020311 A JP2006020311 A JP 2006020311A JP 2006020311 A JP2006020311 A JP 2006020311A JP 5070706 B2 JP5070706 B2 JP 5070706B2
Authority
JP
Japan
Prior art keywords
reducing material
ratio
gas
pulverized coal
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006020311A
Other languages
Japanese (ja)
Other versions
JP2006233332A (en
Inventor
亮太 村井
道貴 佐藤
達郎 有山
伸二 長谷川
昭夫 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006020311A priority Critical patent/JP5070706B2/en
Publication of JP2006233332A publication Critical patent/JP2006233332A/en
Application granted granted Critical
Publication of JP5070706B2 publication Critical patent/JP5070706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高炉羽口から微粉炭や合成樹脂材と、天然ガス等メタンを主成分とする気体還元材を吹込む高炉操業方法に関する。   The present invention relates to a blast furnace operation method in which pulverized coal, a synthetic resin material, and a gas reducing material mainly composed of methane such as natural gas are blown from a blast furnace tuyere.

銑鉄を製造する高炉で還元材として用いられるコークスは、原料として高価な強粘結炭を必要とし、またその製造設備であるコークス炉の建設、運転、補修等の費用を必要とするため、一般に高価である。このため高炉におけるコークスの使用量低減による銑鉄製造コストの削減が望まれている。   Coke, which is used as a reducing material in blast furnaces that produce pig iron, generally requires expensive strong caking coal as a raw material, and costs for construction, operation, repair, etc. of the coke oven that is its production equipment. Expensive. For this reason, reduction of the pig iron manufacturing cost by reduction of the usage-amount of coke in a blast furnace is desired.

上記の目的を達成するため、コークスに比較して安価な微粉炭の多量使用や、廃棄物に含まれる合成樹脂材を高炉の還元材として使用することが行われている。
しかし、これら微粉炭や合成樹脂材等の固体状の還元材(以降、固体還元剤と称す)は一般に燃焼速度が遅く、未燃チャー等の未燃物が生成し、粉として高炉内に蓄積して高炉の安定操業を阻害するという問題があった。
そこで着火・燃焼の速い気体状の還元材を同時に吹込み、前述の固体還元材の燃焼を促進する手段が提案されている。
In order to achieve the above object, a large amount of pulverized coal, which is cheaper than coke, or a synthetic resin material contained in waste is used as a reducing material for a blast furnace.
However, solid reducing materials such as pulverized coal and synthetic resin materials (hereinafter referred to as solid reducing agents) generally have a slow burning rate, and unburned char and other unburned materials are generated and accumulated as powder in the blast furnace. As a result, there was a problem that the stable operation of the blast furnace was hindered.
In view of this, there has been proposed means for simultaneously injecting a gaseous reducing material that is ignited and burned to promote combustion of the solid reducing material.

たとえば、特許文献1には、ブローパイプから供給される熱風温度を810℃以上に調整し、粉体燃料(近年、高炉へ投入される石炭、コークス類は鉄鉱石の還元剤としての役割を果たすことから「燃料」から「還元材」と呼ぶようになっているため固体還元材と称する。)を吹込み管と平行してガス燃料(前述の理由により、以後「気体還元材」と称する。)吹込み管を配設し、固体還元材と気体還元材の混焼を行わせつつ高炉内へ吹込むことにより固体還元材の燃焼性を改善する技術が開示されている。
特公平1−29847号公報
For example, in Patent Document 1, the temperature of hot air supplied from a blow pipe is adjusted to 810 ° C. or higher, and powder fuel (coal and cokes that are thrown into a blast furnace in recent years serve as a reducing agent for iron ore. Therefore, the term “fuel” is referred to as “reducing material”, so that it is referred to as “solid reducing material”. In parallel with the blowing pipe, gas fuel (hereinafter referred to as “gas reducing material” for the reasons described above). ) A technique for improving the combustibility of the solid reducing material by disposing a blowing pipe and blowing it into the blast furnace while co-firing the solid reducing material and the gas reducing material is disclosed.
Japanese Patent Publication No. 1-289847

特許文献1においては、気体還元材の燃焼熱を利用して固体還元材の昇温を促進し固体還元材の急速燃焼を行なわせることができるとしているが(特許文献1の第2頁第4欄第29行〜33行参照)、固体還元材と気体還元材の吹込み比に関する情報は不明確と言わざるを得ず、いかなる吹込み比の場合に燃焼性が改善されるかについて知ることができない。   In Patent Document 1, it is stated that the heat of combustion of the gas reducing material can be used to accelerate the temperature rise of the solid reducing material, and the solid reducing material can be rapidly burned (page 2, page 2, page 4 of Patent Document 1). Column 29-33), the information about the blowing ratio of the solid reducing material and the gaseous reducing material must be unclear, and know what kind of blowing ratio the flammability is improved. I can't.

そこで、発明者らは、固体還元材と気体還元材の吹込み比にかかわらず燃焼性を改善できるかという観点から特許文献1に開示された技術をさまざまな実験により検証した。その結果、固体還元材と気体還元材の吹込み比にかかわらず燃焼性を改善するには気体還元材の燃焼熱を固体還元材に伝える必要があり、そのためには気体還元材の燃焼火炎と固体還元材の接触性が重要であることが分かった。   Therefore, the inventors have verified the technique disclosed in Patent Document 1 through various experiments from the viewpoint of whether the combustibility can be improved regardless of the blowing ratio of the solid reducing material and the gas reducing material. As a result, in order to improve combustibility regardless of the blowing ratio of the solid reducing material and the gas reducing material, it is necessary to transfer the combustion heat of the gas reducing material to the solid reducing material. It was found that the contact of the solid reducing material is important.

そして、この接触性を確保するには、特許文献1の実施例にあるような同芯型ランス(固体還元材の吹込み管の外周部に気体還元材の吹込み管を配設して気体還元材の燃焼火炎が固体還元材の流線を包み込むような構造にしたランス)を用いて吹込むか、あるいは別々のランスからそれぞれ固体還元材と気体還元材を吹込む場合には、それぞれのランスから噴出する固体流と気体流が良く接触するように極めて注意深くランスの位置、方向を調整する必要が生じることが明らかになった。   In order to ensure this contactability, a concentric lance as in the example of Patent Document 1 (a gas reducing material blowing pipe is provided on the outer periphery of the solid reducing material blowing pipe to provide gas If the reducing flame is burned using a lance structured so that the combustion flame of the reducing material wraps around the streamline of the solid reducing material, or if the solid reducing material and the gaseous reducing material are blown from separate lances, It became clear that it was necessary to adjust the position and direction of the lance very carefully so that the solid flow ejected from the lance was in good contact with the gas flow.

ところで、吹込みランスはブローパイプと呼ばれる高炉の送風管を貫通して設置する必要があるため、その外径は小さいことが望まれ、吹込みランスの外径が大きいとそれだけ大きな穴を送風管に開ける必要があるが、送風管の強度や耐熱性に著しい悪影響を与えることになる。
したがって、外径が大きくなる同芯型のランスは実験炉などでは可能であるが、24時間連続操業を続ける実際の製造設備で使用することは実質的に困難である。
By the way, since the blowing lance needs to be installed through a blast furnace blast pipe called a blow pipe, its outer diameter is desired to be small. However, it will have a significant adverse effect on the strength and heat resistance of the air duct.
Therefore, a concentric lance with an increased outer diameter can be used in an experimental furnace or the like, but it is substantially difficult to use in an actual manufacturing facility that is continuously operated for 24 hours.

また、複数のランスから固体還元材、気体還元材を別々に吹込み、その流線を接触させる実験を行ったが、やはり困難であった。つまり、実機においてランスの位置、角度を適切に調整することはかなり困難であり、たとえ適切に調整しえたとしても、熱風の流速、固体および気体還元材の突出速度などが脈動したり、製造設備の細かな振動によりランス位置が変化したりするため、常時流線を接触状態に保つことは困難であった。
そして、流線が接触状態から外れると、固体還元材の燃焼性は低下し未燃分が多量に発生し通気性悪化や吹き抜け現象など好ましく無い影響が現れた。
In addition, an experiment was conducted in which a solid reducing material and a gaseous reducing material were separately blown from a plurality of lances and the streamlines were contacted, but it was still difficult. In other words, it is quite difficult to properly adjust the position and angle of the lance in the actual machine. Even if it can be adjusted properly, the flow rate of hot air, the protruding speed of the solid and gas reducing material pulsate, etc. Since the lance position changes due to minute vibrations, it is difficult to keep the streamline in contact at all times.
When the streamline is out of contact, the combustibility of the solid reducing material is reduced, and a large amount of unburned matter is generated, resulting in undesirable effects such as deterioration of air permeability and blow-through phenomenon.

ここで吹き抜けとは、還元性ガスの流れが止まり炉内の圧力が上昇し、一定の圧力に達したとき、爆発的に還元性ガスの上昇が再開される現象を指している。このような場合、ガス流れの再開と同時に炉内の装入物がガスに同伴されて移動するため、層状に堆積された装入物の分布が乱れることになる。装入物の分布が乱れると、通気性がさらに悪化したり、酸化鉄の還元不良等を生じるため、高炉操業に極めて悪い影響を与えるのみならず、圧力の上昇により高炉炉体への機械的ダメージを与えたり、急激に高温ガスが噴出することによる諸設備への熱的悪影響も懸念される。   Here, blow-through refers to a phenomenon in which the flow of reducing gas explosively resumes when the flow of reducing gas stops and the pressure in the furnace rises and reaches a certain pressure. In such a case, since the charge in the furnace moves along with the resumption of the gas flow, the distribution of the charge deposited in layers is disturbed. If the distribution of the charge is disturbed, the air permeability will be further deteriorated and the reduction of iron oxide will be reduced. This will not only have a very bad influence on the operation of the blast furnace, but also the mechanical pressure on the blast furnace body due to the increase in pressure. There is also concern about the thermal adverse effects on various facilities due to damage or rapid hot gas ejection.

以上のように特許文献1においては、固体還元材と気体還元材の吹込み比に関する情報は示されておらず、いかなる吹き込み量にすることで燃焼性の改善に効果的であるかが不明である。
また、固体還元材と気体還元材の吹込み比によらず燃焼性を改善しようとすると特許文献1に示されたような特殊なランスが必要となり、実機においての実施が困難である。
As described above, in Patent Document 1, information on the blowing ratio between the solid reducing material and the gas reducing material is not shown, and it is unclear whether any blowing amount is effective in improving the combustibility. is there.
Moreover, if it is going to improve combustibility irrespective of the blowing ratio of a solid reducing material and a gas reducing material, the special lance as shown by patent document 1 is needed, and implementation in an actual machine is difficult.

本発明は、このような従来技術の課題を解決するためになされたものであり、気体還元材と固体還元材の吹込み比の適正範囲を明確にすることにより、固体還元材と気体還元材との混焼において燃焼性を改善すると共に実機においても実現可能な高炉操業方法を提供することを目的としている。   The present invention has been made to solve such problems of the prior art, and by clarifying the appropriate range of the blowing ratio of the gas reducing material and the solid reducing material, the solid reducing material and the gas reducing material are clarified. The purpose is to provide a blast furnace operation method that can improve the combustibility in the co-firing with the blast furnace and can also be realized in an actual machine.

上記の目的を達成するため、発明者らは、固体還元材の燃焼促進手段として、固体還元材と気体還元材の流線の接触状態に依存しない輻射燃焼について検討した。その理由は、固体還元材と気体還元材の流線の接触状態に依存しないでも燃焼が促進できる輻射燃焼を利用した燃焼形態であれば、接触燃焼、輻射燃焼を問わず燃焼一般における燃焼性の改善が図れるからである。
詳細は以下の通りである。
In order to achieve the above object, the inventors examined radiant combustion that does not depend on the contact state of the stream line of the solid reducing material and the gaseous reducing material as a means for promoting combustion of the solid reducing material. The reason for this is that if the combustion mode uses radiant combustion that can accelerate combustion without depending on the contact state of the streamline of the solid reducing material and the gaseous reducing material, the flammability in general combustion regardless of contact combustion or radiant combustion. This is because improvement can be achieved.
Details are as follows.

一般に黒体面(すべての電磁波エネルギーを吸収、放射する理想的面)からの熱放射のエネルギーEはステファン・ボルツマンの法則に従い、定数σと絶対温度Tにより、
E=σ・T (W/m) ・ ・ ・ (式1)
で表される。
今、気体還元材の燃焼生成物による高温輻射を考えているからCO、HOおよびNなど混合気の放射率をεとすれば利用可能な熱放射エネルギーE*は、
E*= ε・σ・T (W/m) ・ ・ ・ (式2)
で表されることになる。
このように熱放射のエネルギーは温度の4乗に比例して変化するので、熱放射エネルギーは温度の影響が非常に大きい。
そこで、熱放射のエネルギーを利用して固体還元材の燃焼促進を図るには、気体還元材の火炎温度を制御することが重要であることが分かる。
In general, the energy E of thermal radiation from the black body surface (the ideal surface that absorbs and radiates all electromagnetic energy) follows Stefan-Boltzmann's law and is expressed by the constant σ and the absolute temperature T.
E = σ · T 4 (W / m 2 ) (1)
It is represented by
Since we are now considering high-temperature radiation from the combustion product of the gas reducing material, if the emissivity of the air-fuel mixture such as CO 2 , H 2 O and N 2 is ε, the available thermal radiation energy E * is
E * = ε · σ · T 4 (W / m 2 ) (2)
It will be represented by
As described above, the energy of thermal radiation changes in proportion to the fourth power of the temperature. Therefore, the thermal radiation energy is very influenced by the temperature.
Therefore, it is understood that it is important to control the flame temperature of the gas reducing material in order to promote the combustion of the solid reducing material using the energy of thermal radiation.

また、放射率εの値は温度等によって変化するもののおおむねCO2で0.06、H2Oで0.05程度の値であり、CO2の方がやや大きい値となる。したがって、特許文献1では水素の燃焼速度が速いため気体還元材としては水素が最も有利であると述べられているが、熱放射のエネルギーを考慮すると、メタン(CH4)などCO2を生成する還元材が有利と言える。   In addition, the value of emissivity ε varies depending on the temperature or the like, and is generally about 0.06 for CO 2 and about 0.05 for H 2 O, and CO 2 is a slightly larger value. Therefore, Patent Document 1 states that hydrogen is the most advantageous gas reducing material because of its high hydrogen combustion rate, but considering the energy of thermal radiation, a reducing material that generates CO2 such as methane (CH4). Can be said to be advantageous.

上述のように気体還元材の火炎温度を制御することが重要であることが分かったので、熱風気流中での気体還元材の燃焼火炎温度について検討を行なった。以下においては気体還元材としてメタンガスを用いた。
支燃材(酸素)とメタンを充分に混合後に着火し、燃焼が生じるいわゆる予混合燃焼では、燃焼反応が平均的に生じるためその燃焼温度は理論火炎温度(断熱系を仮定してエンタルピー収支と物質収支により決まる平均温度)に近い値になり、計算により求めることも可能であるが、熱風気流中にランスからメタンを噴出させて燃焼させる場合はいわゆる拡散燃焼となり、必ずしも理論火炎温度とは等しくならない。ここで言う拡散燃焼とは、以下のようなものをいう。ランスから噴出する気体還元材流は、ランスを頂点とする円錐形となる。円錐の内部には支燃材は存在しないため燃焼反応は進行せず、円錐の外周表層部で熱風と混合した気体還元材が燃焼を開始する。その後円錐内部に向かって火炎が拡散・伝播して行く。これを拡散燃焼という。
As described above, it has been found that it is important to control the flame temperature of the gas reducing material. Therefore, the combustion flame temperature of the gas reducing material in the hot air stream was examined. In the following, methane gas was used as the gas reducing material.
In so-called premixed combustion, in which combustion is generated after the support material (oxygen) and methane are sufficiently mixed and ignited, the combustion reaction occurs on average, so the combustion temperature is the theoretical flame temperature (assuming an adiabatic system and an enthalpy balance). It is close to the average temperature determined by the mass balance, and it is possible to obtain it by calculation. However, when methane is ejected from the lance into the hot air stream and burned, it becomes so-called diffusion combustion, which is not necessarily equal to the theoretical flame temperature. Don't be. As used herein, diffusion combustion refers to the following. The gas reducing material flow ejected from the lance has a conical shape with the lance at the apex. Since there is no combustion support material inside the cone, the combustion reaction does not proceed, and the gas reducing material mixed with hot air at the outer peripheral surface of the cone starts burning. The flame then diffuses and propagates toward the inside of the cone. This is called diffusion combustion.

このように、熱風気流中にランスからメタンを噴出させて燃焼させる場合は拡散燃焼になるため、その燃焼温度は単なる断熱平均温度にはならない。そこで、火炎温度を実測して求めることとした。具体的には以下に示すようにした。
図2に示すような、実機の高炉の羽口1本分を再現できる燃焼試験装置を用いて火炎温度の実測を行なった。送風温度は1200℃に固定し、送風量は300Nm/hrとし、メタンの吹込み比を0〜100kg/t-p(単位kg/t-pは、銑鉄1トン当たりのガスの吹込み量を示す)の範囲で変化させた。火炎温度はランス先端から100mmおよび200mm下流において放射温度計により側面観察窓から実測した。
In this way, when methane is jetted from a lance into a hot air stream and burned, diffusion combustion occurs, so the combustion temperature is not simply an adiabatic average temperature. Therefore, the flame temperature was determined by actual measurement. Specifically, it was as shown below.
The flame temperature was measured using a combustion test apparatus capable of reproducing one tuyere of a real blast furnace as shown in FIG. The blowing temperature is fixed at 1200 ° C., the blowing amount is 300 Nm 3 / hr, and the methane blowing ratio is 0 to 100 kg / tp (unit kg / tp indicates the blowing amount of gas per ton of pig iron) Varyed in range. The flame temperature was measured from the side observation window with a radiation thermometer at 100 mm and 200 mm downstream from the tip of the lance.

メタンの吹込み量については式3に示す換算式により時間当たり吹込み量から、銑鉄1トン当たりの吹込み量に変換した。
Gas.R=(V/Vb)×Vg×(Mg/C) ・ ・ ・ (式3)
ただし、
Gas.R:銑鉄1トンあたりメタン吹込み量 (kg-gas/t-p)
V:送風原単位(銑鉄を1トン製造するために必要な送風量)(Nm-air/t-p)
Vb:時間当たり送風量(Nm-air/hr)
Vg:時間当たりメタン吹込み量(Nm-gas/hr)
Mg:メタン分子量(=16)(kg-gas/kmol-gas)
C:メタンの体積をモル数に変換する係数(=22.4)(Nm-gas/kmol-gas)
The amount of methane blown was converted from the amount blown per hour into the amount blown per ton of pig iron by the conversion formula shown in Equation 3.
Gas.R = (V / Vb) × Vg × (Mg / C) (3)
However,
Gas.R: Methane injection volume per ton of pig iron (kg-gas / tp)
V: Basic unit of air flow (the amount of air required to produce 1 ton of pig iron) (Nm 3 -air / tp)
Vb: Air flow per hour (Nm 3 -air / hr)
Vg: Methane blowing rate per hour (Nm 3 -gas / hr)
Mg: Molecular weight of methane (= 16) (kg-gas / kmol-gas)
C: Coefficient for converting the volume of methane to the number of moles (= 22.4) (Nm 3 -gas / kmol-gas)

火炎温度の実測結果を図3に示す。同図には熱放射エネルギーの計算値、微粉炭の燃焼率を同時に示している。熱放射エネルギーは1200℃の場合の熱放射エネルギー(E*1200)を1とした場合の相対値(E*/E*1200)を示す。微粉炭の燃焼率はガス火炎の燃焼温度測定終了後に100kg/t-pの吹込み比で吹込みガスと混焼させ、未燃ダストを捕集し、その燃焼率を実測したものである。燃焼率の実測方法は下記の参考文献に記載の方法で測定をおこなった。
参考文献:Advanced pulverized coal injection
technology and blast furnace operation:Edited by K.Ishii, ELSEVIER 2000、P.68)
The actual measurement result of the flame temperature is shown in FIG. The figure shows the calculated value of thermal radiation energy and the combustion rate of pulverized coal at the same time. The thermal radiation energy indicates a relative value (E * / E * 1200) when the thermal radiation energy (E * 1200) at 1200 ° C. is 1. The burning rate of pulverized coal is obtained by co-firing with blowing gas at the blowing ratio of 100 kg / tp after the measurement of the combustion temperature of the gas flame, collecting unburned dust, and measuring the burning rate. The measurement method of the burning rate was measured by the method described in the following reference.
Reference: Advanced pulverized coal injection
technology and blast furnace operation: Edited by K.Ishii, ELSEVIER 2000, P.68)

図3に示されるように、火炎温度はガス吹込み比の増大とともに上昇し、ガス吹込み比が18kg/t-p以上でほぼ一定値となることが分かった。これに対応して、火炎からの熱放射エネルギーもガス吹込み比の増大とともに増大するが、式1および式2で示したように温度の4乗に比例して増大するためその傾きは極めて大きいものとなっている。この放射エネルギーを受けて微粉炭の燃焼性は改善されることになる。   As shown in FIG. 3, it was found that the flame temperature increased with an increase in the gas injection ratio, and became a substantially constant value when the gas injection ratio was 18 kg / tp or more. Correspondingly, the heat radiation energy from the flame increases as the gas injection ratio increases, but as shown in Equations 1 and 2, it increases in proportion to the fourth power of the temperature, so the slope is very large. It has become a thing. The combustibility of pulverized coal is improved by receiving this radiant energy.

微粉炭の燃焼率はガス吹込み比が10kg/t-p以上でほぼ一定値となった。微粉炭の燃焼は揮発成分の燃焼が先行して生じ、その後固定炭素分が燃焼するが、このうち熱供給律速反応は揮発分の放出とその燃焼反応であり、ガス吹込み比が10kg/t-p以上では熱放射エネルギーはまだ上昇をつづけるが、微粉炭の揮発分を燃焼させるに充分な熱量が供給されたため微粉炭の燃焼率は一定となったと考えられる。言いかえれば、微粉炭の燃焼率をさらに上昇させるためには、熱放射エネルギーの供給ではなく、固定炭素と酸素との接触を増大させるような工夫が必要になるものと考えられる。
いずれにしても、微粉炭の燃焼性向上のためにはガス吹込み比は10kg/t-p以上が望ましい。
The combustion rate of pulverized coal was almost constant when the gas injection ratio was 10 kg / tp or more. Combustion of pulverized coal occurs with the combustion of volatile components first, followed by combustion of fixed carbon. Among these, the heat supply rate-limiting reaction is the release of volatile components and the combustion reaction, and the gas injection ratio is 10 kg / tp. In the above, the thermal radiation energy continues to rise, but it is considered that the combustion rate of pulverized coal became constant because sufficient heat was supplied to burn the volatile matter of pulverized coal. In other words, in order to further increase the combustion rate of pulverized coal, it is considered that a device for increasing the contact between fixed carbon and oxygen is required instead of supplying heat radiation energy.
In any case, in order to improve the combustibility of pulverized coal, the gas injection ratio is desirably 10 kg / tp or more.

ガス吹込み比を増大させていくと、図4に示すように、75kg/t-p以上で火炎温度は低下し始めた。これは前述のように燃焼は円錐状のガス流の表層のみで生じ、この面積は吹込み比を増大させてもそれほどは増大しない一方で、ガス吹込み比を増大させたことで常温のガスが冷却剤として働くためと考えられる。燃焼温度が低下しても燃焼率は維持されるが、放射エネルギーE*/E*1200が6を割り込むガス吹込み比80kg/t-p以上では微粉炭の燃焼率は低下を始めた。
したがって、気体還元材の吹込み比は10乃至80kg/t-pが適切な範囲と結論できる
As the gas blowing ratio was increased, the flame temperature began to drop at 75 kg / tp or higher as shown in FIG. As described above, combustion occurs only in the surface layer of the conical gas flow, and this area does not increase so much even if the blowing ratio is increased, but the gas blowing ratio is increased so that the gas at normal temperature is increased. Is considered to work as a coolant. Although the combustion rate is maintained even when the combustion temperature is lowered, the combustion rate of pulverized coal started to decrease at a gas injection ratio of 80 kg / tp or more where the radiant energy E * / E * 1200 is less than 6.
Therefore, it can be concluded that the blowing ratio of the gas reducing material is an appropriate range of 10 to 80 kg / tp.

次に本発明の微粉炭吹込み比の上下限について検討する。下限値については特に重要な制約は無いが、微粉炭吹込み比が50kg/t-p以下であれば図5に示すように、微粉炭単独吹込み時と気体還元材と微粉炭の同時吹込み時の微粉炭燃焼率はほぼ同一となった。通常、微粉炭は常温で吹き込まれるか場合により予熱して吹き込まれるが、予熱される場合でも石炭の熱分解温度(概ね400℃)以下の温度であり、熱風(概ね1200℃)に比較して低温である。したがって微粉炭の吹込み比が多い場合には、吹込み直後の雰囲気温度が微粉炭により冷却され大きく低下するため、微粉炭の燃焼が著しく遅れることとなる。このため、気体還元材を同時に吹き込むことにより、気体還元材の燃焼の結果生じる熱放射エネルギーが微粉炭の燃焼を促進する。一方で微粉炭の吹込み比が少ない場合には、熱風による熱供給のみで充分に微粉炭の着火燃焼を誘引できる条件にあることがわかる。このように微粉炭吹込み比が50kg/t-p以下であれば微粉炭は充分に燃焼させることが容易であることから、本発明を適用するまでも無く高い燃焼率を得ることができ、したがって高価なコークスを低減しつつ経済的な操業が可能である。   Next, the upper and lower limits of the pulverized coal injection ratio of the present invention will be examined. The lower limit is not particularly important, but if the pulverized coal injection ratio is 50 kg / tp or less, as shown in FIG. 5, when pulverized coal is injected alone and when the gas reducing material and pulverized coal are injected simultaneously The pulverized coal combustion rate was almost the same. Normally, pulverized coal is blown at room temperature or preheated depending on the case, but even when preheated, the temperature is below the pyrolysis temperature of coal (approximately 400 ° C), compared to hot air (approximately 1200 ° C). It is low temperature. Therefore, when the blowing ratio of pulverized coal is large, the ambient temperature immediately after the blowing is cooled by the pulverized coal and greatly decreases, so that the combustion of the pulverized coal is remarkably delayed. For this reason, the thermal radiant energy which arises as a result of combustion of a gas reducing material accelerates combustion of pulverized coal by blowing a gas reducing material simultaneously. On the other hand, when the blowing ratio of the pulverized coal is small, it can be seen that the ignited combustion of the pulverized coal can be sufficiently induced only by supplying heat with hot air. Thus, if the pulverized coal injection ratio is 50 kg / tp or less, the pulverized coal can be easily burned sufficiently, so that a high combustion rate can be obtained without applying the present invention, and therefore it is expensive. Economical operation is possible while reducing coke.

一方、上限については後述の実機試験の結果から150kg/t-pであることが明らかとなった。実機で本発明を検証するための試験を実施したところ微粉炭吹込み比量が150kg/t-pを超えると吹き抜け現象が急増した。これは、本発明により微粉炭の燃焼効率を60mass%から70mass%に引き上げたとはいえ、依然として吹込み微粉炭のうち、30mass%は未燃物として炉内部に入り、蓄積することによるものと推定される。   On the other hand, the upper limit was found to be 150 kg / t-p from the results of actual machine tests described later. When a test for verifying the present invention was carried out with an actual machine, the blow-through phenomenon increased rapidly when the pulverized coal injection ratio exceeded 150 kg / t-p. It is estimated that although the combustion efficiency of pulverized coal was increased from 60 mass% to 70 mass% according to the present invention, 30 mass% of the injected pulverized coal still enters the furnace as unburned matter and accumulates. Is done.

上記の実験では、吹込み固体還元材として微粉炭のみを対象としたが、微粉炭と合成樹脂材を混合して吹込んでも同様の結果を得た。その他に、微粒化した合成樹脂、微粒化した木材チップなどや、これらの混合物を用いてもよい。
本発明で用いる合成樹脂は、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、塩化ビニル、ポリビニルアルコール、セルロイド等のC、H、Oを主体としたプラスチックであり、廃棄物のリサイクル利用を推進する観点からは、使用済みプラスチックを用いることが特に好ましい。
In the above experiment, only pulverized coal was targeted as the blown solid reducing material, but similar results were obtained even when pulverized coal and synthetic resin material were mixed and blown. In addition, you may use the atomized synthetic resin, the atomized wood chip, etc., and a mixture thereof.
The synthetic resin used in the present invention is a plastic mainly composed of C, H, O such as polypropylene, polyethylene, polystyrene, polyethylene terephthalate, vinyl chloride, polyvinyl alcohol, and celluloid, and from the viewpoint of promoting recycling of waste. It is particularly preferable to use used plastic.

使用済みプラスチックとは、一般家庭からゴミとして排出されるプラスチック製品や、工場等でのプラスチックの製造・加工時に生じる屑や不良品(産業廃棄物)等であり、プラスチック以外の異物(金属、紙、その他の無機物および有機物)が付着もしくは混入しているプラスチック類を含むものである。このような使用済みプラスチック(廃プラスチック)の具体例としては、プラスチックボトル、プラスチック袋、プラスチック包み、プラスチックフィルム、プラスチックトレイ、プラスチックカップ、磁気カード、磁気テープ、ICカード、フレキシブルコンテナ、プリント基板、プリントシート、電線被覆材、事務機器または家電製品用ボディーおよびフレーム、化粧合板、パイプ、ホース、合成繊維および衣料、プラスチック成型ペレット、ウレタン材、梱包用シート、梱包用バンド、梱包用クッション材、電気用部品、玩具、文房具、トナー、自動車用部品(例えば、内装品、バンパー)、自動車または家電製品等のシュレッダーダスト、イオン交換樹脂、合成紙、合成樹脂接着樹剤、合成樹脂塗料、固形化燃料(廃棄プラスチック減容物)等が例示され、これらを廃棄物としての状態のまま、あるいは必要に応じて所定の処理を施したものを利用することができる。また、これら使用済みプラスチックと製品プラスチックとの混合物を利用してもよい。   Used plastics are plastic products that are discharged as garbage from ordinary households, and scraps and defective products (industrial waste) that are produced when manufacturing and processing plastics at factories, etc., and foreign materials other than plastic (metal, paper, etc.) , Other inorganic substances and organic substances) are included. Specific examples of such used plastics (waste plastics) include plastic bottles, plastic bags, plastic wraps, plastic films, plastic trays, plastic cups, magnetic cards, magnetic tapes, IC cards, flexible containers, printed boards, and printed boards. Sheets, wire coverings, bodies and frames for office equipment or household appliances, decorative plywood, pipes, hoses, synthetic fibers and clothing, plastic molded pellets, urethane materials, packing sheets, packing bands, packing cushions, electrical Parts, toys, stationery, toner, automotive parts (for example, interior parts, bumpers), shredder dust for automobiles and home appliances, ion exchange resin, synthetic paper, synthetic resin adhesive resin, synthetic resin paint, solid fuel ( Plastic waste Description thereof) and the like are exemplified, can be utilized that performs a predetermined process according those in the remains as waste, or necessary. Moreover, you may utilize the mixture of these used plastics and product plastics.

また、上記の実験では、気体還元材としてメタンガスを用いたが、液化天然ガス(LNG)、都市ガス、液化石油ガス(LPG)、コークスガス(COG)、水素ガス吹込みでも同様の結果を得た。もっとも、前述の式2に示した放射率の高いCOからの熱放射を考えると、ドライベースの元素分析で、炭素を50mass%以上含有したメタン、液化天然ガス、都市ガス、液化石油ガス、コークスガス等の炭素を含有する還元材であれば、さらに好ましい。また、これらのガスは、工業的にも入手が容易である。
なお、水素ガスは、熱放射の面でCOに比べて、不利であり、純粋な水素ガスは、工業的にも入手が困難である。
特に、入手が容易なガスとしてたとえば液化天然ガスや、都市ガスが望ましく、これらはメタンを主成分(概ねメタン80体積%以上)とすることが多い。
In the above experiment, methane gas was used as the gas reducing material. However, similar results were obtained with liquefied natural gas (LNG), city gas, liquefied petroleum gas (LPG), coke gas (COG), and hydrogen gas injection. It was. However, considering the thermal radiation from CO 2 having a high emissivity shown in Equation 2 above, methane containing 50 mass% or more of carbon, liquefied natural gas, city gas, liquefied petroleum gas, A reducing material containing carbon such as coke gas is more preferable. These gases are also easily available industrially.
Hydrogen gas is disadvantageous compared to CO 2 in terms of heat radiation, and pure hydrogen gas is difficult to obtain industrially.
In particular, liquefied natural gas and city gas are desirable as readily available gas, and these often have methane as a main component (generally 80% by volume or more of methane).

本発明は、上述した固体還元材と気体還元材の同時吹込みによる固体還元材の燃焼促進機構の解明と、これに基づく種々の実験に基づいてなされ、上述した問題点を解消したものである。   The present invention has been made on the basis of the elucidation of the combustion promotion mechanism of the solid reducing material by simultaneous injection of the above-described solid reducing material and gas reducing material, and various experiments based on this, and has solved the above-described problems. .

(1)本発明に係る高炉操業方法は、羽口から補助還元材として気体還元材及び固体還元材を吹込む高炉操業方法において、前記気体還元材として、CH4を主成分とするガス、液化石油ガス(LPG)、コークスガス(COG)を用い、該気体還元材の吹込み比を10乃至80kg/t-pとし、かつ固体還元材の吹込み比を50乃至150kg/t-pに調整して吹込むことを特徴とするものである。
なお、ここで言う補助還元材は、羽口から吹き込まれる還元材であって、気体還元材と固体還元材の総称である。気体還元材と固体還元剤は、常温常圧で、それぞれ気体と固体の物質であって、羽口から還元材として吹き込まれるものである。
(1) A blast furnace operating method according to the present invention is a blast furnace operating method in which a gas reducing material and a solid reducing material are blown from a tuyere as an auxiliary reducing material. As the gas reducing material , a gas containing CH4 as a main component, liquefied petroleum gas (LPG), using coke gas (COG), a blowing ratio of the gas reducing material and 10 to 80 kg / tp, and the blowing is adjusted to blow ratio of 50 to 150 kg / tp of the solid reducing agent It is characterized by.
The auxiliary reducing material referred to here is a reducing material blown from the tuyere and is a general term for a gas reducing material and a solid reducing material. The gas reducing material and the solid reducing agent are gas and solid substances at normal temperature and pressure, respectively, and are blown as a reducing material from the tuyere.

(2)また、上記(1)に記載のものにおいて、固体還元材として微粉炭及び/または合成樹脂材を用いることを特徴とするものである。
なお、ここで言う微粉炭は、羽口から吹き込まれる石炭粉で、その粒度は、一般的に75μm以下程度のものが、使用される。
(2) Further, in the above (1), pulverized coal and / or a synthetic resin material is used as the solid reducing material.
In addition, the pulverized coal said here is the coal powder blown from a tuyere, and the particle size generally uses about 75 micrometers or less.

(3)さらに、上記(1)または(2)に記載のものにおいて、ドライベースの元素分析で、炭素を50mass%以上含有した気体還元材を用いることを特徴とするものである。 (3) Further, in the above (1) or (2), a gas reducing material containing 50 mass% or more of carbon is used in the dry base elemental analysis.

本発明においては、羽口から補助還元材として気体還元材、及び固体還元材を吹込む高炉操業方法において、気体還元材の吹込み比を10乃至80kg/t-pとし、かつ固体還元材の吹込み比を50乃至150kg/t-pに調整して吹込むようにしたので、固体還元材と気体還元材の吹込み比の組み合わせの全てについて実験や数値シミュレーションをすることなしに最適吹込み条件を決定することができ、高価なコークス使用量を削減して銑鉄製造コストを低減できる。   In the present invention, in the blast furnace operating method in which the gas reducing material and the solid reducing material are blown from the tuyere as the auxiliary reducing material, the blowing ratio of the gas reducing material is set to 10 to 80 kg / t-p, and Since the blowing ratio is adjusted to 50 to 150 kg / tp, the optimum blowing conditions are determined without performing experiments or numerical simulations for all combinations of the blowing ratios of the solid reducing material and the gas reducing material. It is possible to reduce the cost of pig iron production by reducing the amount of expensive coke used.

図1は本実施の形態に係る高炉操業方法の実施に使用した高炉及びその周辺設備の概要の説明図である。
本実施の形態に使用した高炉及びその周辺設備は、図1に示すように、内容積が3223mである高炉1の送風管2を貫通して微粉炭吹込みランス3、合成樹脂材吹込みランス4、気体還元材吹込みランス5が設置されている。
また、本実施の形態において用いた微粉炭、合成樹脂材、気体還元材の各分析値は表1に示す通りである。また、用いた気体還元材の構成分子分析値を表2に示す。
FIG. 1 is an explanatory view of the outline of a blast furnace and its peripheral equipment used for carrying out the blast furnace operating method according to the present embodiment.
As shown in FIG. 1, the blast furnace used in the present embodiment and its peripheral equipment penetrate through the blow pipe 2 of the blast furnace 1 having an internal volume of 3223 m 3 and pulverized coal blowing lance 3 and synthetic resin material blowing. A lance 4 and a gas reducing material blowing lance 5 are installed.
The analysis values of the pulverized coal, the synthetic resin material, and the gas reducing material used in the present embodiment are as shown in Table 1. In addition, Table 2 shows the constituent molecular analysis values of the gas reducing material used.

Figure 0005070706
Figure 0005070706

Figure 0005070706
Figure 0005070706

以下に述べる実施例においては、様々な吹込み条件下で羽口から補助還元材として気体還元材及び固体還元材を吹込む高炉操業方法を実施し、気体還元材の吹込み比量を10〜80kg/t-pの範囲とし、かつ固体還元材の吹込み比を50〜150kg/t-pの範囲とした複数の例を実施例として表3および4に示した。   In the examples described below, a blast furnace operating method in which a gas reducing material and a solid reducing material are injected as auxiliary reducing materials from the tuyere under various blowing conditions is performed, and the blowing ratio amount of the gas reducing material is set to 10 to 10. A plurality of examples in which the range of 80 kg / tp is set and the blowing ratio of the solid reducing material is in the range of 50 to 150 kg / tp are shown in Tables 3 and 4 as examples.

Figure 0005070706
Figure 0005070706

Figure 0005070706
Figure 0005070706

また、気体還元材の吹込み比及び/または固体還元材の吹込み比が上記本発明の範囲を外れた例を比較例として表5および6に示した。   Examples where the blowing ratio of the gas reducing material and / or the blowing ratio of the solid reducing material deviated from the scope of the present invention are shown in Tables 5 and 6 as comparative examples.

Figure 0005070706
Figure 0005070706

Figure 0005070706
Figure 0005070706

なお、高炉の操業を安定して行なうためには、羽口先の断熱理論温度が2000℃程度の値で一定とすることが重要であるため、各送風条件に応じて酸素富化率の調整を行なった。このとき、高炉への酸素の供給量を一定(すなわち銑鉄の生産速度一定)となるように送風量を調整した。酸素富化率の高い実施例においては送風量が減少する。   In addition, in order to stably operate the blast furnace, it is important that the theoretical heat insulation temperature at the tuyere is constant at a value of about 2000 ° C. Therefore, the oxygen enrichment rate should be adjusted according to each blowing condition. I did it. At this time, the amount of blast was adjusted so that the amount of oxygen supplied to the blast furnace was constant (that is, the production rate of pig iron was constant). In an embodiment with a high oxygen enrichment rate, the air flow rate is reduced.

ここで微粉炭の置換率については、還元材の吹込み無しでのコークス比が499kg/t-pであったことと、気体還元材および合成樹脂材の置換率を便宜上1.0に固定することにより、下式4により算出した。厳密には置換率は還元材の種類によって異なるが、複数種類の還元材の置換率をそれぞれ分離して算出することは極めて困難である。便宜的に微粉炭以外の置換率を固定し、複数種類の還元材の置換率を微粉炭の置換率で代表させたことになるが、最終的に合計の還元材比を低減することが目的であることを考慮すれば、このような置換率算出方法は簡便法として有効と考えられる。   Here, regarding the substitution rate of pulverized coal, the coke ratio without injection of reducing material was 499 kg / tp, and the substitution rate of gas reducing material and synthetic resin material was fixed at 1.0 for convenience. Calculated according to Equation 4. Strictly speaking, the replacement rate varies depending on the type of the reducing material, but it is extremely difficult to calculate the replacement rates of a plurality of types of reducing materials separately. For convenience, the substitution rate other than pulverized coal is fixed, and the substitution rate of multiple types of reducing materials is represented by the substitution rate of pulverized coal, but the goal is to ultimately reduce the total reducing material ratio Therefore, such a substitution rate calculation method is considered to be effective as a simple method.

Figure 0005070706
Figure 0005070706

実施例1は気体還元材C(メタン)比を20kg/t-p、微粉炭比を70kg/t-pとした場合を示す。微粉炭の置換率は0.71と高く吹込み還元材によりコークスを有効に低減できていると言える。   Example 1 shows the case where the gas reducing material C (methane) ratio is 20 kg / t-p and the pulverized coal ratio is 70 kg / t-p. The substitution rate of pulverized coal is as high as 0.71, and it can be said that coke can be effectively reduced by the blowing reducing material.

実施例2は気体還元材C比を20kg/t-p、微粉炭比を70kg/t-pおよび合成樹脂材比を30kg/t-pとした場合を示す。固体還元材の吹込み比としては100kg/t-pであり、本発明の範囲内であるため、微粉炭の置換率は0.70と高く吹込み還元材によりコークスを有効に低減できていると言える。   Example 2 shows a case where the gas reducing material C ratio is 20 kg / t-p, the pulverized coal ratio is 70 kg / t-p, and the synthetic resin material ratio is 30 kg / t-p. The blowing ratio of the solid reducing material is 100 kg / tp, which is within the scope of the present invention, so that the substitution rate of pulverized coal is as high as 0.70, and it can be said that coke can be effectively reduced by the blowing reducing material. .

実施例3は気体還元材C比を40kg/t-p、微粉炭比を120kg/t-pとした場合を示す。微粉炭の置換率は0.71と高く吹込み還元材によりコークスを有効に低減できていると言える。   Example 3 shows a case where the gas reducing material C ratio is 40 kg / t-p and the pulverized coal ratio is 120 kg / t-p. The substitution rate of pulverized coal is as high as 0.71, and it can be said that coke can be effectively reduced by the blowing reducing material.

実施例4は気体還元材C比を60kg/t-p、微粉炭比を120kg/t-pおよび合成樹脂材比を20kg/t-pとした場合を示す。固体還元材の吹込み比としては140kg/t-pであり、本発明の範囲内であるため、微粉炭の置換率は0.70と高く吹込み還元材によりコークスを有効に低減できていると言える。   Example 4 shows a case where the gas reducing material C ratio is 60 kg / t-p, the pulverized coal ratio is 120 kg / t-p, and the synthetic resin material ratio is 20 kg / t-p. Since the blowing ratio of the solid reducing material is 140 kg / tp, which is within the scope of the present invention, the substitution rate of pulverized coal is as high as 0.70, and it can be said that coke can be effectively reduced by the blowing reducing material. .

実施例5は気体還元材A比を20kg/t-p、微粉炭比を50kg/t-pとした場合を示す。微粉炭の置換率は0.72と高く吹込み還元材によりコークスを有効に低減できていると言える。   Example 5 shows a case where the gas reducing material A ratio is 20 kg / t-p and the pulverized coal ratio is 50 kg / t-p. The substitution rate of pulverized coal is as high as 0.72, and it can be said that coke can be effectively reduced by the blowing reduction material.

実施例6は気体還元材A比を20kg/t-p、微粉炭比を70kg/t-pおよび合成樹脂材比を30kg/t-pとした場合を示す。固体還元材の吹込み比としては100kg/t-pであり、本発明の範囲内であるため、微粉炭の置換率は0.73と高く吹込み還元材によりコークスを有効に低減できていると言える。   Example 6 shows a case where the gas reducing material A ratio is 20 kg / t-p, the pulverized coal ratio is 70 kg / t-p, and the synthetic resin material ratio is 30 kg / t-p. The blowing ratio of the solid reducing material is 100 kg / t-p, which is within the scope of the present invention, so that the substitution rate of pulverized coal is as high as 0.73, and it can be said that coke can be effectively reduced by the blowing reducing material.

実施例7は気体還元材A比を40kg/t-p、微粉炭比を100kg/t-pとした場合を示す。微粉炭の置換率は0.73と高く吹込み還元材によりコークスを有効に低減できていると言える。   Example 7 shows a case where the gas reducing material A ratio is 40 kg / t-p and the pulverized coal ratio is 100 kg / t-p. The substitution rate of pulverized coal is as high as 0.73, and it can be said that coke can be effectively reduced by the blowing reducing material.

実施例8は気体還元材A比を60kg/t-p、微粉炭比を120kg/t-pおよび合成樹脂材比を20kg/t-pとした場合を示す。固体還元材の吹込み比としては140kg/t-pであり、本発明の範囲内であるため、微粉炭の置換率は0.72と高く吹込み還元材によりコークスを有効に低減できていると言える。   Example 8 shows the case where the gas reducing material A ratio is 60 kg / t-p, the pulverized coal ratio is 120 kg / t-p, and the synthetic resin material ratio is 20 kg / t-p. The blowing ratio of the solid reducing material is 140 kg / t-p, which is within the scope of the present invention, so that the substitution rate of pulverized coal is as high as 0.72, and it can be said that coke can be effectively reduced by the blowing reducing material.

実施例9は気体還元材B比を50kg/t-p、微粉炭比を100kg/t-pおよび合成樹脂材比を20kg/t-pとした場合を示す。固体還元材の吹込み比としては120kg/t-pであり、本発明の範囲内であるため、微粉炭の置換率は0.74と高く吹込み還元材によりコークスを有効に低減できていると言える。   Example 9 shows a case where the gas reducing material B ratio is 50 kg / t-p, the pulverized coal ratio is 100 kg / t-p, and the synthetic resin material ratio is 20 kg / t-p. Since the blowing ratio of the solid reducing material is 120 kg / t-p, which is within the scope of the present invention, the substitution rate of pulverized coal is as high as 0.74, and it can be said that coke can be effectively reduced by the blowing reducing material.

実施例10は気体還元材B比を40kg/t-p、微粉炭比を70kg/t-pおよび合成樹脂材比を40kg/t-pとした場合を示す。固体還元材の吹込み比としては110kg/t-pであり、本発明の範囲内であるため、微粉炭の置換率は0.73と高く吹込み還元材によりコークスを有効に低減できていると言える。   Example 10 shows a case where the gas reducing material B ratio is 40 kg / t-p, the pulverized coal ratio is 70 kg / t-p, and the synthetic resin material ratio is 40 kg / t-p. The blowing ratio of the solid reducing material is 110 kg / t-p, which is within the scope of the present invention, so that the substitution rate of pulverized coal is as high as 0.73, and it can be said that coke can be effectively reduced by the blowing reducing material.

実施例11は気体還元材A比を10kg/t-p、微粉炭比を140kg/t-pとした場合を示す。微粉炭の置換率は0.72と高く吹込み還元材によりコークスを有効に低減できていると言える。   Example 11 shows a case where the gas reducing material A ratio is 10 kg / t-p and the pulverized coal ratio is 140 kg / t-p. The substitution rate of pulverized coal is as high as 0.72, and it can be said that coke can be effectively reduced by the blowing reduction material.

実施例12は気体還元材B比を10kg/t-p、微粉炭比を100kg/t-pおよび合成樹脂材比を40kg/t-pとした場合を示す。固体還元材の吹込み比としては140kg/t-pであり、本発明の範囲内であるため、微粉炭の置換率は0.73と高く吹込み還元材によりコークスを有効に低減できていると言える。   Example 12 shows a case where the gas reducing material B ratio is 10 kg / t-p, the pulverized coal ratio is 100 kg / t-p, and the synthetic resin material ratio is 40 kg / t-p. The blowing ratio of the solid reducing material is 140 kg / t-p, which is within the scope of the present invention, so that the substitution rate of pulverized coal is as high as 0.73, and it can be said that coke can be effectively reduced by the blowing reducing material.

実施例13は気体還元材C比を10kg/t-p、微粉炭比を120kg/t-pとした場合を示す。微粉炭の置換率は0.73と高く吹込み還元材によりコークスを有効に低減できていると言える。   Example 13 shows a case where the gas reducing material C ratio is 10 kg / t-p and the pulverized coal ratio is 120 kg / t-p. The substitution rate of pulverized coal is as high as 0.73, and it can be said that coke can be effectively reduced by the blowing reducing material.

実施例14は気体還元材A比を20kg/t-p、気体還元材B比を20kg/t-p、気体還元材C比を20kg/t-p、微粉炭比を50kg/t-pおよび合成樹脂材比を30kg/t-pとした場合を示す。気体還元材の吹込み比としては60kg/t-pであり、固体還元材の吹込み比としては80kg/t-pであり、本発明の範囲内であるため、微粉炭の置換率は0.72と高く吹込み還元材によりコークスを有効に低減できていると言える。   Example 14 has a gas reducing material A ratio of 20 kg / tp, a gas reducing material B ratio of 20 kg / tp, a gas reducing material C ratio of 20 kg / tp, a pulverized coal ratio of 50 kg / tp, and a synthetic resin material ratio of 30 kg / tp. Shows the case. The blowing ratio of the gas reducing material is 60 kg / tp, and the blowing ratio of the solid reducing material is 80 kg / tp, which is within the scope of the present invention, so the substitution rate of pulverized coal is as high as 0.72. It can be said that coke can be effectively reduced by the reducing material.

一方、比較例1は気体還元材C比を5kg/t-p、微粉炭比を100kg/t-pとした場合を示す。気体還元材比が小さく本発明の範囲外であり微粉炭の置換率は0.59と低く、吹込み還元材によりコークスを有効に低減できていないと言える。
比較例2は気体還元材C比を30kg/t-p、微粉炭比を160kg/t-pとした場合を示す。固体還元材比が大きすぎ、本発明の範囲外であり微粉炭の置換率は0.53と低く、吹込み還元材によりコークスを有効に低減できていないと言える。
On the other hand, Comparative Example 1 shows a case where the gas reducing material C ratio is 5 kg / tp and the pulverized coal ratio is 100 kg / tp. The ratio of the gas reducing material is small and outside the scope of the present invention, and the substitution rate of pulverized coal is as low as 0.59.
Comparative Example 2 shows a case where the gas reducing material C ratio is 30 kg / tp and the pulverized coal ratio is 160 kg / tp. The solid reducing material ratio is too large, outside the scope of the present invention, and the substitution rate of pulverized coal is as low as 0.53, and it can be said that coke cannot be effectively reduced by the blowing reducing material.

比較例3は気体還元材C比を15kg/t-p、微粉炭比を120kg/t-pおよび合成樹脂材比を40kg/t-pとした場合を示す。固体還元材比が合計160kg/t-pと大きすぎ、本発明の範囲外であり微粉炭の置換率は0.52と低く、吹込み還元材によりコークスを有効に低減できていないと言える。
比較例4は気体還元材C比を100kg/t-p、微粉炭比を100kg/t-pとした場合を示す。気体還元材比が大きすぎ、本発明の範囲外であり微粉炭の置換率は0.53と低く、吹込み還元材によりコークスを有効に低減できていないと言える。
Comparative Example 3 shows a case where the gas reducing material C ratio is 15 kg / tp, the pulverized coal ratio is 120 kg / tp, and the synthetic resin material ratio is 40 kg / tp. The solid reducing material ratio is too large as a total of 160 kg / tp, which is outside the scope of the present invention and the substitution rate of pulverized coal is as low as 0.52, and it can be said that coke can not be effectively reduced by the blowing reducing material.
Comparative Example 4 shows a case where the gas reducing material C ratio is 100 kg / tp and the pulverized coal ratio is 100 kg / tp. The gas reducing material ratio is too large, outside the scope of the present invention, and the substitution rate of pulverized coal is as low as 0.53, and it can be said that coke cannot be effectively reduced by the blowing reducing material.

比較例5は気体還元材A比を5kg/t-p、微粉炭比を60kg/t-pとした場合を示す。気体還元材比が小さく本発明の範囲外であり微粉炭の置換率は0.57と低く、吹込み還元材によりコークスを有効に低減できていないと言える。   Comparative Example 5 shows a case where the gas reducing material A ratio is 5 kg / t-p and the pulverized coal ratio is 60 kg / t-p. The gas reducing material ratio is small and out of the scope of the present invention, and the substitution rate of pulverized coal is as low as 0.57, and it can be said that coke cannot be effectively reduced by the blowing reducing material.

比較例6は気体還元材A比を30kg/t-p、微粉炭比を160kg/t-pとした場合を示す。固体還元材比が大きすぎ、本発明の範囲外であり微粉炭の置換率は0.56と低く、吹込み還元材によりコークスを有効に低減できていないと言える。   Comparative Example 6 shows a case where the gas reducing material A ratio is 30 kg / t-p and the pulverized coal ratio is 160 kg / t-p. The solid reducing material ratio is too large, which is outside the scope of the present invention, and the substitution rate of pulverized coal is as low as 0.56, and it can be said that coke cannot be effectively reduced by the blowing reducing material.

比較例7は気体還元材A比を20kg/t-p、微粉炭比を120kg/t-pおよび合成樹脂材比を50kg/t-pとした場合を示す。固体還元材比としては170kg/t-pとなり、本発明の範囲外であるため微粉炭の置換率は0.53と低く、吹込み還元材によりコークスを有効に低減できていないと言える。   Comparative Example 7 shows a case where the gas reducing material A ratio is 20 kg / t-p, the pulverized coal ratio is 120 kg / t-p, and the synthetic resin material ratio is 50 kg / t-p. The solid reducing material ratio is 170 kg / t-p, which is outside the scope of the present invention, so the substitution rate of pulverized coal is as low as 0.53, and it can be said that coke cannot be effectively reduced by the blowing reducing material.

比較例8は気体還元材A比を100kg/t-p、微粉炭比を60kg/t-pとした場合を示す。気体還元材比が大きすぎ、本発明の範囲外であるため微粉炭の置換率は0.53と低く、吹込み還元材によりコークスを有効に低減できていないと言える。   Comparative Example 8 shows a case where the gas reducing material A ratio is 100 kg / t-p and the pulverized coal ratio is 60 kg / t-p. Since the gas reducing material ratio is too large and outside the scope of the present invention, the substitution rate of pulverized coal is as low as 0.53, and it can be said that coke cannot be effectively reduced by the blowing reducing material.

比較例9は気体還元材B比を5kg/t-p、微粉炭比を50kg/t-pとした場合を示す。気体還元材比が小さく本発明の範囲外であり微粉炭の置換率は0.56と低く、吹込み還元材によりコークスを有効に低減できていないと言える。   Comparative Example 9 shows a case where the gas reducing material B ratio is 5 kg / t-p and the pulverized coal ratio is 50 kg / t-p. The gas reducing material ratio is small and outside the scope of the present invention, and the substitution rate of pulverized coal is as low as 0.56, and it can be said that coke cannot be effectively reduced by the blowing reducing material.

比較例10は気体還元材B比を90kg/t-p、微粉炭比を120kg/t-pおよび合成樹脂材比を40kg/t-pとした場合を示す。気体還元材比としては90kg/t-p、固体還元材比としては160kg/t-pとなり、いずれも大きすぎ本発明の範囲外であるため微粉炭の置換率は0.53と低く、吹込み還元材によりコークスを有効に低減できていないと言える。   Comparative Example 10 shows a case where the gas reducing material B ratio is 90 kg / t-p, the pulverized coal ratio is 120 kg / t-p, and the synthetic resin material ratio is 40 kg / t-p. The gas reducing material ratio is 90 kg / tp and the solid reducing material ratio is 160 kg / tp, both of which are too large and outside the scope of the present invention, so the substitution rate of pulverized coal is as low as 0.53, and coke is produced by the blowing reducing material. It can be said that it cannot be effectively reduced.

比較例11は気体還元材C比を85kg/t-p、微粉炭比を115kg/t-pおよび合成樹脂材比を40kg/t-pとした場合を示す。気体還元材比としては85kg/t-p、固体還元材比としては155kg/t-pとなり、いずれも大きすぎ本発明の範囲外であるため微粉炭の置換率は0.54と低く、吹込み還元材によりコークスを有効に低減できていないと言える。   Comparative Example 11 shows a case where the gas reducing material C ratio is 85 kg / t-p, the pulverized coal ratio is 115 kg / t-p, and the synthetic resin material ratio is 40 kg / t-p. The gas reductant ratio is 85 kg / tp and the solid reductant ratio is 155 kg / tp, both of which are too large and outside the scope of the present invention, so the substitution rate of pulverized coal is as low as 0.54, and coke is reduced by the blown reductant. It can be said that it cannot be effectively reduced.

比較例12は気体還元材C比を5kg/t-p、微粉炭比を140kg/t-pおよび合成樹脂材比を20kg/t-pとした場合を示す。固体還元材比としては160kg/t-pと大きすぎ、かつ気体還元材比が小さく本発明の範囲外であるため、微粉炭の置換率は0.52と低く、吹込み還元材によりコークスを有効に低減できていないと言える。   Comparative Example 12 shows a case where the gas reducing material C ratio is 5 kg / t-p, the pulverized coal ratio is 140 kg / t-p, and the synthetic resin material ratio is 20 kg / t-p. The ratio of solid reductant is too large at 160kg / tp and the ratio of gas reductant is small and out of the scope of the present invention, so the substitution rate of pulverized coal is as low as 0.52, and coke can be effectively reduced by blowing reductant. It can be said that it is not.

比較例13は気体還元材B比を10kg/t-p、気体還元材C比を5kg/t-p、微粉炭比を160kg/-pとした場合を示す。固体還元材比としては160kg/t-pと大きすぎるため、微粉炭の置換率は0.51と低く、吹込み還元材によりコークスを有効に低減できていないと言える。   Comparative Example 13 shows a case where the gas reducing material B ratio is 10 kg / t-p, the gas reducing material C ratio is 5 kg / t-p, and the pulverized coal ratio is 160 kg / -p. Since the solid reducing agent ratio is too large at 160 kg / t-p, the substitution rate of pulverized coal is as low as 0.51, and it can be said that coke can not be effectively reduced by the blowing reducing agent.

比較例14は気体還元材A比を40kg/t-p、気体還元材B比を40kg/t-p、気体還元材C比を10kg/t-p、微粉炭比を100kg/-pとした場合を示す。気体還元材比としては90kg/t-pと大きすぎるため、微粉炭の置換率は0.52と低く、吹込み還元材によりコークスを有効に低減できていないと言える。   Comparative Example 14 shows a case where the gas reducing material A ratio is 40 kg / t-p, the gas reducing material B ratio is 40 kg / t-p, the gas reducing material C ratio is 10 kg / t-p, and the pulverized coal ratio is 100 kg / -p. Since the gas reducing agent ratio is too high at 90 kg / t-p, the substitution rate of pulverized coal is as low as 0.52, and it can be said that coke cannot be effectively reduced by the blowing reducing agent.

以上のように、本発明の実施例1〜14はすべて微粉炭の置換率が0.7以上の高い値を示しており、吹込み還元材によりコークスを有効に低減できている。
他方、比較例1〜14は、いずれも微粉炭の置換率が0.6以下であり、吹込み還元材によりコークスを有効に低減できていない。
As mentioned above, Examples 1-14 of this invention have shown the high value with which the substitution rate of pulverized coal is 0.7 or more, and can reduce coke effectively by the blowing reduction material.
On the other hand, as for Comparative Examples 1-14, the substitution rate of pulverized coal is 0.6 or less, and coke cannot be reduced effectively by the blowing reducing material.

なお、補助還元材の吹込み方法については、さまざまな方法があり、たとえば微粉炭、合成樹脂材、気体還元材の内2種または3種を同芯状の多重管ランスにより同時に吹込む方法(図7参照)や、2種または3種を単管で混合して吹込む方法(図6参照)など複数考えられ、本発明はその方法については特に限定されるものではない。
この点、従来技術においては気体還元材と吹込み固体還元材を接触させて伝熱を促進せしめることが必要であるため、そのランス構造や配置に特別の注意を要した。
しかし、本発明においては、気体還元材の燃焼により生じる熱放射を利用するためにランスの構造や吹込み方法に特別な制約は無く、実機においての実施が容易である。
There are various methods for blowing the auxiliary reducing material. For example, two or three types of pulverized coal, synthetic resin material, and gas reducing material are simultaneously blown by a concentric multiple pipe lance ( A plurality of methods (see FIG. 7) and a method of mixing and blowing two or three types in a single tube (see FIG. 6) are conceivable, and the present invention is not particularly limited.
In this regard, in the prior art, it is necessary to bring the gas reducing material and the blown solid reducing material into contact with each other in order to promote heat transfer. Therefore, special attention was required for the lance structure and arrangement.
However, in the present invention, since the heat radiation generated by the combustion of the gas reducing material is used, the structure of the lance and the blowing method are not particularly limited, and can be easily implemented in an actual machine.

本発明の一実施形態に係る高炉操業方法の実施に使用した高炉及びその周辺設備の説明図である。It is explanatory drawing of the blast furnace used for implementation of the blast furnace operating method which concerns on one Embodiment of this invention, and its peripheral equipment. 本発明を完成するための実験に用いた燃焼試験装置の説明図である。It is explanatory drawing of the combustion test apparatus used for the experiment for completing this invention. 本発明を完成するための実験におけるガス吹込み比と火炎温度の実測結果を示すグラフであり、放射エネルギーの計算値、微粉炭の燃焼率を同時に示している(その1)。It is a graph which shows the measurement result of the gas blowing ratio and flame temperature in the experiment for completing this invention, and shows the calculated value of radiant energy, and the combustion rate of pulverized coal simultaneously (the 1). 本発明を完成するための実験におけるガス吹込み比と火炎温度の実測結果を示すグラフであり、放射エネルギーの計算値、微粉炭の燃焼率を同時に示している(その2)。It is a graph which shows the measurement result of the gas blowing ratio and flame temperature in the experiment for completing this invention, and shows the calculated value of radiant energy, and the combustion rate of pulverized coal simultaneously (the 2). 微粉炭比と微粉炭燃焼率との関係を示すグラフである。It is a graph which shows the relationship between pulverized coal ratio and pulverized coal combustion rate. 本発明の別の実施形態に係る気体還元材吹込み装置である。It is a gas reducing material blowing device according to another embodiment of the present invention. 本発明の別の実施形態に係る固体還元材吹込み装置である。It is the solid reducing material blowing device which concerns on another embodiment of this invention.

符号の説明Explanation of symbols

1 高炉、2 送風管、3 微粉炭吹込みランス、4 合成樹脂材吹込みランス、5 気体還元材吹込みランス。     1 Blast furnace, 2 air duct, 3 pulverized coal injection lance, 4 synthetic resin material injection lance, 5 gas reducing material injection lance.

Claims (2)

羽口から補助還元材として気体還元材及び固体還元材を吹込む高炉操業方法において、
前記気体還元材として、CH4を主成分とするガス、液化石油ガス(LPG)、コークスガス(COG)を用い、
気体還元材の吹込み比を10乃至80kg/t-pとし、かつ固体還元材の吹込み比を50乃至150kg/t-pに調整して吹込むことを特徴とする高炉操業方法。
In the blast furnace operation method in which a gas reducing material and a solid reducing material are blown from the tuyere as an auxiliary reducing material,
As the gas reducing material, a gas mainly containing CH4, liquefied petroleum gas (LPG), coke gas (COG) is used,
Blast furnace operation wherein the blowing and the blowing ratio of the gas reducing material and 10 to 80 kg / tp, and adjust the blowing ratio of the solid reducing material 50 to 150 kg / tp.
固体還元材として微粉炭及び/または合成樹脂材を用いることを特徴とする請求項1に記載の高炉操業方法。
The blast furnace operating method according to claim 1, wherein pulverized coal and / or a synthetic resin material is used as the solid reducing material.
JP2006020311A 2005-01-31 2006-01-30 Blast furnace operation method Active JP5070706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006020311A JP5070706B2 (en) 2005-01-31 2006-01-30 Blast furnace operation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005024495 2005-01-31
JP2005024495 2005-01-31
JP2006020311A JP5070706B2 (en) 2005-01-31 2006-01-30 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2006233332A JP2006233332A (en) 2006-09-07
JP5070706B2 true JP5070706B2 (en) 2012-11-14

Family

ID=37041310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006020311A Active JP5070706B2 (en) 2005-01-31 2006-01-30 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP5070706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171008A1 (en) 2019-02-18 2020-08-27 日本製鉄株式会社 Blast furnace operation method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714544B2 (en) * 2005-10-04 2011-06-29 新日本製鐵株式会社 Blast furnace operation method
DE102009022509B4 (en) * 2009-05-25 2015-03-12 Thyssenkrupp Industrial Solutions Ag Process for the production of synthesis gas
JP2011168885A (en) * 2010-01-19 2011-09-01 Jfe Steel Corp Blast furnace operation method
JP2011168886A (en) * 2010-01-19 2011-09-01 Jfe Steel Corp Blast furnace operation method
JP5824812B2 (en) * 2010-01-19 2015-12-02 Jfeスチール株式会社 Blast furnace operation method
JP5824813B2 (en) * 2010-01-19 2015-12-02 Jfeスチール株式会社 Blast furnace operation method
JP5824811B2 (en) * 2010-01-19 2015-12-02 Jfeスチール株式会社 Blast furnace operation method
JP5824810B2 (en) * 2010-01-29 2015-12-02 Jfeスチール株式会社 Blast furnace operation method
KR101464056B1 (en) 2010-03-02 2014-11-21 제이에프이 스틸 가부시키가이샤 Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
JP5699833B2 (en) * 2011-07-08 2015-04-15 Jfeスチール株式会社 Blast furnace operation method
JP5699834B2 (en) * 2011-07-08 2015-04-15 Jfeスチール株式会社 Blast furnace operation method
JP5699832B2 (en) * 2011-07-08 2015-04-15 Jfeスチール株式会社 Blast furnace operation method
EP2871247B1 (en) 2012-07-03 2017-05-10 JFE Steel Corporation Method for operating blast furnace
JP6489060B2 (en) * 2016-04-18 2019-03-27 Jfeスチール株式会社 Blast furnace operation method
JP6518954B2 (en) * 2016-07-22 2019-05-29 Jfeスチール株式会社 Blast furnace operation method
EP3418400B1 (en) * 2017-06-19 2020-03-11 Subcoal International B.V. Process of making pig iron in a blast furnace using pellets containing thermoplastic and cellulosic materials
JP7472864B2 (en) 2021-06-23 2024-04-23 Jfeスチール株式会社 Method for injecting gaseous reducing agent and tuyere for blast furnace
CN115011747B (en) * 2022-04-05 2023-07-14 北京科技大学 Hydrogen-rich fuel injection device for blast furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238307A (en) * 1986-04-10 1987-10-19 Kobe Steel Ltd Method for blowing noncombustible fuel into blast furnace
JPS6311608A (en) * 1986-03-28 1988-01-19 Kobe Steel Ltd Method for blowing power fuel into blast furnace
JP3176680B2 (en) * 1992-01-06 2001-06-18 新日本製鐵株式会社 Blast furnace operation method
JPH11241108A (en) * 1997-12-24 1999-09-07 Nippon Steel Corp Method for injecting pulverized fine coal into blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171008A1 (en) 2019-02-18 2020-08-27 日本製鉄株式会社 Blast furnace operation method

Also Published As

Publication number Publication date
JP2006233332A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP5070706B2 (en) Blast furnace operation method
KR101659189B1 (en) Method for operating a blast furnace
KR100865218B1 (en) Method for operating blast furnace
US20110209576A1 (en) Method for operating a blast furnace and blast furnace installation
CN102230040A (en) Ironmaking method
EP2653565B1 (en) Blast furnace operation method
CA3161120A1 (en) Blast furnace operation method
KR101699236B1 (en) An apparatus for manufacturing molten irons and manufacturing method using the same
KR850001278B1 (en) Direct reduction rotary kiln with improved air injection
CA2206583A1 (en) Process for producing sponge iron and plant for carrying out the process
US11572597B2 (en) P process of making pig iron in a blast furnace using pellets containing thermoplastic and cellulosic materials
JP5598423B2 (en) Method for producing pre-reduced agglomerates
KR101657019B1 (en) Method for producing pig iron and blast furnace facility using same
KR101322903B1 (en) Apparatus for manufacturing molten iron and method for manufacturing the same
JP2006511707A (en) Hot metal production apparatus for dry-air feeding iron ore and auxiliary materials and hot metal production method
TWI785506B (en) Operation method of blast furnace and auxiliary equipment of blast furnace
JP2000192129A (en) Operation of converter
CN102213422A (en) Multi-channel mixed gas burner
JP3395943B2 (en) Combustion burners used in metallurgical furnaces
JPH0873909A (en) Method for blowing fuel to vertical furnace
Meng et al. Comprehensive mathematical model of full oxygen blast furnace with top recycle gas heated by gasifier
CN117778062A (en) Method for producing fuel gas or reducing gas by using flue gas
SU1437402A1 (en) Method of blowing a blast furnace
JP2001234214A (en) Blast furnace operation method
JP2002129212A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5070706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250