JPS62238307A - Method for blowing noncombustible fuel into blast furnace - Google Patents

Method for blowing noncombustible fuel into blast furnace

Info

Publication number
JPS62238307A
JPS62238307A JP8247886A JP8247886A JPS62238307A JP S62238307 A JPS62238307 A JP S62238307A JP 8247886 A JP8247886 A JP 8247886A JP 8247886 A JP8247886 A JP 8247886A JP S62238307 A JPS62238307 A JP S62238307A
Authority
JP
Japan
Prior art keywords
fuel
noncombustible
blowing
combustion
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8247886A
Other languages
Japanese (ja)
Other versions
JPS6332842B2 (en
Inventor
Tomio Suzuki
富雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8247886A priority Critical patent/JPS62238307A/en
Priority to US07/031,375 priority patent/US4780136A/en
Publication of JPS62238307A publication Critical patent/JPS62238307A/en
Publication of JPS6332842B2 publication Critical patent/JPS6332842B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal

Abstract

PURPOSE:To improve the combustion efficiency of noncombustible fuel in a blast furnace operation by blowing gaseous fuel at a specific ratio to the outside peripheral part of a blow pipe at the time of blowing the noncombustible fuel into the blow pipe. CONSTITUTION:The fuel blowing nozzle is made into multiple pipe construction at the time of blowing the noncombustible fuel from a fuel blowing burner 7 into the tuyere of the blast furnace. The noncombustible fuel A such as powder fuel, tar or heavy gravity oil is supplied from the inside pipe 7a into the furnace and the gaseous fuel C such as coke oven gas is supplied from an outside pipe 7b thereto. The rate of the gaseous fuel to be blown is adjusted to >=2% in terms of heat quantity relative to the rate of the noncombustible fuel to be blown. The gaseous fuel C on the outside periphery is immediately ignited and burned by hot air and the noncombustible fuel A is simultaneously heated from the outside peripheral side. The time for igniting the noncombustible fuel and starting the combustion thereof is shortened by the above-mentioned blowing method.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は高炉への難燃性燃料吹込方法に関し、詳細には
、一般に燃焼性が悪いとされている微粉炭やコークス等
の粉体燃料及びタール、重質油等を燃料吹込用バーナか
ら高炉へ吹込むに当たり、こねら難燃性燃料の燃焼率を
高めることのできる方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for injecting flame-retardant fuel into a blast furnace. The present invention also relates to a method for increasing the combustion rate of kneaded flame-retardant fuel when injecting tar, heavy oil, etc. from a fuel injection burner into a blast furnace.

[従来の技術] 高炉操業における燃料は重油吹込みからオールコークス
操業へ移行し、更にタールや微粉炭の吹込みに進んでい
る。しかしながら微粉炭等の粉体燃料(以下粉体燃料と
総称する)或はタールや重質油は通常のC重油に比べて
燃焼性が悪く、且つ微粉炭では灰分等の非燃分を含有す
るという欠点を有しているので、吹込みに当たっては色
々の対策を構する必要がある。
[Prior Art] The fuel used in blast furnace operation has shifted from injection of heavy oil to all-coke operation, and has also progressed to injection of tar and pulverized coal. However, pulverized fuel such as pulverized coal (hereinafter collectively referred to as pulverized fuel), tar, and heavy oil have poor combustibility compared to ordinary C heavy oil, and pulverized coal contains non-combustible components such as ash. Because of this drawback, it is necessary to take various measures when blowing.

こうした状況のもとて本出願人もかねてより粉体燃料の
効果的な吹込み法を確立すべく研究を進めており、例え
ば特公昭60−53081号公報に開示する技術を提案
した。この方法は、(1)粉体燃料の燃焼率向上と(2
)ブローバイブ内への灰分付着防止、という2つの要望
をどちらも満足させる手段として粉体燃料の吹込み位置
をブローバイブの上流側へ移行させたものであり、この
方法であればブローバイブ内に供給される熱風温度を高
めてもブローバイブ壁面への灰分の付着が防止される為
、前記2つの要望を同時に満足することができるに至っ
た。
Under these circumstances, the present applicant has been conducting research for some time in order to establish an effective injection method for powdered fuel, and has proposed, for example, a technique disclosed in Japanese Patent Publication No. 60-53081. This method (1) improves the combustion rate of powdered fuel and (2) improves the combustion rate of powdered fuel.
) The injection position of the powdered fuel was moved to the upstream side of the blow vibrator as a means of satisfying both of the two demands of preventing ash from adhering to the inside of the blow vibrator. Since adhesion of ash to the wall surface of the blow vibrator is prevented even if the temperature of the hot air supplied to the blow vibrator is increased, it has become possible to simultaneously satisfy the above two demands.

[発明が解決しようとする問題点] 即ち前記提案発明では、公告公報第4頁の第5図にも示
している通り1050℃以上という高温の熱風を用いる
ことが燃焼率向上の為の必要条イ1と考えており、10
50℃未満の熱風を用いた場合の燃焼率は非常に低い。
[Problems to be solved by the invention] That is, in the proposed invention, as shown in Figure 5 on page 4 of the official gazette, the use of hot air at a high temperature of 1050°C or higher is a necessary condition for improving the combustion rate. I think it is 1, and 10
The combustion rate when using hot air below 50°C is very low.

その為熱風炉の操業温度を高めなければならず、省エネ
ルギーの観点から不利になることに加えて炉壁耐火物や
ダクトの寿命が短縮されることとなり、設備のメンテナ
ンス性が悪化する。
Therefore, the operating temperature of the hot air stove must be increased, which is disadvantageous from the viewpoint of energy conservation, and also shortens the life of the furnace wall refractories and ducts, which deteriorates the maintainability of the equipment.

本発明はこの様な事情に着目してノtされたものであっ
て、その目的は、1050℃を下回る様な低温の熱風を
使用した場合でも、粉体燃料、タール。
The present invention was developed in view of these circumstances, and its purpose is to prevent pulverized fuel and tar even when using hot air at a low temperature below 1050°C.

重質油などの難燃性燃料の燃焼率を十分に高めることの
できる高炉への難燃性燃料吹込方法を提供しようとする
ものである。
The present invention aims to provide a method for injecting flame-retardant fuel into a blast furnace that can sufficiently increase the combustion rate of flame-retardant fuel such as heavy oil.

[問題点を解決する為の手段コ 上記の目的を達成することのできた本発明方法の構成は
、高炉羽目に連接された熱風吹込用ブローバイブ内に難
燃性燃料を吹込むに当たり、該難燃性燃料の外周部に独
立してガス燃料を吹込み、該ガス燃料の吹込み量を1.
記難燃性燃料吹込み蚤に対し°C1熱量換算で2%以上
とするところに要旨を有するものである。
[Means for Solving the Problems] The structure of the method of the present invention that has achieved the above-mentioned object is that when injecting flame-retardant fuel into the blow vibrator for blowing hot air connected to the blast furnace siding, Gaseous fuel is blown into the outer circumference of the combustible fuel independently, and the amount of blown gas fuel is set to 1.
The gist of this is that the flame retardant fuel should be 2% or more in terms of calorific value per °C for the fleas injected with the flame retardant fuel.

[作用及び実施例] 以下実験経過に沿って本発明の構成及び作用効果を詳細
に説明する。第1図は燃焼実験で使用した装置の概略図
であり、実際の高炉羽目部に模した構造に設計されてい
る。難燃性燃料A(以下代表的に粉体燃料Aと言うこと
もある)は地士ホッパー1からスクリューコンベア2に
よってコールビン3へ搬送される。コールビン3の下部
には粉体燃料定量供給機4が設けられており、この部分
で一定量ずつ切り出された粉体燃料Aは、輸送空気5と
共に輸送管6によってバーナ7へ送られる。尚タールや
重質油等の液体燃料の供給は図示していないが、例えば
加温タンクに貯えられたタールや重質油をポンプで昇圧
してバーナ7へ供給する等適宜の方法を用いることがで
きる。一方高温熱風炉8で得られた熱風は、送風管9か
らブローバイブ10及び水冷羽口11を経て燃焼試験炉
12へ送られる。図中13は煙突である。
[Operations and Examples] The configuration and operation effects of the present invention will be explained in detail below along with the progress of experiments. Figure 1 is a schematic diagram of the apparatus used in the combustion experiment, which is designed to resemble an actual blast furnace lining. Flame-retardant fuel A (hereinafter also typically referred to as powdered fuel A) is conveyed from the hopper 1 to the coal bin 3 by the screw conveyor 2. A pulverized fuel quantitative feeder 4 is provided at the bottom of the coal bin 3, and the pulverized fuel A cut out in fixed amounts at this portion is sent to the burner 7 through a transport pipe 6 together with transport air 5. Although the supply of liquid fuel such as tar or heavy oil is not shown, an appropriate method may be used, such as increasing the pressure of tar or heavy oil stored in a heating tank with a pump and supplying it to the burner 7. I can do it. On the other hand, the hot air obtained in the high-temperature hot air stove 8 is sent from the blast pipe 9 to the combustion test furnace 12 via the blow vibe 10 and the water-cooled tuyeres 11. 13 in the figure is a chimney.

高炉の燃料吹込部は一般の燃焼装置とは全く異なり、ブ
ローバイブ10及び水冷羽口11で構成されているので
、この実験装置は実際の高炉吹込部に近似させている。
Since the fuel injection section of a blast furnace is completely different from a general combustion device and consists of a blow vibe 10 and a water-cooled tuyere 11, this experimental device approximates an actual blast furnace injection section.

またこの試験炉には燃焼状態及び着火状態を観察する為
ののぞき窓を多数設けると共に、炉内温度、炉内ガス組
成、炉内ダスト、火炎輻射量等を測定する為の検査孔が
設けられ、且つブローバイブ10の上流何曲り部には、
該ブローバイブ10の壁面への灰の付着状況を観察する
為ののぞき窓14が設けられている。
In addition, this test furnace is equipped with numerous observation windows for observing the combustion and ignition conditions, as well as inspection holes for measuring the temperature inside the furnace, the gas composition inside the furnace, the dust inside the furnace, the amount of flame radiation, etc. , and at the upstream bend of the blow vibe 10,
A peephole 14 is provided for observing the adhesion of ash to the wall surface of the blow vibrator 10.

この装置を用いた後記一連の実験における条件は下記の
通りである。
The conditions for the series of experiments described later using this apparatus are as follows.

実験条件 難燃性燃料、1.微粉炭 (揮発分35重量%)2、タ
ール 燃料吹込M : 75x 10’ kcal/時間(一
定)熱風温度 +1000℃ 難燃性燃料吹込位置:9点、羽口とブローバイブの境界
位置から上 流200mm まず前記公告発明に開示した方法を追試し、熱風温度が
1050℃未満であると燃焼率が1−分に改善されない
理由を検討したところ、次の様な事実が明らかどなった
。即ち粉体燃料吹込みバーナ7からブローバイブ10内
へ吹込まれた粉体燃料は、ブローバイブ10内を流れる
熱風から熱を受けてまず揮発分(水素や一酸化炭素等)
が揮発し、これらが着火温度に到達して燃焼が開始され
る。ところが上記の様な従来法において熱風温度が低過
ぎる場合は、粉体燃料自体の!A−温と混相状態で吹込
まれてくるキャリアガスにか1<りの熱量が奪われ、肝
心の粉体燃料は十分に加熱されず、その結果揮発分の揮
発開始が遅れるばかりでなく揮発速度も遅くなり、更に
は揮発ガスが着火温度に達するまでの時間も遅れ気味と
なり、吹込みから着火燃焼までに相当の時間を要するこ
とになる。その結果粉体燃料の着火は、羽口先端或はレ
ースウェイ内で起こることとなり、着火後レースウェイ
を出るまでの燃焼時間が相対的に著しく短縮される。従
って熱風温度が1050℃より低い場合は、前記公告発
明に示した如く粉体燃料吹込位置を100〜350mm
程度上流側へ8勤させても、レースウェイ内での燃焼時
間を実質的に延長することができず、結局1ノ一スウエ
イ終了部における粉体燃料の燃焼状態は殆んど改善され
なかった。
Experimental conditions Flame retardant fuel, 1. Pulverized coal (volatile content 35% by weight) 2, tar fuel injection M: 75 x 10' kcal/hour (constant) Hot air temperature +1000°C Flame-retardant fuel injection position: 9 points, 200 mm upstream from the boundary position of the tuyere and blow vibe First, we tried the method disclosed in the above-mentioned published invention and investigated the reason why the combustion rate could not be improved to 1 minute when the hot air temperature was less than 1050°C, and the following facts became clear. That is, the powdered fuel blown into the blow vibe 10 from the powder fuel injection burner 7 receives heat from the hot air flowing inside the blow vibe 10, and first loses volatile components (hydrogen, carbon monoxide, etc.).
evaporate, these reach the ignition temperature and combustion begins. However, in the conventional method as described above, if the hot air temperature is too low, the powder fuel itself may be damaged! The carrier gas, which is injected in a mixed phase state with A-temperature, takes away a fraction of the amount of heat, and the essential powdered fuel is not heated sufficiently, which not only delays the start of volatilization of volatile components, but also slows down the rate of volatilization. Furthermore, the time required for the volatile gas to reach the ignition temperature also becomes delayed, and it takes a considerable amount of time from injection to ignition combustion. As a result, ignition of the powdered fuel occurs at the tip of the tuyere or within the raceway, and the combustion time from ignition to exit from the raceway is relatively significantly shortened. Therefore, when the hot air temperature is lower than 1050°C, the powder fuel injection position should be adjusted to 100 to 350 mm as shown in the above-mentioned published invention.
Even if the combustion time was moved upstream by eight degrees, the combustion time within the raceway could not be substantially extended, and in the end, the combustion condition of the powdered fuel at the end of the first sway was hardly improved. .

殊に高炉操業時における粉体燃料のレースウェイ通過所
要時間は、ボイラー、キルン、焼結点火炉等における燃
料通過所要時間に比べて極端に短く(前者は後名の1/
300〜11500程度)、こうした条件のもとでは全
滞留時間の半分近くが揮発分の揮発と着火を含めた言わ
ば予熱に消費されることとなり、実質的な燃焼時間が不
足気味となって燃焼率の向上を果たし得なかったものと
考えられる。
In particular, the time required for powdered fuel to pass through the raceway during blast furnace operation is extremely short compared to the time required for fuel to pass through boilers, kilns, sintering ignition furnaces, etc.
300 to 11,500), under these conditions, nearly half of the total residence time is consumed in so-called preheating, including evaporation of volatile matter and ignition, and the actual combustion time becomes insufficient, resulting in a decrease in the combustion rate. It is considered that this was not possible to improve the results.

そこで本発明者は、比較的低温の熱風を用いた場合でも
粉体燃料或はタールや重質油の難燃性燃料の燃焼率を満
足の行く程度まで高める為には、ブローバイブ内へ吹込
まれた難燃性燃料が着火するまでの所要時間をできるだ
け短縮するのが有効であろうと考え、かかる着想に沿っ
て更に研究を進めた。その結果、難燃性燃料を高炉へ吹
込むに当たり、該ガス燃料を平行的にを吹込み、該ガス
の燃焼熱によって粉体燃料からの揮発分の急速揮発化及
び該揮発分の着火を促進させるのが有効であろうとの着
想を持つに至った。そしてこうした着想を実現すべく更
に研究を逗めた結果、ガス燃料を難燃性燃料の近傍へ且
つ独立して吹込めば上記の着想が実用に即した技術とし
て実現されるという結論を得るに至った。この場合のガ
ス燃料は、易燃性ガスであればよく、天然ガス、都市ガ
ス、転炉ガス、石油ガス、高炉ガスその他特に種類が限
定されるものではないが、コークス炉ガスは燃焼速度が
速く、しかも製鉄現場での入手が容易であるのでとりわ
け好ましい。
Therefore, the inventor of the present invention discovered that in order to increase the combustion rate of powdered fuel or flame-retardant fuel such as tar or heavy oil to a satisfactory level even when relatively low-temperature hot air is used, it is necessary to blow into the blow vibrator. We thought that it would be effective to shorten the time required for the flame-retardant fuel to ignite as much as possible, and conducted further research based on this idea. As a result, when injecting flame-retardant fuel into the blast furnace, the gaseous fuel is injected in parallel, and the combustion heat of the gas promotes rapid volatilization of volatile matter from the powdered fuel and ignition of the volatile matter. I came up with the idea that it would be effective to do so. As a result of further research to realize this idea, we came to the conclusion that the above idea could be realized as a practical technology by injecting gas fuel close to and independently of the flame-retardant fuel. It's arrived. In this case, the gas fuel may be any easily combustible gas, including natural gas, city gas, converter gas, petroleum gas, blast furnace gas, and other types, but coke oven gas has a low combustion rate. It is particularly preferable because it is quick and easy to obtain at steel manufacturing sites.

すなわち、コークス炉ガスの主成分は水素(全体の50
〜60%)であって、その燃焼速度はLPGや天然ガス
の7〜8倍であり、これをブローバイブ内へ吹込むと比
較的低温の熱風であってもすみやかに着火燃焼する。そ
してその特定量以上の燃焼熱によって難燃性燃料中の揮
発分の急速揮発化及びその着火が促進される結果、難燃
性燃料の着火までの所要時間が著しく短縮され、それに
伴って難燃性燃料の燃焼時間が延長されることとなり、
燃焼率を著しく高めることができる。
In other words, the main component of coke oven gas is hydrogen (50% of the total
~60%), and its combustion speed is 7 to 8 times that of LPG or natural gas, and when it is blown into the blow vibe, even relatively low-temperature hot air is quickly ignited and burned. The combustion heat exceeding a certain amount promotes the rapid volatilization of the volatile matter in the flame-retardant fuel and its ignition, resulting in a marked reduction in the time required for the ignition of the flame-retardant fuel. The burning time of sexual fuel will be extended,
The combustion rate can be significantly increased.

難燃性燃料が粉体燃料である場合は、コークス炉ガスな
どのガス燃料を粉体燃料送給用のキャリヤガスとして同
時に供給することも考えられるが、本発明者が実験によ
り確認したところでは、該ガス燃料は粉体燃料とは独立
して供給すべきであることが分かったゆその理由は下記
の通りである。
When the flame-retardant fuel is a powder fuel, it is possible to simultaneously supply gaseous fuel such as coke oven gas as a carrier gas for supplying the powder fuel, but the inventor has confirmed this through experiments. The reason why it was found that the gaseous fuel should be supplied independently of the powdered fuel is as follows.

即ちガス燃料を粉体燃料と混合した状態でブローバイブ
内へ供給した場合、熱風によるコークス炉ガスの昇温・
着火が粉体燃料の混入によって抑制され、期待されるほ
どの燃焼促進効果を得ることかできない。この点をより
詳細に説明すると、高炉への粉体燃料吹込みに当たって
は、温度の低いキャリヤガス量はでとるだけ少ない方が
よいとされており、粉体燃料/キャリヤガスの重量比率
は一般に10〜30(にg/Kg)の範囲から選択され
る。この様に粉体燃料濃度の高い吹込条件のもとでは、
吹込まれる固気混相流における輻射伝熱効率及び光学的
透過性は非常に低いものとならざるを得ない。しかもガ
ス燃料を粉体燃料中に混入して供給する方法を採用する
と、ガス燃料は大量の粉体燃料によって稀釈されること
となる。そして当該混相流の着火燃焼は、その最外周側
で熱風による熱を受けて進行することになるが、ガス燃
料が着火温度まで昇温する為には同時に粉体燃料(ガス
に比べて熱容量が大きい)までも昇温させなければなら
ない為、粉体燃料による稀釈に伴う着火遅延とも相まっ
てガス燃料の着火燃焼自体が遅延し、燃焼促進効果を満
足に高めることができない。また粉体燃料やガス燃料の
流量を個別に制御する面からも両燃料を独立して吹込ん
だほうが好ましいことはいうまでもなく、安全性も確保
される。
In other words, when gas fuel is mixed with powder fuel and supplied into the blow vibe, the temperature of the coke oven gas increases due to the hot air.
Ignition is suppressed by the mixture of powdered fuel, and the expected combustion promotion effect cannot be obtained. To explain this point in more detail, when injecting powdered fuel into a blast furnace, it is said that the amount of low-temperature carrier gas should be as small as possible, and the weight ratio of powdered fuel/carrier gas is generally It is selected from the range of 10 to 30 (g/Kg). Under such injection conditions with high powder fuel concentration,
The radiant heat transfer efficiency and optical transparency in the solid-gas mixed phase flow that is blown in must be extremely low. Moreover, if a method of supplying gas fuel mixed with powdered fuel is adopted, the gaseous fuel will be diluted with a large amount of powdered fuel. The ignition combustion of the multiphase flow proceeds by receiving heat from the hot air on the outermost side, but at the same time, in order for the gas fuel to rise to the ignition temperature, the powder fuel (which has a lower heat capacity than the gas) Since it is necessary to raise the temperature even to a large temperature, the ignition and combustion of the gas fuel itself is delayed due to the ignition delay due to dilution with the powdered fuel, and the combustion promotion effect cannot be increased satisfactorily. In addition, it goes without saying that it is preferable to inject both fuels independently from the standpoint of individually controlling the flow rates of the powdered fuel and the gaseous fuel, as well as ensuring safety.

これに対し所定量以上のガス燃料を難燃性燃料の近傍(
好ましくは外周部)に独立して供給すると、ガス燃料は
熱風に接して瞬時に着火温度まで昇温しで着火・燃焼し
、その燃焼熱が難燃性燃料中の揮発分の揮発・着火に生
かされる結果、難燃性燃料の燃焼開始までの時間が著し
く短縮される。このガス燃料の吹込み量は上記説明から
理解されるように難燃性燃料の揮発化・着火を促進する
ために十分な熱量を発生し得る様な量であることが必要
である。
In contrast, a predetermined amount or more of gas fuel is placed near the flame-retardant fuel (
When supplied independently (preferably to the outer periphery), the gaseous fuel comes in contact with the hot air and instantaneously rises in temperature to the ignition temperature, ignites and burns, and the combustion heat causes the volatile matter in the flame-retardant fuel to volatilize and ignite. As a result, the time it takes for flame-retardant fuel to start burning is significantly shortened. As understood from the above explanation, the amount of gaseous fuel blown needs to be such that a sufficient amount of heat can be generated to promote the volatilization and ignition of the flame-retardant fuel.

次に最も好ましいバーナは、例えば第2図(縦断面図)
に示す如く燃料吹込用ノズルを多重管構造(図例では2
重管)とし、内管7aから粉体燃料またはタールや重質
油等の液体燃料(難燃性燃料A)を供給すると共に外管
7bからガス燃料Cを供給する方法がもつとも有利であ
る。しかしてこの様な吹込み方式を採用すると、難燃性
燃料Aをとりまく様にしてガス燃料Cが吹込まれること
になり、最外周側のガス燃料は熱風により直ちに着火・
燃焼すると共に、難燃性燃料Aを外周側から一斉に加熱
することとなり、難燃性燃料Aの着火・燃焼開始時間を
著しく短縮することができる。
The next most preferable burner is, for example, Fig. 2 (longitudinal sectional view).
As shown in the figure, the fuel injection nozzle has a multi-tube structure (in the example, 2
It is also advantageous to supply powder fuel or liquid fuel (flame-retardant fuel A) such as tar or heavy oil from the inner pipe 7a, and supply gaseous fuel C from the outer pipe 7b. However, if such an injection method is adopted, the gaseous fuel C will be injected so as to surround the flame-retardant fuel A, and the gaseous fuel on the outermost side will be immediately ignited and ignited by the hot air.
As it burns, the flame-retardant fuel A is heated all at once from the outer circumferential side, and the time required to ignite and start combustion of the flame-retardant fuel A can be significantly shortened.

第3図は、前記第1図に示した燃焼実験装置を使用し、
難燃性燃料の代表例として微粉炭とタールを用いて実験
した結果例であるが、コークスや重質油を用いた場合も
同様の結果が得られる。
Figure 3 shows the combustion experiment using the combustion experiment apparatus shown in Figure 1 above.
This is an example of the results of an experiment using pulverized coal and tar as representative examples of flame-retardant fuel, but similar results can be obtained when coke or heavy oil is used.

図中の(1) 、 (2)は次の実験で行なったことを
示す。
(1) and (2) in the figure indicate what was done in the next experiment.

(1)第2図に示す2重管構造の微粉炭吹込みバーナを
使用し、内管7aから微粉炭を、また外管7bからはコ
ークス炉ガス (COG)を独立して吹込んだ。
(1) A pulverized coal injection burner with a double tube structure shown in FIG. 2 was used, and pulverized coal was blown into the inner tube 7a, and coke oven gas (COG) was blown into the outer tube 7b independently.

(2)第2図のような2重g(上記のバーナよりも細管
)構造のバーナを使用し、内管7aからタールを、また
外管7bからはコークス炉ガス(COG)を独立して吹
込んだ。
(2) Using a burner with a double g (tube narrower than the above burner) structure as shown in Fig. 2, tar is supplied from the inner tube 7a, and coke oven gas (COG) is supplied independently from the outer tube 7b. Infused.

横軸はコークス炉ガス(COG)の吹込み量であり、微
粉炭またはタールの総吹込み熱量に対するコークス炉ガ
スの吹込み熱量の割合を示す。従ってコークス炉ガス吹
込み1零の点が微粉炭またはタール単独吹込みの場合で
ある。縦軸は、羽口先端から0.4mにおける総燃焼率
を示す。微粉炭またはタールの吹込み量を75X 10
’ keal/時(一定)に保ちながら、コークス炉ガ
ス吹込み量を増加させると、燃焼率は次第に上昇し、微
粉炭吹込みでは約75%、タール吹込みでは100%(
完全燃焼)に近づく。
The horizontal axis is the amount of coke oven gas (COG) blown, and shows the ratio of the amount of heat blown into coke oven gas to the total amount of heat blown into pulverized coal or tar. Therefore, the point where coke oven gas injection is 1/0 corresponds to the case where only pulverized coal or tar is injected. The vertical axis shows the total combustion rate at 0.4 m from the tuyere tip. The amount of pulverized coal or tar injected is 75X 10
' When the coke oven gas injection rate is increased while keeping the keal/hour (constant), the combustion rate gradually increases, from about 75% with pulverized coal injection to 100% with tar injection (
approaching complete combustion).

燃焼率の上昇効果は、コークス炉ガスを微粉炭またはタ
ールの難燃性燃料に対してわずか2%(熱量換算)混焼
させるだけで約15%向上する。すなわち、レースウェ
イ内の燃焼率を向上できるので未燃分のレースウェイ外
への流出力が減少して多量吹込みが可能となる。尚微粉
炭吹込みの燃焼率が約75%で飽和しているのは、残り
75%が燃焼速度の低いチャーの燃焼に依存するからで
ある。第3図から明らかな様に難燃性燃料の揮発化・着
火を促進させ、燃焼促進効果を発揮させるためには、難
燃性燃料吹込み量に対して熱i換算で少なくとも2%以
上のガス燃料の吹込みが必要である。コークス炉ガスの
吹込み量をなるべく少なくして燃焼促進効果を挙げるに
はコークス炉ガス吹込み量を2〜10%の範囲とするの
が好ましい。
The effect of increasing the combustion rate can be increased by about 15% by co-combusting coke oven gas with only 2% (calorific value) of a flame-retardant fuel such as pulverized coal or tar. That is, since the combustion rate within the raceway can be improved, the outflow force of unburned components to the outside of the raceway is reduced, and a large amount of fuel can be blown into the raceway. The combustion rate of pulverized coal injection is saturated at about 75% because the remaining 75% depends on the combustion of char, which has a low combustion rate. As is clear from Fig. 3, in order to promote the volatilization and ignition of the flame-retardant fuel and to exhibit the combustion promotion effect, it is necessary to increase the amount of injected flame-retardant fuel by at least 2% in terms of heat i. Gas fuel injection is required. In order to achieve a combustion promoting effect by reducing the amount of coke oven gas blown as much as possible, the amount of coke oven gas blown is preferably in the range of 2 to 10%.

以上の燃焼促進効果は天然ガス、都市ガス、石油ガス、
転炉ガス、高炉ガスでも確認されたが、ガス吹込み量一
定での燃焼率の上昇はコークス炉ガスが最も良かった。
The above combustion promotion effects are applicable to natural gas, city gas, petroleum gas,
This was also confirmed with converter gas and blast furnace gas, but coke oven gas had the best increase in combustion rate at a constant gas injection amount.

[発明の効果] 本発明は以上の様に構成されており、その効果を要約す
れば次の通りである。
[Effects of the Invention] The present invention is configured as described above, and its effects can be summarized as follows.

(1)熱風温度が低い場合でも難燃性燃料の燃焼率を満
足のいく程度まで高めることができ、高温の熱風温度が
得られ難いとぎでも難燃性燃料の多量吹込みが可能とな
り、大幅なコストダウンを達成できる。
(1) Even when the hot air temperature is low, the combustion rate of flame-retardant fuel can be increased to a satisfactory level, and even when it is difficult to obtain a high-temperature hot air temperature, it is possible to inject a large amount of flame-retardant fuel. It is possible to achieve significant cost reductions.

(2)熱風温度を積極的に下げて高炉操業を行なうこと
もでき、省エネルギー効率が高くなる。またダクト等を
含めた耐火物の劣化も抑制することが可能となる。また
、外周部のガス燃料がバーナの冷却気体にもなり、熱風
温度も低下できることから非水冷バーナでも寿命が長い
(2) It is also possible to operate the blast furnace by actively lowering the hot air temperature, increasing energy saving efficiency. It is also possible to suppress deterioration of refractories including ducts and the like. In addition, the gas fuel in the outer periphery also serves as a cooling gas for the burner, and the temperature of the hot air can also be lowered, so even non-water-cooled burners have a long life.

(3)燃焼率を十分に高め得るところから安価な微粉炭
なとの難燃性燃料の使用比率を高めることが可能となり
、燃料費の低減を図ることができる。
(3) Since the combustion rate can be sufficiently increased, it is possible to increase the usage ratio of inexpensive flame-retardant fuel such as pulverized coal, and it is possible to reduce fuel costs.

(4)燃焼率が高レベルで安定するので高炉々況の安定
性も高めることができ、高炉操業効率も向上する。
(4) Since the combustion rate is stabilized at a high level, the stability of the blast furnace conditions can also be improved, and the blast furnace operating efficiency can also be improved.

(5)本発明を実施するに当たり別途必要となるのは多
重構造のバーナだけであり、或はその他ガス燃料吹込用
装置だけであり、負担増は少ない。
(5) In carrying out the present invention, only the burner of multiple structure or other gas fuel injection device is required separately, so the increase in burden is small.

(6)コークス炉ガスや高炉ガスは、高炉装入原料とし
て欠くことのできないコークス製造工程で生成するもの
であり、通常は高炉設備に隣接して設けられているので
安価に入手することができる。
(6) Coke oven gas and blast furnace gas are produced in the coke manufacturing process, which is essential as a raw material for blast furnace charging, and are usually installed adjacent to blast furnace equipment, so they can be obtained at low cost. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実験で用いた燃焼装置を示す説明図、第2図は
本発明を実施する際に用いられる多重構造のバーナを例
示する一部破断側面図、第3図は本発明の効果を示すグ
ラフである。
Fig. 1 is an explanatory view showing the combustion device used in the experiment, Fig. 2 is a partially cutaway side view illustrating a burner with a multiple structure used in carrying out the present invention, and Fig. 3 shows the effects of the present invention. This is a graph showing.

Claims (1)

【特許請求の範囲】[Claims] 高炉へ粉体燃料、タール、重質油などの難燃性燃料を吹
込むに当たり、難燃性燃料とは独立してその近傍にガス
燃料を吹込み、該ガス燃料の吹込み量を上記難燃性燃料
吹込み量に対して、熱量換算で2%以上とすることを特
徴とする高炉への難燃性燃料の吹込方法。
When injecting flame-retardant fuel such as powdered fuel, tar, and heavy oil into the blast furnace, gas fuel is injected into the vicinity of the flame-retardant fuel independently of the flame-retardant fuel, and the amount of gas fuel injected is adjusted to A method for injecting flame retardant fuel into a blast furnace, characterized in that the amount of flammable fuel injected is 2% or more in terms of calorific value.
JP8247886A 1986-03-28 1986-04-10 Method for blowing noncombustible fuel into blast furnace Granted JPS62238307A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8247886A JPS62238307A (en) 1986-04-10 1986-04-10 Method for blowing noncombustible fuel into blast furnace
US07/031,375 US4780136A (en) 1986-03-28 1987-03-30 Method of injecting burning resistant fuel into a blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8247886A JPS62238307A (en) 1986-04-10 1986-04-10 Method for blowing noncombustible fuel into blast furnace

Publications (2)

Publication Number Publication Date
JPS62238307A true JPS62238307A (en) 1987-10-19
JPS6332842B2 JPS6332842B2 (en) 1988-07-01

Family

ID=13775618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8247886A Granted JPS62238307A (en) 1986-03-28 1986-04-10 Method for blowing noncombustible fuel into blast furnace

Country Status (1)

Country Link
JP (1) JPS62238307A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233332A (en) * 2005-01-31 2006-09-07 Jfe Steel Kk Method for operating blast furnace
JP2011168886A (en) * 2010-01-19 2011-09-01 Jfe Steel Corp Blast furnace operation method
JP2011168884A (en) * 2010-01-19 2011-09-01 Jfe Steel Corp Method for operating blast furnace
JP2011168882A (en) * 2010-01-19 2011-09-01 Jfe Steel Corp Method for operating blast furnace
JP2011168885A (en) * 2010-01-19 2011-09-01 Jfe Steel Corp Blast furnace operation method
JP2011168883A (en) * 2010-01-19 2011-09-01 Jfe Steel Corp Method for operating blast furnace
WO2012098713A1 (en) * 2011-01-18 2012-07-26 Jfeスチール株式会社 Method for operating blast furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233332A (en) * 2005-01-31 2006-09-07 Jfe Steel Kk Method for operating blast furnace
JP2011168886A (en) * 2010-01-19 2011-09-01 Jfe Steel Corp Blast furnace operation method
JP2011168884A (en) * 2010-01-19 2011-09-01 Jfe Steel Corp Method for operating blast furnace
JP2011168882A (en) * 2010-01-19 2011-09-01 Jfe Steel Corp Method for operating blast furnace
JP2011168885A (en) * 2010-01-19 2011-09-01 Jfe Steel Corp Blast furnace operation method
JP2011168883A (en) * 2010-01-19 2011-09-01 Jfe Steel Corp Method for operating blast furnace
WO2012098713A1 (en) * 2011-01-18 2012-07-26 Jfeスチール株式会社 Method for operating blast furnace
CN103339266A (en) * 2011-01-18 2013-10-02 杰富意钢铁株式会社 Method for operating blast furnace

Also Published As

Publication number Publication date
JPS6332842B2 (en) 1988-07-01

Similar Documents

Publication Publication Date Title
RU2473475C2 (en) Glass melting furnace
US4259081A (en) Process of calcining limestone in a rotary kiln
CN103339266A (en) Method for operating blast furnace
CN103649339B (en) Method for operating blast furnace
JPS6311608A (en) Method for blowing power fuel into blast furnace
JPS62238307A (en) Method for blowing noncombustible fuel into blast furnace
JP6580710B2 (en) Auxiliary burner for electric furnace
JPH0126445B2 (en)
US4140480A (en) Hot cupola gas burner
US4780136A (en) Method of injecting burning resistant fuel into a blast furnace
RU2174649C2 (en) Pulverized-coal lighting-up burner and method of its operation
JP2005213591A (en) Method for blowing solid fuel into blast furnace and blowing lance
US20070295250A1 (en) Oxygen-enhanced combustion of unburned carbon in ash
CN109539240A (en) A kind of non-forming biomass combustion device
US5222447A (en) Carbon black enriched combustion
JP2005264189A (en) Method for blowing solid fuel into blast furnace
JP2523918B2 (en) Injection method of powdered fuel into blast furnace
CN210831954U (en) Ultralow-heat-value gas combustion furnace
JPS6287709A (en) Pulverized coal burner using low calorie gas as assist fuel
JP4345506B2 (en) Method of injecting solid fuel into the blast furnace
JPH0129846B2 (en)
KR810000121B1 (en) Process for calcining limestone in a rotary kiln
EP2503238A1 (en) Combustion chamber
WO2020244165A1 (en) Rock wool production kiln, device and process
CA1111244A (en) Hot cupola gas burner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees