JP2011168884A - Method for operating blast furnace - Google Patents

Method for operating blast furnace Download PDF

Info

Publication number
JP2011168884A
JP2011168884A JP2011007952A JP2011007952A JP2011168884A JP 2011168884 A JP2011168884 A JP 2011168884A JP 2011007952 A JP2011007952 A JP 2011007952A JP 2011007952 A JP2011007952 A JP 2011007952A JP 2011168884 A JP2011168884 A JP 2011168884A
Authority
JP
Japan
Prior art keywords
lance
lng
combustion
blown
pulverized coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011007952A
Other languages
Japanese (ja)
Other versions
JP5824813B2 (en
Inventor
Daiki Fujiwara
大樹 藤原
Akinori Murao
明紀 村尾
Shiro Watakabe
史朗 渡壁
Yasuyuki Morikawa
泰之 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011007952A priority Critical patent/JP5824813B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to AU2011356010A priority patent/AU2011356010B2/en
Priority to BR112013017667-9A priority patent/BR112013017667B1/en
Priority to PCT/JP2011/066781 priority patent/WO2012098715A1/en
Priority to CN2011800654081A priority patent/CN103314118A/en
Priority to KR1020137021640A priority patent/KR20130109237A/en
Priority to EP11856222.2A priority patent/EP2653564B1/en
Priority to TW100125150A priority patent/TWI485256B/en
Publication of JP2011168884A publication Critical patent/JP2011168884A/en
Application granted granted Critical
Publication of JP5824813B2 publication Critical patent/JP5824813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a blast furnace which attains more improvement of combustion temperature and the decrease of consumption unit of a reducing material. <P>SOLUTION: LNG (Liquefied natural gas) 9 and fine powdery coal 6, are mixed and the mixture fuel is blown from a single-tube lance 4 to a tuyere 3, thereby the fine powdery coal 6 is explosively diffused by precedingly burning with the LNG 9 and at the same time, the temperature of the fine powdery coal 6 is drastically raised with the combustion heat of the LNG 9 and thereby, the combustion temperature is drastically improved by rasing the heating speed of the fine powdery coal 6 and then, the consumption unit of the reducing material can be decreased. Further, by setting the total flowing amount of the gas blown from the single-tube lance 4 to be ≥135 Nm<SP>3</SP>/h and the outlet flowing speed of the blowing gas in the single-tube lance 4 to be ≥20 m/sec, the deformation due to the heat of the single-tube lance 4 can be prevented. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高炉羽口から微粉炭などの固体燃料と、LNG(Liquefied Natural Gas:液化天然ガス)などの易燃性燃料とを吹込んで、燃焼温度を上昇させることにより生産性の向上及び還元材原単位の低減を図る高炉の操業方法に関するものである。   In the present invention, solid fuel such as pulverized coal and flammable fuel such as LNG (Liquefied Natural Gas) are injected from the blast furnace tuyere and the combustion temperature is increased to improve and reduce productivity. The present invention relates to a method for operating a blast furnace to reduce the basic unit of material.

近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出CO2の抑制は重要な課題である。これを受け、最近の高炉操業では、低還元材比(低RAR:Reduction Agent Ratioの略で、銑鉄1t製造当たりの、羽口からの吹込み還元材と炉頂から装入されるコークスの合計量)操業が強力に推進されている。高炉は、主にコークス及び羽口から吹込む微粉炭を還元材として使用しており、低還元材比、ひいては炭酸ガス排出抑制を達成するためにはコークスなどを廃プラ、LNG、重油等の水素含有率の高い還元材で置換する方策が有効である。下記特許文献1では、羽口から燃料を吹込むランスを二重管とし、二重管ランスの内側管からLNGを吹込み、二重管ランスの外側管から微粉炭を吹込むことが提案されている。また、下記特許文献2では、同じく羽口から燃料を吹込むランスを二重管とし、二重管ランスの内側管から微粉炭を吹込み、二重管ランスの外側管からLNGを吹込むことが提案されている。 In recent years, global warming due to an increase in carbon dioxide emissions has become a problem, and the suppression of emitted CO 2 is an important issue even in the steel industry. In response to this, in recent blast furnace operations, the ratio of low reducing agent (low RAR: Abbreviation for Reduction Agent Ratio) is the sum of the reducing material injected from the tuyere and the coke charged from the top of the furnace per 1 ton of pig iron. Volume) Operation is being strongly promoted. The blast furnace mainly uses coke and pulverized coal blown from the tuyere as a reducing material, and in order to achieve a low reducing material ratio and, in turn, carbon dioxide emission control, coke etc. is used as waste plastic, LNG, heavy oil, etc. It is effective to replace with a reducing material having a high hydrogen content. In the following Patent Document 1, it is proposed that a lance that blows fuel from the tuyere is a double pipe, LNG is blown from the inner pipe of the double pipe lance, and pulverized coal is blown from the outer pipe of the double pipe lance. ing. Also, in Patent Document 2 below, a lance that blows fuel from the tuyere is a double pipe, pulverized coal is blown from the inner pipe of the double pipe lance, and LNG is blown from the outer pipe of the double pipe lance. Has been proposed.

特開第3176680号公報Japanese Patent No. 3176680 特公平1−29847号公報Japanese Patent Publication No. 1-289847

前記特許文献1に記載される高炉操業方法も、前記特許文献2に記載される高炉操業方法も、従来の微粉炭だけを羽口から吹込む方法に比べれば、燃焼温度の向上や還元材原単位の低減に効果があるものの、更なる改良の余地がある。
本発明は、上記のような問題点に着目してなされたものであり、より一層の燃焼温度の向上及び還元材原単位の低減を可能とする高炉操業方法を提供することを目的とするものである。
The blast furnace operating method described in Patent Document 1 and the blast furnace operating method described in Patent Document 2 are both improved in combustion temperature and reduced raw material compared to the conventional method of blowing only pulverized coal from the tuyere. Although effective in reducing units, there is room for further improvement.
The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a blast furnace operating method capable of further improving the combustion temperature and reducing the reducing material basic unit. It is.

上記課題を解決するために、本発明の高炉操業方法は、易燃性燃料と固体燃料とを混合し、その混合燃料を単管ランスから羽口に吹込むことを特徴とするものである。
また、前記単管ランスから吹込まれるガスの合計流量を135Nm3/h以上とし、当該単管ランスの出口流速を20m/sec以上としたことを特徴とするものである。
また、前記固体燃料が微粉炭であることを特徴とするものである。
また、前記易燃性燃料がLNGであることを特徴とするものである。
In order to solve the above problems, the blast furnace operating method of the present invention is characterized in that a flammable fuel and a solid fuel are mixed and the mixed fuel is blown into a tuyere from a single tube lance.
The total flow rate of the gas blown from the single pipe lance is set to 135 Nm 3 / h or more, and the outlet flow velocity of the single pipe lance is set to 20 m / sec or more.
Further, the solid fuel is pulverized coal.
The flammable fuel is LNG.

而して、本発明の高炉操業方法によれば、易燃性燃料が先に燃焼することで固体燃料が爆発的に拡散し、同時に易燃性燃料の燃焼熱で固体燃料の温度が大幅に上昇し、これにより固体燃料の加熱速度が上昇して燃焼温度が大幅に向上し、もって還元材原単位を低減することができる。
また、単管ランスから吹込まれるガスの合計流量を135Nm3/h以上とし、当該単管ランスの出口流速を20m/sec以上とすることにより、昇温による単管ランスの変形を防止することができる。
Thus, according to the blast furnace operating method of the present invention, the solid fuel explosively diffuses by burning the flammable fuel first, and at the same time, the temperature of the solid fuel is greatly increased by the combustion heat of the flammable fuel. As a result, the heating rate of the solid fuel is increased, and the combustion temperature is greatly improved, so that the reducing material basic unit can be reduced.
In addition, the total flow rate of the gas blown from the single pipe lance is set to 135 Nm 3 / h or more, and the outlet flow velocity of the single pipe lance is set to 20 m / sec or more to prevent the deformation of the single pipe lance due to the temperature rise. Can do.

本発明の高炉操業方法が適用された高炉の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the blast furnace to which the blast furnace operating method of this invention was applied. 図1のランスから微粉炭だけを吹込んだときの燃焼状態の説明図である。It is explanatory drawing of a combustion state when only pulverized coal is blown in from the lance of FIG. 図2の微粉炭の燃焼メカニズムの説明図である。It is explanatory drawing of the combustion mechanism of the pulverized coal of FIG. 微粉炭とLNGを吹込んだときの燃焼メカニズムの説明図である。It is explanatory drawing of a combustion mechanism when pulverized coal and LNG are blown. 燃焼実験装置の説明図である。It is explanatory drawing of a combustion experiment apparatus. 燃焼実験結果の説明図である。It is explanatory drawing of a combustion experiment result. 燃焼実験結果の燃焼温度の説明図である。It is explanatory drawing of the combustion temperature of a combustion experiment result. ランスから吹込まれるガスの流量とランス表面温度の関係を示す説明図である。It is explanatory drawing which shows the relationship between the flow volume of the gas inject | poured from a lance, and a lance surface temperature.

次に、本発明の高炉操業方法の一実施形態について図面を参照しながら説明する。
図1は、本実施形態の高炉操業方法が適用された高炉の全体図である。図に示すように、高炉1の羽口3には、熱風を送風するための送風管2が接続され、この送風管2を貫通してランス4が設置されている。羽口3の熱風送風方向先方のコークス堆積層には、レースウエイ5と呼ばれる燃焼空間が存在し、主として、この燃焼空間で還元材の燃焼、ガス化が行われる。
Next, an embodiment of the blast furnace operating method of the present invention will be described with reference to the drawings.
FIG. 1 is an overall view of a blast furnace to which the blast furnace operating method of the present embodiment is applied. As shown in the figure, a blast pipe 2 for blowing hot air is connected to the tuyere 3 of the blast furnace 1, and a lance 4 is installed through the blast pipe 2. A combustion space called a raceway 5 exists in the coke deposit layer in the hot air blowing direction ahead of the tuyere 3, and the reducing material is mainly combusted and gasified in this combustion space.

図2には、ランス4から微粉炭6だけを吹込んだときの燃焼状態を示す。ランス4から羽口3を通過し、レースウエイ5内に吹込まれた微粉炭6は、コークス7と共に、その揮発分と固定炭素が燃焼し、燃焼しきれずに残った、一般にチャーと呼ばれる炭素と灰分の集合体は、レースウエイから未燃チャー8として排出される。羽口3の熱風送風方向先方における熱風速度は約200m/secであり、ランス4の先端からレースウエイ5内におけるO2の存在領域は約0.3〜0.5mとされているので、実質的に1/1000秒のレベルで微粉炭粒子の昇温及びO2との接触効率(分散性)の改善が必要となる。 FIG. 2 shows a combustion state when only pulverized coal 6 is blown from the lance 4. The pulverized coal 6 that passes through the tuyere 3 from the lance 4 and is blown into the raceway 5, together with the coke 7, combusts its volatile matter and fixed carbon, and remains unburned, generally called char. The aggregate of ash is discharged as unburned char 8 from the raceway. The hot air velocity in the hot air blowing direction ahead of the tuyere 3 is about 200 m / sec, and the existence area of O 2 in the raceway 5 from the tip of the lance 4 is about 0.3 to 0.5 m. In particular, it is necessary to improve the temperature rise of pulverized coal particles and the contact efficiency (dispersibility) with O 2 at a level of 1/1000 second.

図3は、ランス4から送風管2内に微粉炭(図ではPC:Pulverized Coal)6のみを吹込んだ場合の燃焼メカニズムを示す。羽口3からレースウエイ5内に吹込まれた微粉炭6は、レースウエイ5内の火炎からの輻射伝熱によって粒子が加熱し、更に輻射伝熱、伝導伝熱によって粒子が急激に温度上昇し、300℃以上昇温した時点から熱分解が開始し、揮発分に着火して火炎が形成され、燃焼温度は1400〜1700℃に達する。揮発分が放出してしまうと、前述したチャー8となる。チャー8は、主に固定炭素であるので、燃焼反応と共に、炭素溶解反応と呼ばれる反応も生じる。   FIG. 3 shows a combustion mechanism when only pulverized coal (PC: Pulverized Coal in the figure) 6 is blown into the blow pipe 2 from the lance 4. The pulverized coal 6 blown into the raceway 5 from the tuyere 3 is heated by the radiant heat transfer from the flame in the raceway 5, and the temperature of the pulverized coal 6 is rapidly increased by the radiant heat transfer and conduction heat transfer. The thermal decomposition starts when the temperature is raised to 300 ° C. or more, and the volatile matter is ignited to form a flame. The combustion temperature reaches 1400 to 1700 ° C. When the volatile matter is released, the above-described char 8 is obtained. Since the char 8 is mainly fixed carbon, a reaction called a carbon dissolution reaction occurs along with a combustion reaction.

図4は、ランス4から送風管2内に微粉炭6と共にLNG9を吹込んだ場合の燃焼メカニズムを示す。微粉炭6とLNG9の吹込み方法は、単純に平行に吹込んだ場合を示している。なお、図中の二点鎖線は、図3に示した微粉炭のみを吹込んだ場合の燃焼温度を参考に示している。このように微粉炭とLNGを同時に吹込む場合、気体ガスのLNGが優先的に燃焼し、この燃焼熱によって微粉炭が急速に加熱、昇温すると考えられ、これによりランスに近い位置で燃焼温度が更に上昇する。   FIG. 4 shows a combustion mechanism when LNG 9 is blown together with pulverized coal 6 from the lance 4 into the blower pipe 2. The method of blowing pulverized coal 6 and LNG 9 shows a case where the pulverized coal 6 is simply blown in parallel. In addition, the dashed-two dotted line in a figure has shown the combustion temperature at the time of injecting only the pulverized coal shown in FIG. 3 with reference. In this way, when pulverized coal and LNG are injected simultaneously, the gas gas LNG is preferentially combusted, and it is considered that the pulverized coal is rapidly heated and heated by this combustion heat. Will rise further.

このような知見に基づき、図5に示す燃焼実験装置を用いて燃焼実験を行った。実験炉11内にはコークスが充填されており、覗き窓からレースウエイ15の内部を観察することができる。送風管12にはランス14が差し込まれ、燃焼バーナ13で生じた熱風を実験炉11内に所定の送風量で送風することができる。また、この送風管12では、送風の酸素富化量を調整することも可能である。ランス14は、微粉炭及びLNGの何れか一方又は双方を送風管12内に吹込むことができる。実験炉11内で生じた排ガスは、サイクロンと呼ばれる分離装置16で排ガスとダストに分離され、排ガスは助燃炉などの排ガス処理設備に送給され、ダストは捕集箱17に捕集される。   Based on such knowledge, a combustion experiment was performed using the combustion experiment apparatus shown in FIG. The experimental furnace 11 is filled with coke, and the inside of the raceway 15 can be observed from the viewing window. A lance 14 is inserted into the blower tube 12, and hot air generated in the combustion burner 13 can be blown into the experimental furnace 11 with a predetermined blowing amount. Moreover, in this ventilation pipe 12, it is also possible to adjust the oxygen enrichment amount of ventilation. The lance 14 can blow either one or both of pulverized coal and LNG into the blower pipe 12. The exhaust gas generated in the experimental furnace 11 is separated into exhaust gas and dust by a separator 16 called a cyclone, the exhaust gas is fed to an exhaust gas treatment facility such as an auxiliary combustion furnace, and the dust is collected in a collection box 17.

燃焼実験には、ランス14に単管ランスと二重管ランスの二種類を用い、単管ランスを用いて微粉炭のみを吹込んだ場合、二重管ランスを用い、二重管ランスの内側管から微粉炭を吹込み、二重管ランスの外側管からLNGを吹込んだ場合、二重管ランスの内側管からLNGを吹込み、二重管ランスの外側管から微粉炭を吹込んだ場合の夫々について覗き窓から2色温度計による燃焼温度、燃焼位置、未燃チャーの燃焼状況、拡散性を測定した。2色温度計は、周知のように、熱放射(高温物体から低温物体への電磁波の移動)を利用して温度計測を行う放射温度計であり、温度が高くなると波長分布が短波長側にずれていくことに着目して、波長分布の温度の変化を計測することで温度を求める波長分布形の一つであり、中でも波長分布を捉えるため、2つの波長における放射エネルギーを計測し、比率から温度を測定するものである。未燃チャーの燃焼状況は、実験炉11の送風管12内のランス14先から100mm、150mmの位置にてプローブで未燃チャーを回収して、樹脂埋め、研磨後、画像解析によってチャー内空隙率を測定し、判定した。   In the combustion experiment, two types of lances 14 are used: a single-pipe lance and a double-pipe lance. If only pulverized coal is blown in using a single-pipe lance, a double-pipe lance is used. When pulverized coal is blown from the pipe and LNG is blown from the outer pipe of the double pipe lance, LNG is blown from the inner pipe of the double pipe lance and pulverized coal is blown from the outer pipe of the double pipe lance. For each case, the combustion temperature, combustion position, unburned char combustion status, and diffusivity were measured from a viewing window using a two-color thermometer. As is well known, a two-color thermometer is a radiation thermometer that measures temperature using thermal radiation (electromagnetic wave movement from a high-temperature object to a low-temperature object). Paying attention to the shift, it is one of the wavelength distribution types to obtain the temperature by measuring the temperature change of the wavelength distribution, and in particular to measure the wavelength distribution, the radiant energy at two wavelengths is measured and the ratio The temperature is measured from The combustion state of the unburned char is determined by collecting unburned char with a probe at a position of 100 mm and 150 mm from the tip of the lance 14 in the blast pipe 12 of the experimental furnace 11, filling the resin, polishing, and then analyzing the void in the char by image analysis. The rate was measured and judged.

微粉炭の諸元は、固定炭素(FC:Fixed Carbon)77.8%、揮発分(VM:Volatile Matter)13.6%、灰分(Ash)8.6%で、吹込み条件は29.8kg/h(製銑原単位で100kg/t相当)とした。また、LNGの吹込み条件は、3.6kg/h(5Nm3/h、製銑原単位で10kg/t相当)とした。送風条件は、送風温度1200℃、流量300Nm3/h、流速70m/s、O2富化+5.5(酸素濃度26.5%、空気中酸素濃度21%に対し、5.5%の富化)とした。実験結果の評価は、単管から微粉炭のみを吹込んだ場合の燃焼温度、燃焼位置、未燃チャーの燃焼状況、拡散性(主として微粉炭)を基準とし、二重管ランスの内側管から微粉炭を吹込み、外側管からLNGを吹込んだ場合、二重管ランスの内側管からLNGを吹込み、外側管から微粉炭を吹込んだ場合の夫々を評価した。評価は、微粉炭のみの場合と同程度の場合を△、少し改善された場合を○、大幅に改善された場合を◎で表した。 The specifications of the pulverized coal are 77.8% fixed carbon (FC), 13.6% volatile matter (VM), 8.6% ash (Ash), and the blowing condition is 29.8 kg. / H (equivalent to 100 kg / t in ironmaking base unit). The LNG blowing conditions were 3.6 kg / h (5 Nm 3 / h, equivalent to 10 kg / t in the ironmaking base unit). The blowing conditions are: blowing temperature 1200 ° C., flow rate 300 Nm 3 / h, flow rate 70 m / s, O 2 enrichment +5.5 (oxygen concentration 26.5%, oxygen concentration 21% in air, richness 5.5% ). The evaluation of the experimental results is based on the combustion temperature, combustion position, unburned char combustion status and diffusibility (mainly pulverized coal) when only pulverized coal is blown from a single pipe, and from the inner pipe of the double pipe lance. When pulverized coal was blown and LNG was blown from the outer pipe, each of the cases where LNG was blown from the inner pipe of the double pipe lance and pulverized coal was blown from the outer pipe was evaluated. The evaluation was represented by Δ when the degree was the same as that of pulverized coal alone, ◯ when it was slightly improved, and ◎ when it was greatly improved.

図6には、前述した燃焼実験の結果を示す(上3段に相当)。同図から明らかなように、二重管ランスの内側管から微粉炭を吹込み、外側管からLNGを吹込む場合には、燃焼位置については改善が見られたが、その他の項目については変化が見られない。これは、微粉炭の外側のLNGが先にO2と接触して速やかに燃焼し、その燃焼熱で微粉炭の加熱速度が上昇したものの、LNGの燃焼にO2が消費されてしまい、微粉炭の燃焼に必要なO2が減少して、十分な燃焼温度上昇に至らず、未燃チャーの燃焼状況も改善されなかったと考えられる。一方、二重管ランスの内側管からLNGを吹込み、外側管から微粉炭を吹込む場合には、燃焼温度、未燃チャーの燃焼状況について改善が見られ、拡散性については大幅な改善が見られたものの、燃焼位置については変化が見られない。これは、外側の微粉炭領域を通じた内側のLNGまでのO2の拡散に時間を要したものの、内側の易燃性のLNGが燃焼すれば、爆発的な拡散が生じ、LNGの燃焼熱で微粉炭が加熱されて燃焼温度も上昇し、未燃チャーの燃焼状況も改善されたものと考えられる。 FIG. 6 shows the result of the above-described combustion experiment (corresponding to the upper three stages). As is clear from the figure, when pulverized coal was blown from the inner pipe of the double pipe lance and LNG was blown from the outer pipe, the combustion position was improved, but other items were changed. Is not seen. This is because the LNG outside the pulverized coal first contacts O 2 and burns quickly, and although the heating speed of the pulverized coal is increased by the combustion heat, O 2 is consumed in the combustion of LNG, and the pulverized coal It is considered that O 2 necessary for the combustion of charcoal has decreased, the combustion temperature has not increased sufficiently, and the combustion state of unburned char has not been improved. On the other hand, when LNG is blown from the inner pipe of the double pipe lance and pulverized coal is blown from the outer pipe, the combustion temperature and the combustion state of unburned char are improved, and the diffusivity is greatly improved. Although it was observed, there was no change in the combustion position. Although it took time to diffuse O 2 to the inner LNG through the outer pulverized coal region, if the inner flammable LNG burns, explosive diffusion occurs, and the LNG combustion heat It is considered that the pulverized coal is heated and the combustion temperature rises, and the combustion state of the unburned char is improved.

本願発明者は、この実験結果を踏まえて、ランスに単管ランスを用い、LNGと微粉炭を予め混合し、この混合燃料を単管ランスから吹込むことに着目した。即ち、LNG及び微粉炭が、互いにまとまって存在していることが未改善の原因ではないか、LNGが分散していれば広い範囲でLNGが先に燃焼し、それに伴って微粉炭が広範囲に拡散すると共にLNGの燃焼熱で加熱され、燃焼位置がランスに近づくと共に、燃焼温度が上昇し、未燃チャーの燃焼状況も改善されるのではないか、という推察である。そこで、前述の燃焼実験装置を用い、LNG及び微粉炭を予め混合し、その混合燃料を単管ランスから吹込んで実験を行った。   Based on the results of this experiment, the inventor of the present application paid attention to using a single pipe lance as a lance, mixing LNG and pulverized coal in advance, and blowing this mixed fuel from the single pipe lance. That is, LNG and pulverized coal coexisting with each other is not the cause of the improvement, or if LNG is dispersed, LNG burns first in a wide range, and pulverized coal spreads over a wide range accordingly. It is presumed that the gas is diffused and heated by the combustion heat of LNG, the combustion position approaches the lance, the combustion temperature rises, and the combustion state of the unburned char is also improved. Therefore, using the above-described combustion experiment apparatus, LNG and pulverized coal were mixed in advance, and the mixed fuel was blown from a single pipe lance for experiments.

実験結果を図6の最下段に示す。また、全ての実験の燃焼位置と燃焼温度の関係を図7に示す。これらの図より明らかなように、LNG及び微粉炭を予め混合し、その混合燃料を単管ランスから吹込んだ場合には、燃焼温度、燃焼位置、未燃チャーの燃焼状況の3つの点で大幅な改善が見られた。拡散性については、二重管ランスの内側管からLNGを吹込むと共に、二重管ランスの外側管から微粉炭を吹込む方法が遙かに改善されたため、混合燃料吹込みは少し改善されたという評価に止まったが、実質的には十分な拡散効果が見られ、総合評価も大幅に改善された。   The experimental results are shown in the lowermost part of FIG. Moreover, the relationship between the combustion position and combustion temperature of all the experiments is shown in FIG. As is clear from these figures, when LNG and pulverized coal are mixed in advance and the mixed fuel is blown from a single pipe lance, the combustion temperature, the combustion position, and the combustion status of the unburned char are three points. Significant improvement was seen. In terms of diffusivity, LNG was blown from the inner pipe of the double pipe lance, and the method of blowing pulverized coal from the outer pipe of the double pipe lance was greatly improved, so the mixed fuel injection was slightly improved. Although the evaluation was limited to this, a substantial diffusion effect was seen, and the overall evaluation was greatly improved.

ところで、前述のような燃焼温度の上昇に伴って、単管ランスは高温に晒され易くなる。単管ランスは、例えばステンレス鋼鋼管で構成される。勿論、単管ランスには所謂ウォータージャケットと呼ばれる水冷が施されているが、ランス先端までは覆うことができない。特に、この水冷の及ばない単管ランスの先端部が熱で変形することが分かった。単管ランスが変形する、つまり曲がると所望部位に微粉炭やLNGを吹込むことができないし、消耗品であるランスの交換作業に支障がある。また、微粉炭の流れが変化して羽口に当たることも考えられ、そのような場合には羽口が損傷する恐れがある。   By the way, as the combustion temperature rises as described above, the single tube lance is easily exposed to high temperatures. The single pipe lance is made of, for example, a stainless steel pipe. Of course, the single-tube lance is water-cooled called a so-called water jacket, but the tip of the lance cannot be covered. In particular, it has been found that the tip of the single tube lance that is not subject to water cooling is deformed by heat. If the single-pipe lance is deformed, that is, bent, pulverized coal or LNG cannot be blown into a desired portion, and there is a problem in replacement work of the lance that is a consumable item. In addition, the flow of pulverized coal may change and hit the tuyere, and in such a case, the tuyere may be damaged.

水冷できない単管ランスを冷却するためには、内部に送給されるガスで放熱するしかない。内部に流れるガスに放熱して単管ランス自体を冷却する場合、ガスの流量がランス温度に影響を与えると考えられる。そこで、本発明者等は、単管ランスから吹込まれるガスの流量を種々に変更してランス表面の温度を測定した。測定結果を図8に示す。
単管ランスには、15Aスケジュール90と呼ばれる鋼管、及び20Aスケジュール90と呼ばれる鋼管の2種類を用い、微粉炭を搬送するためのキャリアガス(N2)とLNGの合計流量を種々に変更してランス表面の温度を測定した。ちなみに、「15A」、「20A」はJIS G 3459に規定する鋼管外径の称呼寸法であり、15Aは外径21.7mm、20Aは外径27.2mmである。また、「スケジュール」はJIS G 3459に規定する鋼管の肉厚の称呼寸法であり、15Aスケジュール90は肉厚3.70mm、20Aスケジュール90は肉厚3.90mmである。単管ランスに鋼管を用いる場合、上記の2種類程度の外径を有する鋼管とすることが現実的である。また、25Aスケジュール90(外径:34mm、肉厚:4.50mm)を用いることも可能である。なお、ステンレス鋼鋼管の他、普通鋼も利用できる。その場合の鋼管の外径はJIS G 3452に規定され、肉厚はJIS G 3454に規定される。
The only way to cool a single-pipe lance that cannot be cooled with water is to dissipate heat with the gas supplied inside. When the single pipe lance itself is cooled by releasing heat to the gas flowing inside, it is considered that the gas flow rate affects the lance temperature. Therefore, the inventors measured the temperature of the lance surface by changing the flow rate of the gas blown from the single tube lance in various ways. The measurement results are shown in FIG.
The single pipe lance uses a steel pipe called 15A schedule 90 and a steel pipe called 20A schedule 90, and the total flow rate of carrier gas (N 2 ) and LNG for conveying pulverized coal is variously changed. The temperature of the lance surface was measured. Incidentally, “15A” and “20A” are nominal dimensions of the steel pipe outer diameter defined in JIS G 3459, 15A has an outer diameter of 21.7 mm, and 20A has an outer diameter of 27.2 mm. “Schedule” is a nominal dimension of the thickness of the steel pipe defined in JIS G 3459. The 15A schedule 90 has a thickness of 3.70 mm, and the 20A schedule 90 has a thickness of 3.90 mm. When a steel pipe is used for a single pipe lance, it is realistic to use a steel pipe having the above-described two types of outer diameters. It is also possible to use a 25A schedule 90 (outer diameter: 34 mm, wall thickness: 4.50 mm). In addition to stainless steel pipes, plain steel can also be used. In this case, the outer diameter of the steel pipe is specified in JIS G 3453, and the wall thickness is specified in JIS G 3454.

同図に二点鎖線で示すように、サイズの異なる鋼管毎に、単管ランスから吹込まれるガスの合計流量の増加に伴ってランス表面の温度が反比例的に低下している。これは、鋼管のサイズが違うと、同じガス合計流量でもガスの流速が異なるためである。鋼管を単管ランスに使用する場合、単管ランスの表面温度が880℃を上回るとクリープ変形が起こり、単管ランスが曲がってしまう。従って、単管ランスに15Aスケジュール90、或いは20Aスケジュール90の鋼管を用い、単管ランスの表面温度が880℃以下である場合の吹込みガスの合計流量は135Nm3/h以上であり、それらの鋼管を用いた場合の単管ランスの出口流速は20m/sec以上となる。そして、単管ランスの吹込みガスの合計流量を135Nm3/h以上とし、単管ランスの出口流速が20m/sec以上である場合には単管ランスに変形や曲がりは生じない。 As indicated by a two-dot chain line in the figure, the temperature of the lance surface decreases in inverse proportion to the increase in the total flow rate of the gas blown from the single pipe lance for each steel pipe having a different size. This is because if the steel pipe size is different, the gas flow rate is different even at the same total gas flow rate. When using a steel pipe for a single pipe lance, if the surface temperature of the single pipe lance exceeds 880 ° C., creep deformation occurs and the single pipe lance is bent. Therefore, when a 15A schedule 90 or 20A schedule 90 steel pipe is used for the single pipe lance, and the surface temperature of the single pipe lance is 880 ° C. or less, the total flow rate of the blown gas is 135 Nm 3 / h or more. When the steel pipe is used, the outlet flow velocity of the single pipe lance is 20 m / sec or more. When the total flow rate of the single tube lance blowing gas is set to 135 Nm 3 / h or more and the outlet flow velocity of the single tube lance is 20 m / sec or more, the single tube lance is not deformed or bent.

このように、本実施形態の高炉操業方法では、LNG(易燃性燃料)9と微粉炭(固体燃料)6とを混合し、その混合燃料を単管ランス4から羽口3に吹込むことにより、LNG(易燃性燃料)9が先に燃焼することで微粉炭(固体燃料)6が爆発的に拡散し、同時にLNG(易燃性燃料)9の燃焼熱で微粉炭(固体燃料)6の温度が大幅に上昇し、これにより微粉炭(固体燃料)6の加熱速度が上昇して燃焼温度が大幅に向上し、もって還元材原単位を低減することができる。   Thus, in the blast furnace operating method of this embodiment, LNG (flammable fuel) 9 and pulverized coal (solid fuel) 6 are mixed and the mixed fuel is blown into the tuyere 3 from the single tube lance 4. Thus, the pulverized coal (solid fuel) 6 is explosively diffused by burning the LNG (flammable fuel) 9 first, and at the same time, the pulverized coal (solid fuel) is heated by the combustion heat of the LNG (flammable fuel) 9. As a result, the heating speed of the pulverized coal (solid fuel) 6 is increased, the combustion temperature is significantly improved, and the reducing material basic unit can be reduced.

また、単管ランス4から吹込まれるガスの合計流量を135Nm3/h以上とし、当該単管ランス4の出口流速を20m/sec以上とすることにより、昇温による単管ランスの変形を防止することができる。 Moreover, the total flow rate of the gas blown from the single pipe lance 4 is set to 135 Nm 3 / h or more, and the outlet flow velocity of the single pipe lance 4 is set to 20 m / sec or more to prevent deformation of the single pipe lance due to temperature rise. can do.

1は高炉、2は送風管、3は羽口、4はランス、5はレースウエイ、6は微粉炭(固体燃料)、7はコークス、8はチャー、9はLNG(易燃性燃料)   1 is a blast furnace, 2 is a blow pipe, 3 is a tuyere, 4 is a lance, 5 is a raceway, 6 is pulverized coal (solid fuel), 7 is coke, 8 is char, 9 is LNG (flammable fuel)

Claims (4)

易燃性燃料と固体燃料とを混合し、その混合燃料を単管ランスから羽口に吹込むことを特徴とする高炉操業方法。   A method of operating a blast furnace, characterized in that a flammable fuel and a solid fuel are mixed and the mixed fuel is blown into a tuyere from a single tube lance. 前記単管ランスから吹込まれるガスの合計流量を135Nm3/h以上とし、当該単管ランスの出口流速を20m/sec以上としたことを特徴とする請求項1に記載の高炉操業方法。 2. The blast furnace operating method according to claim 1, wherein a total flow rate of the gas blown from the single pipe lance is set to 135 Nm 3 / h or more, and an outlet flow velocity of the single pipe lance is set to 20 m / sec or more. 前記固体燃料が微粉炭であることを特徴とする請求項1に記載の高炉操業方法。   The blast furnace operating method according to claim 1, wherein the solid fuel is pulverized coal. 前記易燃性燃料がLNGであることを特徴とする請求項1に記載の高炉操業方法。   The blast furnace operating method according to claim 1, wherein the flammable fuel is LNG.
JP2011007952A 2010-01-19 2011-01-18 Blast furnace operation method Active JP5824813B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2011007952A JP5824813B2 (en) 2010-01-19 2011-01-18 Blast furnace operation method
BR112013017667-9A BR112013017667B1 (en) 2011-01-18 2011-07-15 HIGH OVEN OPERATION METHOD
PCT/JP2011/066781 WO2012098715A1 (en) 2011-01-18 2011-07-15 Method for operating blast furnace
CN2011800654081A CN103314118A (en) 2011-01-18 2011-07-15 Method for operating blast furnace
AU2011356010A AU2011356010B2 (en) 2011-01-18 2011-07-15 Method for operating blast furnace
KR1020137021640A KR20130109237A (en) 2011-01-18 2011-07-15 Method for operating blast furnace
EP11856222.2A EP2653564B1 (en) 2011-01-18 2011-07-15 Method for operating blast furnace
TW100125150A TWI485256B (en) 2011-01-18 2011-07-15 Operating method of furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010009391 2010-01-19
JP2010009391 2010-01-19
JP2011007952A JP5824813B2 (en) 2010-01-19 2011-01-18 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2011168884A true JP2011168884A (en) 2011-09-01
JP5824813B2 JP5824813B2 (en) 2015-12-02

Family

ID=44683289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011007952A Active JP5824813B2 (en) 2010-01-19 2011-01-18 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP5824813B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142706A (en) * 1985-12-17 1987-06-26 Kawasaki Steel Corp Method for blowing granular particle into blast furnace
JPS62238307A (en) * 1986-04-10 1987-10-19 Kobe Steel Ltd Method for blowing noncombustible fuel into blast furnace
JPS6311608A (en) * 1986-03-28 1988-01-19 Kobe Steel Ltd Method for blowing power fuel into blast furnace
JPH05179323A (en) * 1992-01-06 1993-07-20 Nippon Steel Corp Operating method for blast furnace
JP2004091921A (en) * 2002-08-15 2004-03-25 Jfe Steel Kk Method for blowing solid fuel into blast furnace and blown lance
JP2004285425A (en) * 2003-03-24 2004-10-14 Jfe Steel Kk Method for blowing pulverized coal into blast furnace
JP2006233332A (en) * 2005-01-31 2006-09-07 Jfe Steel Kk Method for operating blast furnace
JP2006312757A (en) * 2005-05-06 2006-11-16 Jfe Steel Kk Injection lance for gaseous reducing material, blast furnace and blast furnace operation method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142706A (en) * 1985-12-17 1987-06-26 Kawasaki Steel Corp Method for blowing granular particle into blast furnace
JPS6311608A (en) * 1986-03-28 1988-01-19 Kobe Steel Ltd Method for blowing power fuel into blast furnace
JPS62238307A (en) * 1986-04-10 1987-10-19 Kobe Steel Ltd Method for blowing noncombustible fuel into blast furnace
JPH05179323A (en) * 1992-01-06 1993-07-20 Nippon Steel Corp Operating method for blast furnace
JP2004091921A (en) * 2002-08-15 2004-03-25 Jfe Steel Kk Method for blowing solid fuel into blast furnace and blown lance
JP2004285425A (en) * 2003-03-24 2004-10-14 Jfe Steel Kk Method for blowing pulverized coal into blast furnace
JP2006233332A (en) * 2005-01-31 2006-09-07 Jfe Steel Kk Method for operating blast furnace
JP2006312757A (en) * 2005-05-06 2006-11-16 Jfe Steel Kk Injection lance for gaseous reducing material, blast furnace and blast furnace operation method

Also Published As

Publication number Publication date
JP5824813B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5263430B2 (en) Blast furnace operation method
JP5824810B2 (en) Blast furnace operation method
JP5699834B2 (en) Blast furnace operation method
JP5699833B2 (en) Blast furnace operation method
JP5974687B2 (en) Blast furnace operation method
JP5699832B2 (en) Blast furnace operation method
JP5522326B1 (en) Blast furnace operation method and tube bundle type lance
JP5824812B2 (en) Blast furnace operation method
JP2011168886A (en) Blast furnace operation method
WO2015029424A1 (en) Method for operating blast furnace
JP2011168885A (en) Blast furnace operation method
JP5652575B1 (en) Blast furnace operating method and lance
JP5824813B2 (en) Blast furnace operation method
JP5824811B2 (en) Blast furnace operation method
JP2014084470A (en) Blast furnace operation method and lance
JP2014084471A (en) Blast furnace operation method and lance
JP2015160993A (en) blast furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R150 Certificate of patent or registration of utility model

Ref document number: 5824813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250