JP2011168886A - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP2011168886A
JP2011168886A JP2011007954A JP2011007954A JP2011168886A JP 2011168886 A JP2011168886 A JP 2011168886A JP 2011007954 A JP2011007954 A JP 2011007954A JP 2011007954 A JP2011007954 A JP 2011007954A JP 2011168886 A JP2011168886 A JP 2011168886A
Authority
JP
Japan
Prior art keywords
lance
pipe
blown
pulverized coal
lng
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011007954A
Other languages
Japanese (ja)
Inventor
Shiro Watakabe
史朗 渡壁
Akinori Murao
明紀 村尾
Daiki Fujiwara
大樹 藤原
Masayuki Kitahara
雅之 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011007954A priority Critical patent/JP2011168886A/en
Priority to TW100125152A priority patent/TWI516604B/en
Priority to EP11856085.3A priority patent/EP2653563B1/en
Priority to CN2011800653873A priority patent/CN103339266A/en
Priority to AU2011356008A priority patent/AU2011356008B2/en
Priority to BR112013018060-9A priority patent/BR112013018060B1/en
Priority to PCT/JP2011/066771 priority patent/WO2012098713A1/en
Priority to KR1020137021642A priority patent/KR101536626B1/en
Publication of JP2011168886A publication Critical patent/JP2011168886A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blast furnace operation method which achieves a further elevation in combustion temperature and reduction in unit-consumption of reducing material. <P>SOLUTION: A lance 4 for blowing fuel from a tuyere 3 is formed as a double tube, dust coal 6 is blown from the inside tube of the double tube lance 4, also LNG (liquefied Natural Gas) 9 is blown from the outside tube of the double tube lance 4, and an oxygen excess ratio in the blast into the tuyere 3 is set to be 0.7-1.3, thereby LNG 9 at the inside of the dust coal 6 combusts first, so that the dust coal 6 is explosively diffused and at the same time the temperature of the dust coal 6 is considerably elevated by the combustion heat of the LNG 9, which increases the heating speed of the dust coal, at this time, the oxygen excess ratio of the blast into the tuyere 3 is set to be 0.7-1.3, which sufficiently combusts the fine powdery coal 6, consequently the heating temperature is considerably elevated resulting in reduction in unit-consumption of reducing material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高炉羽口から微粉炭などの固体燃料と、LNG(Liquefied Natural Gas:液化天然ガス)などの易燃性燃料とを吹込んで、燃焼温度を上昇させることにより生産性の向上及び還元材原単位の低減を図る高炉の操業方法に関するものである。   In the present invention, solid fuel such as pulverized coal and flammable fuel such as LNG (Liquefied Natural Gas) are injected from the blast furnace tuyere and the combustion temperature is increased to improve and reduce productivity. The present invention relates to a method for operating a blast furnace to reduce the basic unit of material.

近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出CO2の抑制は重要な課題である。これを受け、最近の高炉操業では、低還元材比(低RAR:Reduction Agent Ratioの略で、銑鉄1t製造当たりの、羽口からの吹込み還元材と炉頂から装入されるコークスの合計量)操業が強力に推進されている。高炉は、主にコークス及び羽口から吹込む微粉炭を還元材として使用しており、低還元材比、ひいては炭酸ガス排出抑制を達成するためにはコークスなどを廃プラ、LNG、重油等の水素含有率の高い還元材で置換する方策が有効である。下記特許文献1では、羽口から燃料を吹込むランスを二重管とし、二重管ランスの内側管からLNGを吹込み、二重管ランスの外側管から微粉炭を吹込むことが提案されている。また、下記特許文献2では、同じく羽口から燃料を吹込むランスを二重管とし、二重管ランスの内側管から微粉炭を吹込み、二重管ランスの外側管からLNGを吹込むことが提案されている。 In recent years, global warming due to an increase in carbon dioxide emissions has become a problem, and the suppression of emitted CO 2 is an important issue even in the steel industry. In response to this, in recent blast furnace operations, the ratio of low reducing agent (low RAR: Abbreviation for Reduction Agent Ratio) is the sum of the reducing material injected from the tuyere and the coke charged from the top of the furnace per 1 ton of pig iron. Volume) Operation is being strongly promoted. The blast furnace mainly uses coke and pulverized coal blown from the tuyere as a reducing material, and in order to achieve a low reducing material ratio and, in turn, carbon dioxide emission control, coke etc. is used as waste plastic, LNG, heavy oil, etc. It is effective to replace with a reducing material having a high hydrogen content. In the following Patent Document 1, it is proposed that a lance that blows fuel from the tuyere is a double pipe, LNG is blown from the inner pipe of the double pipe lance, and pulverized coal is blown from the outer pipe of the double pipe lance. ing. Also, in Patent Document 2 below, a lance that blows fuel from the tuyere is a double pipe, pulverized coal is blown from the inner pipe of the double pipe lance, and LNG is blown from the outer pipe of the double pipe lance. Has been proposed.

特開第3176680号公報Japanese Patent No. 3176680 特公平1−29847号公報Japanese Patent Publication No. 1-289847

前記特許文献1に記載される高炉操業方法も、前記特許文献2に記載される高炉操業方法も、従来の微粉炭だけを羽口から吹込む方法に比べれば、燃焼温度の向上や還元材原単位の低減に効果があるものの、更なる改良の余地がある。
本発明は、上記のような問題点に着目してなされたものであり、より一層の燃焼温度の向上及び還元材原単位の低減を可能とする高炉操業方法を提供することを目的とするものである。
The blast furnace operating method described in Patent Document 1 and the blast furnace operating method described in Patent Document 2 are both improved in combustion temperature and reduced raw material compared to the conventional method of blowing only pulverized coal from the tuyere. Although effective in reducing units, there is room for further improvement.
The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a blast furnace operating method capable of further improving the combustion temperature and reducing the reducing material basic unit. It is.

上記課題を解決するために、本発明の高炉操業方法は、羽口から燃料を吹き込むためのランスを二重管とし、二重管ランスの内側管から易燃性燃料を吹込むと共に、二重管ランスの外側管から固体燃料を吹込み、且つ羽口への送風の酸素過剰率を0.7〜1.3としたことを特徴とするものである。
また、前記二重管ランスの外側管から吹込まれるガスの合計流量を85Nm3/h以上とし、当該外側管の出口流速を20m/sec以上としたことを特徴とするものである。
また、前記固体燃料が微粉炭であることを特徴とするものである。
また、前記易燃性燃料がLNGであることを特徴とするものである。
In order to solve the above problems, the blast furnace operating method of the present invention uses a double pipe as a lance for injecting fuel from a tuyere, and injects a flammable fuel from an inner pipe of the double pipe lance. Solid fuel is blown from the outer pipe of the pipe lance, and the oxygen excess rate of the blown air to the tuyere is set to 0.7 to 1.3.
The total flow rate of the gas blown from the outer pipe of the double pipe lance is 85 Nm 3 / h or more, and the outlet flow velocity of the outer pipe is 20 m / sec or more.
Further, the solid fuel is pulverized coal.
The flammable fuel is LNG.

而して、本発明の高炉操業方法によれば、固体燃料の内側の易燃性燃料が先に燃焼することで固体燃料が爆発的に拡散し、同時に易燃性燃料の燃焼熱で固体燃料の温度が大幅に上昇し、これにより固体燃料の加熱速度が上昇するのであるが、このとき羽口への送風の酸化過剰率を0.7〜1.3とすることで固体燃料が十分に燃焼し、その結果、燃焼温度が大幅に向上し、もって還元材原単位を低減することができる。   Thus, according to the blast furnace operating method of the present invention, the flammable fuel inside the solid fuel burns first, so that the solid fuel explosively diffuses, and at the same time, the solid fuel is burned by the combustion heat of the flammable fuel. The heating speed of the solid fuel is thereby increased, and at this time, the excess oxidation ratio of the air blown to the tuyere is set to 0.7 to 1.3, so that the solid fuel is sufficiently obtained. As a result, the combustion temperature is greatly improved, and the reducing material intensity can be reduced.

また、二重管ランスの外側管から吹込まれるガスの合計流量を85Nm3/h以上とし、当該外側管の出口流速を20m/sec以上とすることにより、昇温による二重管ランスの変形を防止することができる。 Moreover, the total flow rate of the gas blown from the outer pipe of the double pipe lance is set to 85 Nm 3 / h or more, and the outlet flow velocity of the outer pipe is set to 20 m / sec or more. Can be prevented.

本発明の高炉操業方法が適用された高炉の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the blast furnace to which the blast furnace operating method of this invention was applied. 図1のランスから微粉炭だけを吹込んだときの燃焼状態の説明図である。It is explanatory drawing of a combustion state when only pulverized coal is blown in from the lance of FIG. 図2の微粉炭の燃焼メカニズムの説明図である。It is explanatory drawing of the combustion mechanism of the pulverized coal of FIG. 微粉炭とLNGを吹込んだときの燃焼メカニズムの説明図である。It is explanatory drawing of a combustion mechanism when pulverized coal and LNG are blown. 燃焼実験装置の説明図である。It is explanatory drawing of a combustion experiment apparatus. 燃焼実験結果の説明図である。It is explanatory drawing of a combustion experiment result. 酸素過剰率を変化させたときの燃焼温度の説明図である。It is explanatory drawing of the combustion temperature when changing an oxygen excess rate. 二重管ランスの外側管から吹込まれるガスの流量とランス表面温度の関係を示す説明図である。It is explanatory drawing which shows the relationship between the flow volume of the gas injected from the outer side pipe | tube of a double pipe | tube lance, and lance surface temperature.

次に、本発明の高炉操業方法の一実施形態について図面を参照しながら説明する。
図1は、本実施形態の高炉操業方法が適用された高炉の全体図である。図に示すように、高炉1の羽口3には、熱風を送風するための送風管2が接続され、この送風管2を貫通してランス4が設置されている。羽口3の熱風送風方向先方のコークス堆積層には、レースウエイ5と呼ばれる燃焼空間が存在し、主として、この燃焼空間で還元材の燃焼、ガス化が行われる。
Next, an embodiment of the blast furnace operating method of the present invention will be described with reference to the drawings.
FIG. 1 is an overall view of a blast furnace to which the blast furnace operating method of the present embodiment is applied. As shown in the figure, a blast pipe 2 for blowing hot air is connected to the tuyere 3 of the blast furnace 1, and a lance 4 is installed through the blast pipe 2. A combustion space called a raceway 5 exists in the coke deposit layer in the hot air blowing direction ahead of the tuyere 3, and the reducing material is mainly combusted and gasified in this combustion space.

図2には、ランス4から微粉炭6だけを吹込んだときの燃焼状態を示す。ランス4から羽口3を通過し、レースウエイ5内に吹込まれた微粉炭6は、コークス7と共に、その揮発分と固定炭素が燃焼し、燃焼しきれずに残った、一般にチャーと呼ばれる炭素と灰分の集合体は、レースウエイから未燃チャー8として排出される。羽口3の熱風送風方向先方における熱風速度は約200m/secであり、ランス4の先端からレースウエイ5内におけるO2の存在領域は約0.3〜0.5mとされているので、実質的に1/1000秒のレベルで微粉炭粒子の昇温及びO2との接触効率(分散性)の改善が必要となる。 FIG. 2 shows a combustion state when only pulverized coal 6 is blown from the lance 4. The pulverized coal 6 that passes through the tuyere 3 from the lance 4 and is blown into the raceway 5, together with the coke 7, combusts its volatile matter and fixed carbon, and remains unburned, generally called char. The aggregate of ash is discharged as unburned char 8 from the raceway. The hot air velocity in the hot air blowing direction ahead of the tuyere 3 is about 200 m / sec, and the existence area of O 2 in the raceway 5 from the tip of the lance 4 is about 0.3 to 0.5 m. In particular, it is necessary to improve the temperature rise of pulverized coal particles and the contact efficiency (dispersibility) with O 2 at a level of 1/1000 second.

図3は、ランス4から送風管2内に微粉炭(図ではPC:Pulverized Coal)6のみを吹込んだ場合の燃焼メカニズムを示す。羽口3からレースウエイ5内に吹込まれた微粉炭6は、レースウエイ5内の火炎からの輻射伝熱によって粒子が加熱し、更に輻射伝熱、伝導伝熱によって粒子が急激に温度上昇し、300℃以上昇温した時点から熱分解が開始し、揮発分に着火して火炎が形成され、燃焼温度は1400〜1700℃に達する。揮発分が放出してしまうと、前述したチャー8となる。チャー8は、主に固定炭素であるので、燃焼反応と共に、炭素溶解反応と呼ばれる反応も生じる。   FIG. 3 shows a combustion mechanism when only pulverized coal (PC: Pulverized Coal in the figure) 6 is blown into the blow pipe 2 from the lance 4. The pulverized coal 6 blown into the raceway 5 from the tuyere 3 is heated by the radiant heat transfer from the flame in the raceway 5, and the temperature of the pulverized coal 6 is rapidly increased by the radiant heat transfer and conduction heat transfer. The thermal decomposition starts when the temperature is raised to 300 ° C. or more, and the volatile matter is ignited to form a flame. The combustion temperature reaches 1400 to 1700 ° C. When the volatile matter is released, the above-described char 8 is obtained. Since the char 8 is mainly fixed carbon, a reaction called a carbon dissolution reaction occurs along with a combustion reaction.

図4は、ランス4から送風管2内に微粉炭6と共にLNG9を吹込んだ場合の燃焼メカニズムを示す。微粉炭6とLNG9の吹込み方法は、単純に平行に吹込んだ場合を示している。なお、図中の二点鎖線は、図3に示した微粉炭のみを吹込んだ場合の燃焼温度を参考に示している。このように微粉炭とLNGを同時に吹込む場合、気体ガスであるLNGが優先的に燃焼し、この燃焼熱によって微粉炭が急速に加熱、昇温すると考えられ、これによりランスに近い位置で燃焼温度が更に上昇する。   FIG. 4 shows a combustion mechanism when LNG 9 is blown together with pulverized coal 6 from the lance 4 into the blower pipe 2. The method of blowing pulverized coal 6 and LNG 9 shows a case where the pulverized coal 6 is simply blown in parallel. In addition, the dashed-two dotted line in a figure has shown the combustion temperature at the time of injecting only the pulverized coal shown in FIG. 3 with reference. In this way, when pulverized coal and LNG are injected at the same time, LNG, which is a gas gas, is preferentially combusted, and it is considered that the pulverized coal is rapidly heated and raised in temperature by this combustion heat. The temperature rises further.

このような知見に基づき、図5に示す燃焼実験装置を用いて燃焼実験を行った。実験炉11内にはコークスが充填されており、覗き窓からレースウエイ15の内部を観察することができる。送風管12にはランス14が差し込まれ、燃焼バーナ13で生じた熱風を実験炉11内に所定の送風量で送風することができる。また、この送風管12では、送風の酸素富化量を調整することも可能である。ランス14は、微粉炭及びLNGの何れか一方又は双方を送風管12内に吹込むことができる。実験炉11内で生じた排ガスは、サイクロンと呼ばれる分離装置16で排ガスとダストに分離され、排ガスは助燃炉などの排ガス処理設備に送給され、ダストは捕集箱17に捕集される。   Based on such knowledge, a combustion experiment was performed using the combustion experiment apparatus shown in FIG. The experimental furnace 11 is filled with coke, and the inside of the raceway 15 can be observed from the viewing window. A lance 14 is inserted into the blower tube 12, and hot air generated in the combustion burner 13 can be blown into the experimental furnace 11 with a predetermined blowing amount. Moreover, in this ventilation pipe 12, it is also possible to adjust the oxygen enrichment amount of ventilation. The lance 14 can blow either one or both of pulverized coal and LNG into the blower pipe 12. The exhaust gas generated in the experimental furnace 11 is separated into exhaust gas and dust by a separator 16 called a cyclone, the exhaust gas is fed to an exhaust gas treatment facility such as an auxiliary combustion furnace, and the dust is collected in a collection box 17.

燃焼実験には、ランス14に単管ランスと二重管ランスの二種類を用い、単管ランスを用いて微粉炭のみを吹込んだ場合、二重管ランスを用い、二重管ランスの内側管から微粉炭を吹込み、二重管ランスの外側管からLNGを吹込んだ場合、二重管ランスの内側管からLNGを吹込み、二重管ランスの外側管から微粉炭を吹込んだ場合の夫々について覗き窓から2色温度計による燃焼温度、燃焼位置、未燃チャーの燃焼状況、拡散性を測定した。2色温度計は、周知のように、熱放射(高温物体から低温物体への電磁波の移動)を利用して温度計測を行う放射温度計であり、温度が高くなると波長分布が短波長側にずれていくことに着目して、波長分布の温度の変化を計測することで温度を求める波長分布形の一つであり、中でも波長分布を捉えるため、2つの波長における放射エネルギーを計測し、比率から温度を測定するものである。未燃チャーの燃焼状況は、実験炉11の送風管12内のランス14先から150mm、300mmの位置にてプローブで未燃チャーを回収して、樹脂埋め、研磨後、画像解析によってチャー内空隙率を測定し、判定した。   In the combustion experiment, two types of lances 14 are used: a single-pipe lance and a double-pipe lance. If only pulverized coal is blown in using a single-pipe lance, a double-pipe lance is used. When pulverized coal is blown from the pipe and LNG is blown from the outer pipe of the double pipe lance, LNG is blown from the inner pipe of the double pipe lance and pulverized coal is blown from the outer pipe of the double pipe lance. For each case, the combustion temperature, combustion position, unburned char combustion status, and diffusivity were measured from a viewing window using a two-color thermometer. As is well known, a two-color thermometer is a radiation thermometer that measures temperature using thermal radiation (electromagnetic wave movement from a high-temperature object to a low-temperature object). Paying attention to the shift, it is one of the wavelength distribution types to obtain the temperature by measuring the temperature change of the wavelength distribution, and in particular to measure the wavelength distribution, the radiant energy at two wavelengths is measured and the ratio The temperature is measured from The combustion state of the unburned char is determined by collecting unburned char with a probe at a position of 150 mm and 300 mm from the tip of the lance 14 in the blast pipe 12 of the experimental furnace 11, filling the resin, polishing, and then analyzing the void in the char by image analysis. The rate was measured and judged.

微粉炭の諸元は、固定炭素(FC:Fixed Carbon)77.8%、揮発分(VM:Volatile Matter)13.6%、灰分(Ash)8.6%で、吹込み条件は29.8kg/h(製銑原単位で100kg/t相当)とした。また、LNGの吹込み条件は、3.6kg/h(5Nm3/h、製銑原単位で10kg/t相当)とした。送風条件は、送風温度1200℃、流量300Nm3/h、流速70m/s、O2富化+5.5(酸素濃度26.5%、空気中酸素濃度21%に対し、5.5%の富化)とした。実験結果の評価は、単管から微粉炭のみを吹込んだ場合の燃焼温度、燃焼位置、未燃チャーの燃焼状況、拡散性(主として微粉炭)を基準とし、二重管ランスの内側管から微粉炭を吹込み、外側管からLNGを吹込んだ場合、二重管ランスの内側管からLNGを吹込み、外側管から微粉炭を吹込んだ場合の夫々を評価した。評価は、微粉炭のみの場合と同程度の場合を△、少し改善された場合を○、大幅に改善された場合を◎で表した。 The specifications of the pulverized coal are 77.8% fixed carbon (FC), 13.6% volatile matter (VM), 8.6% ash (Ash), and the blowing condition is 29.8 kg. / H (equivalent to 100 kg / t in ironmaking base unit). The LNG blowing conditions were 3.6 kg / h (5 Nm 3 / h, equivalent to 10 kg / t in the ironmaking base unit). The blowing conditions are: blowing temperature 1200 ° C., flow rate 300 Nm 3 / h, flow rate 70 m / s, O 2 enrichment +5.5 (oxygen concentration 26.5%, oxygen concentration 21% in air, richness 5.5% ). The evaluation of the experimental results is based on the combustion temperature, combustion position, unburned char combustion status and diffusibility (mainly pulverized coal) when only pulverized coal is blown from a single pipe, and from the inner pipe of the double pipe lance. When pulverized coal was blown and LNG was blown from the outer pipe, each of the cases where LNG was blown from the inner pipe of the double pipe lance and pulverized coal was blown from the outer pipe was evaluated. The evaluation was represented by Δ when the degree was the same as that of pulverized coal alone, ◯ when it was slightly improved, and ◎ when it was greatly improved.

図6には、前述した燃焼実験の結果を示す。同図から明らかなように、二重管ランスの内側管から微粉炭を吹込み、外側管からLNGを吹込む場合には、燃焼位置については改善が見られたが、その他の項目については変化が見られない。これは、微粉炭の外側のLNGが先にO2と接触して速やかに燃焼し、その燃焼熱で微粉炭の加熱速度が上昇したものの、LNGの燃焼にO2が消費されてしまい、微粉炭の燃焼に必要なO2が減少して、十分な燃焼温度上昇に至らず、未燃チャーの燃焼状況も改善されなかったと考えられる。一方、二重管ランスの内側管からLNGを吹込み、外側管から微粉炭を吹込む場合には、燃焼温度、未燃チャーの燃焼状況について改善が見られ、拡散性については大幅な改善が見られたものの、燃焼位置については変化が見られない。これは、外側の微粉炭領域を通じた内側のLNGまでのO2の拡散に時間を要したものの、内側の易燃性のLNGが燃焼すれば、爆発的な拡散が生じ、LNGの燃焼熱で微粉炭が加熱されて燃焼温度も上昇し、未燃チャーの燃焼状況も改善されたものと考えられる。 FIG. 6 shows the result of the combustion experiment described above. As is clear from the figure, when pulverized coal was blown from the inner pipe of the double pipe lance and LNG was blown from the outer pipe, the combustion position was improved, but other items were changed. Is not seen. This is because the LNG outside the pulverized coal first contacts O 2 and burns quickly, and although the heating speed of the pulverized coal is increased by the combustion heat, O 2 is consumed in the combustion of LNG, and the pulverized coal It is considered that O 2 necessary for the combustion of charcoal has decreased, the combustion temperature has not increased sufficiently, and the combustion state of unburned char has not been improved. On the other hand, when LNG is blown from the inner pipe of the double pipe lance and pulverized coal is blown from the outer pipe, the combustion temperature and the combustion state of unburned char are improved, and the diffusivity is greatly improved. Although it was observed, there was no change in the combustion position. Although it took time to diffuse O 2 to the inner LNG through the outer pulverized coal region, if the inner flammable LNG burns, explosive diffusion occurs, and the LNG combustion heat It is considered that the pulverized coal is heated and the combustion temperature rises, and the combustion state of the unburned char is improved.

本願発明者は、この実験結果を踏まえて、二重管ランスの内側管からLNGを吹込み、外側管から微粉炭を吹込む場合に、燃焼温度の更なる上昇のための検討を行い、送風への酸素富化、即ち酸素過剰率に着目した。即ち、前述した二重管ランスの内側管から微粉炭を吹込み、外側管からLNGを吹込む場合と同様、LNGの燃焼後、微粉炭の燃焼に必要なO2が不足しているのではないか、という推察である。そこで、前述の燃焼実験装置を用い、二重管ランスの内側管からLNGを吹込むと共に外側管から微粉炭を吹込み、酸素過剰率を種々に変更して燃焼温度と燃焼位置の測定を行った。この場合の酸素過剰率は、送風中の酸素量を、微粉炭の完全燃焼に必要な酸素量で除した値となり、数値が1なら完全燃焼し、1より小さいと完全燃焼できない。 Based on the results of this experiment, the inventor of the present application studied to further increase the combustion temperature when LNG was blown from the inner pipe of the double pipe lance and pulverized coal was blown from the outer pipe. We focused on oxygen enrichment, that is, oxygen excess. That is, as in the case where the pulverized coal is blown from the inner pipe of the double pipe lance and the LNG is blown from the outer pipe, the O 2 necessary for the combustion of the pulverized coal is insufficient after the LNG combustion. This is an inference. Therefore, using the above-described combustion experimental device, LNG is blown from the inner pipe of the double pipe lance and pulverized coal is blown from the outer pipe, and the oxygen temperature is changed in various ways to measure the combustion temperature and the combustion position. It was. In this case, the oxygen excess rate is a value obtained by dividing the amount of oxygen being blown by the amount of oxygen necessary for the complete combustion of the pulverized coal.

実験結果を図7に示す。同図より明らかなように、単管ランスによる微粉炭のみの吹込みの場合に比して、二重管ランスの内側管からLNGを吹込み且つ外側管から微粉炭を吹込む場合に、酸素過剰率が0.7以上であれば、何れの場合もランスに近い位置での燃焼温度が上昇している。特に、二重管ランスの内側管からLNGを吹込み且つ外側管から微粉炭を吹込む場合に、酸素過剰率が1以上であれば、ランスからの如何なる位置でも燃焼温度が上昇している。このことから、二重管ランスの内側管からLNGを吹込み且つ外側管から微粉炭を吹込む場合、酸素過剰率0.7以上を下限とし、酸素過剰率1.3以下を上限とする。酸素過剰率を増大すれば、更なる燃焼温度上昇を期待できるが、酸素製造コストに鑑みて、酸素過剰率の上限を1.3とした。   The experimental results are shown in FIG. As is clear from the figure, when LNG is blown from the inner pipe of the double pipe lance and pulverized coal is blown from the outer pipe, compared with the case of blowing only pulverized coal by the single pipe lance, oxygen If the excess rate is 0.7 or more, in any case, the combustion temperature at a position close to the lance is increased. In particular, when LNG is blown from the inner pipe of the double-pipe lance and pulverized coal is blown from the outer pipe, the combustion temperature rises at any position from the lance if the oxygen excess rate is 1 or more. For this reason, when LNG is blown from the inner pipe of the double pipe lance and pulverized coal is blown from the outer pipe, the oxygen excess rate is 0.7 or more and the oxygen excess rate is 1.3 or less. If the oxygen excess rate is increased, a further increase in the combustion temperature can be expected, but the upper limit of the oxygen excess rate is set to 1.3 in view of the oxygen production cost.

ところで、前述のような燃焼温度の上昇に伴って、二重管ランスの外側管は高温に晒され易くなる。二重管ランスは、例えばステンレス鋼鋼管で構成される。勿論、二重管ランスの外側管には所謂ウォータージャケットと呼ばれる水冷が施されているが、ランス先端までは覆うことができない。特に、この水冷の及ばない二重管ランスの外側管の先端部が熱で変形することが分かった。二重管ランスの外側管が変形する、つまり曲がると所望部位に微粉炭やLNGを吹込むことができないし、消耗品であるランスの交換作業に支障がある。また、微粉炭の流れが変化して羽口に当たることも考えられ、そのような場合には羽口が損傷する恐れがある。二重管ランスの外側管が曲がると、内側管との隙間が閉塞され、外側管からガスが流れなくなると、二重管ランスの外側管が溶損し、場合によっては送風管が破損する可能性もある。   By the way, as the combustion temperature rises as described above, the outer tube of the double tube lance is easily exposed to high temperature. The double pipe lance is made of, for example, a stainless steel pipe. Of course, the outer tube of the double tube lance is water-cooled called a so-called water jacket, but cannot cover the tip of the lance. In particular, it has been found that the tip of the outer tube of the double tube lance that is not subject to water cooling is deformed by heat. If the outer pipe of the double pipe lance is deformed, that is, bent, pulverized coal or LNG cannot be blown into a desired part, and there is a problem in the replacement work of the lance which is a consumable item. In addition, the flow of pulverized coal may change and hit the tuyere, and in such a case, the tuyere may be damaged. If the outer pipe of the double pipe lance is bent, the gap with the inner pipe is closed, and if the gas does not flow from the outer pipe, the outer pipe of the double pipe lance may melt and possibly damage the blower pipe. There is also.

水冷できない二重管ランスの外側管を冷却するためには、内部に送給されるガスで放熱するしかない。内部に流れるガスに放熱して二重管ランスの外側管自体を冷却する場合、ガスの流量がランス温度に影響を与えると考えられる。そこで、本発明者等は、二重管ランスの外側管から吹込まれるガスの流量を種々に変更してランス表面の温度を測定した。ガスの流量調整は、本実施形態で微粉炭を搬送するためのキャリアガスであるN2を加減した。測定結果を図8に示す。 The only way to cool the outer tube of a double-pipe lance that cannot be cooled with water is to dissipate heat with the gas supplied to the inside. When heat is released to the gas flowing inside to cool the outer tube of the double tube lance itself, it is considered that the gas flow rate affects the lance temperature. Therefore, the inventors measured the temperature of the lance surface by variously changing the flow rate of the gas blown from the outer pipe of the double pipe lance. In the gas flow rate adjustment, N 2 which is a carrier gas for transporting pulverized coal in this embodiment was adjusted. The measurement results are shown in FIG.

二重管ランスの外側管には、20Aスケジュール5Sと呼ばれる鋼管、及び25Aスケジュール5Sと呼ばれる鋼管の2種類を用いた。また、二重管ランスの内側管には、15Aスケジュール90と呼ばれる鋼管、1種類を用い、微粉炭のキャリアガスであるN2の流量を種々に変更してランス表面の温度を測定した。ちなみに、「15A」、「20A」、「25A」はJIS G 3459に規定する鋼管外径の称呼寸法であり、15Aは外径21.7mm、20Aは外径27.2mm、25Aは外径34.0mmである。また、「スケジュール」はJIS G 3459に規定する鋼管の肉厚の称呼寸法であり、スケジュール5Sは1.65mmであり、15Aスケジュール90は3.70mmである。二重管ランスの外側管に鋼管を用いる場合、上記の2種類程度の外径を有する鋼管とすることが現実的である。また、20Aスケジュール90(肉厚:3.9mm)、25Aスケジュール90(肉厚:4.5mm)を用いることも可能である。なお、ステンレス鋼鋼管の他、普通鋼も利用できる。その場合の鋼管の外径はJIS G 3452に規定され、肉厚はJIS G 3454に規定される。 Two types of steel pipe called 20A schedule 5S and steel pipe called 25A schedule 5S were used for the outer pipe of the double pipe lance. Further, as the inner pipe of the double pipe lance, one kind of steel pipe called 15A schedule 90 was used, and the flow rate of N 2 which is a carrier gas of pulverized coal was variously changed to measure the temperature of the lance surface. Incidentally, “15A”, “20A”, and “25A” are nominal dimensions of the outer diameter of the steel pipe specified in JIS G 3459, 15A is the outer diameter 21.7 mm, 20A is the outer diameter 27.2 mm, and 25A is the outer diameter 34. 0.0 mm. The “schedule” is a nominal dimension of the thickness of the steel pipe specified in JIS G 3459, the schedule 5S is 1.65 mm, and the 15A schedule 90 is 3.70 mm. When a steel pipe is used as the outer pipe of the double pipe lance, it is practical to use a steel pipe having the above-described two types of outer diameters. It is also possible to use a 20A schedule 90 (wall thickness: 3.9 mm) and a 25A schedule 90 (wall thickness: 4.5 mm). In addition to stainless steel pipes, plain steel can also be used. In this case, the outer diameter of the steel pipe is specified in JIS G 3453, and the wall thickness is specified in JIS G 3454.

同図に二点鎖線で示すように、サイズの異なる鋼管毎に、二重管ランスの外側管から吹込まれるガスの合計流量の増加に伴ってランス表面の温度が反比例的に低下している。これは、鋼管のサイズが違うと、同じガス合計流量でもガスの流速が異なるためである。鋼管を二重管ランスに使用する場合、二重管ランスの表面温度が880℃を上回るとクリープ変形が起こり、二重管ランスが曲がってしまう。従って、二重管ランスの外側管に20Aスケジュール5S、或いは25Aスケジュール5Sの鋼管を用い、二重管ランスの表面温度が880℃以下である場合の外側管からの吹込みガスの合計流量は85Nm3/h以上であり、それらの鋼管を用いた場合の二重管ランスの外側管の出口流速は20m/sec以上となる。そして、二重管ランスの外側管の吹込みガスの合計流量を85Nm3/h以上とし、二重管ランスの外側管の出口流速が20m/sec以上である場合には二重管ランスに変形や曲がりは生じない。 As indicated by the two-dot chain line in the figure, the temperature of the lance surface decreases in inverse proportion to the increase in the total flow rate of the gas blown from the outer pipe of the double pipe lance for each steel pipe of different size. . This is because if the steel pipe size is different, the gas flow rate is different even at the same total gas flow rate. When using a steel pipe for a double pipe lance, when the surface temperature of a double pipe lance exceeds 880 degreeC, creep deformation will occur and a double pipe lance will bend. Therefore, when the steel pipe of 20A schedule 5S or 25A schedule 5S is used for the outer pipe of the double pipe lance, and the surface temperature of the double pipe lance is 880 ° C. or less, the total flow rate of the blown gas from the outer pipe is 85 Nm. 3 / h or more, and when these steel pipes are used, the outlet flow velocity of the outer pipe of the double pipe lance is 20 m / sec or more. When the total flow rate of the blown gas in the outer pipe of the double pipe lance is 85 Nm 3 / h or more and the outlet flow velocity of the outer pipe of the double pipe lance is 20 m / sec or more, the double pipe lance is transformed into a double pipe lance. No bending occurs.

このように、本実施形態の高炉操業方法では、羽口3から燃料を吹き込むためのランス4を二重管とし、二重管ランス4の内側管からLNG(易燃性燃料)9を吹込むと共に、二重管ランス4の外側管から微粉炭(固体燃料)6を吹込み、且つ3羽口への送風の酸素過剰率を0.7〜1.3としたことにより、微粉炭(固体燃料)6の内側のLNG(易燃性燃料)9が先に燃焼することで微粉炭(固体燃料)6が爆発的に拡散し、同時にLNG(易燃性燃料)9の燃焼熱で微粉炭(固体燃料)6の温度が大幅に上昇し、これにより微粉炭(固体燃料)6の加熱速度が上昇するのであるが、このとき羽口3への送風の酸化過剰率を0.7〜1.3とすることで微粉炭(固体燃料)6が十分に燃焼し、その結果、燃焼温度が大幅に向上し、もって還元材原単位を低減することができる。   Thus, in the blast furnace operating method of the present embodiment, the lance 4 for injecting fuel from the tuyere 3 is a double pipe, and LNG (flammable fuel) 9 is infused from the inner pipe of the double pipe lance 4. At the same time, pulverized coal (solid fuel) 6 is blown from the outer pipe of the double-pipe lance 4 and the excess oxygen ratio of the blown air to the three tuyere is set to 0.7 to 1.3, whereby pulverized coal (solid The LNG (flammable fuel) 9 inside the fuel) 6 burns first, so that the pulverized coal (solid fuel) 6 explosively diffuses, and at the same time, the pulverized coal by the combustion heat of the LNG (flammable fuel) 9 The temperature of the (solid fuel) 6 is significantly increased, thereby increasing the heating rate of the pulverized coal (solid fuel) 6. At this time, the excess oxidation ratio of the air blown to the tuyere 3 is set to 0.7 to 1. .3, pulverized coal (solid fuel) 6 is sufficiently combusted, and as a result, the combustion temperature is greatly improved. It is possible to reduce the MotozaiHara unit.

また、二重管ランス4の外側管から吹込まれるガスの合計流量を85Nm3/h以上とし、当該二重管ランス4の外側管の出口流速を20m/sec以上とすることにより、昇温による二重管ランス4の変形を防止することができる。 Further, the total flow rate of the gas blown from the outer pipe of the double pipe lance 4 is set to 85 Nm 3 / h or more, and the outlet flow velocity of the outer pipe of the double pipe lance 4 is set to 20 m / sec or more. The deformation of the double pipe lance 4 due to can be prevented.

1は高炉、2は送風管、3は羽口、4はランス、5はレースウエイ、6は微粉炭(固体燃料)、7はコークス、8はチャー、9はLNG(易燃性燃料)   1 is a blast furnace, 2 is a blow pipe, 3 is a tuyere, 4 is a lance, 5 is a raceway, 6 is pulverized coal (solid fuel), 7 is coke, 8 is char, 9 is LNG (flammable fuel)

Claims (4)

羽口から燃料を吹き込むためのランスを二重管とし、二重管ランスの内側管から易燃性燃料を吹込むと共に、二重管ランスの外側管から固体燃料を吹込み、且つ羽口への送風の酸素過剰率を0.7〜1.3としたことを特徴とする高炉操業方法。   The lance for injecting fuel from the tuyere is a double pipe, flammable fuel is blown from the inner pipe of the double pipe lance, solid fuel is blown from the outer pipe of the double pipe lance, and to the tuyere A method of operating a blast furnace, characterized in that the oxygen excess rate of the air blowing is 0.7 to 1.3. 前記二重管ランスの外側管から吹込まれるガスの合計流量を85Nm3/h以上とし、当該外側管の出口流速を20m/sec以上としたことを特徴とする請求項1に記載の高炉操業方法。 2. The blast furnace operation according to claim 1, wherein the total flow rate of the gas blown from the outer pipe of the double pipe lance is 85 Nm 3 / h or more and the outlet flow velocity of the outer pipe is 20 m / sec or more. Method. 前記固体燃料が微粉炭であることを特徴とする請求項1に記載の高炉操業方法。   The blast furnace operating method according to claim 1, wherein the solid fuel is pulverized coal. 前記易燃性燃料がLNGであることを特徴とする請求項1に記載の高炉操業方法。   The blast furnace operating method according to claim 1, wherein the flammable fuel is LNG.
JP2011007954A 2010-01-19 2011-01-18 Blast furnace operation method Pending JP2011168886A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2011007954A JP2011168886A (en) 2010-01-19 2011-01-18 Blast furnace operation method
TW100125152A TWI516604B (en) 2011-01-18 2011-07-15 Operating method of furnace
EP11856085.3A EP2653563B1 (en) 2011-01-18 2011-07-15 Method for operating blast furnace
CN2011800653873A CN103339266A (en) 2011-01-18 2011-07-15 Method for operating blast furnace
AU2011356008A AU2011356008B2 (en) 2011-01-18 2011-07-15 Method for operating blast furnace
BR112013018060-9A BR112013018060B1 (en) 2011-01-18 2011-07-15 METHOD TO OPERATE BLAST FURNACES
PCT/JP2011/066771 WO2012098713A1 (en) 2011-01-18 2011-07-15 Method for operating blast furnace
KR1020137021642A KR101536626B1 (en) 2011-01-18 2011-07-15 Method for operating blast furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010009390 2010-01-19
JP2010009390 2010-01-19
JP2011007954A JP2011168886A (en) 2010-01-19 2011-01-18 Blast furnace operation method

Publications (1)

Publication Number Publication Date
JP2011168886A true JP2011168886A (en) 2011-09-01

Family

ID=44683291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011007954A Pending JP2011168886A (en) 2010-01-19 2011-01-18 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP2011168886A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185180A (en) * 2012-03-06 2013-09-19 Nippon Steel & Sumitomo Metal Corp Method of blowing reducing gas from blast furnace tuyere and blowing lance
KR101431041B1 (en) 2013-08-12 2014-08-19 주식회사 포스코 Apparatus and method for injecting natural gas
WO2015029424A1 (en) * 2013-08-28 2015-03-05 Jfeスチール株式会社 Method for operating blast furnace

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142706A (en) * 1985-12-17 1987-06-26 Kawasaki Steel Corp Method for blowing granular particle into blast furnace
JPS62238307A (en) * 1986-04-10 1987-10-19 Kobe Steel Ltd Method for blowing noncombustible fuel into blast furnace
JPH05179323A (en) * 1992-01-06 1993-07-20 Nippon Steel Corp Operating method for blast furnace
JP2004285425A (en) * 2003-03-24 2004-10-14 Jfe Steel Kk Method for blowing pulverized coal into blast furnace
JP2006152434A (en) * 2004-10-28 2006-06-15 Jfe Steel Kk Method for operating blast furnace
JP2006233332A (en) * 2005-01-31 2006-09-07 Jfe Steel Kk Method for operating blast furnace
JP2006312757A (en) * 2005-05-06 2006-11-16 Jfe Steel Kk Injection lance for gaseous reducing material, blast furnace and blast furnace operation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142706A (en) * 1985-12-17 1987-06-26 Kawasaki Steel Corp Method for blowing granular particle into blast furnace
JPS62238307A (en) * 1986-04-10 1987-10-19 Kobe Steel Ltd Method for blowing noncombustible fuel into blast furnace
JPH05179323A (en) * 1992-01-06 1993-07-20 Nippon Steel Corp Operating method for blast furnace
JP2004285425A (en) * 2003-03-24 2004-10-14 Jfe Steel Kk Method for blowing pulverized coal into blast furnace
JP2006152434A (en) * 2004-10-28 2006-06-15 Jfe Steel Kk Method for operating blast furnace
JP2006233332A (en) * 2005-01-31 2006-09-07 Jfe Steel Kk Method for operating blast furnace
JP2006312757A (en) * 2005-05-06 2006-11-16 Jfe Steel Kk Injection lance for gaseous reducing material, blast furnace and blast furnace operation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015011970; 山口一良、他2名: '可燃性ガス同時吹き込みによる微粉炭燃焼効率向上効果' 材料とプロセス Vol.7 No.1, 199403, Page.125 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185180A (en) * 2012-03-06 2013-09-19 Nippon Steel & Sumitomo Metal Corp Method of blowing reducing gas from blast furnace tuyere and blowing lance
KR101431041B1 (en) 2013-08-12 2014-08-19 주식회사 포스코 Apparatus and method for injecting natural gas
WO2015029424A1 (en) * 2013-08-28 2015-03-05 Jfeスチール株式会社 Method for operating blast furnace
JPWO2015029424A1 (en) * 2013-08-28 2017-03-02 Jfeスチール株式会社 Blast furnace operation method
RU2674374C2 (en) * 2013-08-28 2018-12-07 ДжФЕ СТИЛ КОРПОРЕЙШН Blast furnace operation method

Similar Documents

Publication Publication Date Title
JP5263430B2 (en) Blast furnace operation method
JP5824810B2 (en) Blast furnace operation method
JP5699833B2 (en) Blast furnace operation method
JP5699834B2 (en) Blast furnace operation method
JP5974687B2 (en) Blast furnace operation method
JP5699832B2 (en) Blast furnace operation method
JP5522326B1 (en) Blast furnace operation method and tube bundle type lance
JP2011168886A (en) Blast furnace operation method
JP5824812B2 (en) Blast furnace operation method
JP2011168885A (en) Blast furnace operation method
JP5652575B1 (en) Blast furnace operating method and lance
JPWO2015029424A1 (en) Blast furnace operation method
JP5824813B2 (en) Blast furnace operation method
JP5824811B2 (en) Blast furnace operation method
JP5983293B2 (en) Blast furnace operating method and lance
JP5983294B2 (en) Blast furnace operating method and lance
JP6044564B2 (en) Blast furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150915