JP2006207009A - Method for operating blast furnace - Google Patents

Method for operating blast furnace Download PDF

Info

Publication number
JP2006207009A
JP2006207009A JP2005024496A JP2005024496A JP2006207009A JP 2006207009 A JP2006207009 A JP 2006207009A JP 2005024496 A JP2005024496 A JP 2005024496A JP 2005024496 A JP2005024496 A JP 2005024496A JP 2006207009 A JP2006207009 A JP 2006207009A
Authority
JP
Japan
Prior art keywords
reducing material
gas
blast furnace
ratio
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005024496A
Other languages
Japanese (ja)
Other versions
JP4984396B2 (en
Inventor
Michitaka Sato
道貴 佐藤
Takeshi Sato
健 佐藤
Tatsuro Ariyama
達郎 有山
Ryota Murai
亮太 村井
Akio Shimomura
昭夫 下村
Shinji Hasegawa
伸二 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005024496A priority Critical patent/JP4984396B2/en
Publication of JP2006207009A publication Critical patent/JP2006207009A/en
Application granted granted Critical
Publication of JP4984396B2 publication Critical patent/JP4984396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a blast furnace, which blows a liquid or gaseous ancillary reducing material such as fuel oil and a natural gas, which has a high heating value and does not contain ash, into the blast furnace together with a solid reducing material, but prevents the degradation of air permeability, and consequently takes out the maximum effect of charged hydrogen. <P>SOLUTION: The method for operating the blast furnace while blowing the gaseous or liquid reducing material as the ancillary reducing material together with the solid reducing material from a tuyere includes blowing the gaseous reducing material or liquid reducing material having a ratio H/C of 1.5 or larger simultaneously with the solid reducing material, while adjusting the quantity to be blown of the solid reducing material and/or the gaseous reducing material or the liquid reducing material so that a ratio of H<SB>2</SB>/CO in the Bosch gas can be 0.22 or larger. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高炉羽口から補助還元材として固体還元材と気体還元材または液体還元材を吹込む高炉操業方法に関する。   The present invention relates to a blast furnace operating method in which a solid reducing material and a gas reducing material or a liquid reducing material are blown as auxiliary reducing materials from a blast furnace tuyere.

銑鉄を製造する高炉において還元材として用いられるコークスは、原料として高価な強粘結炭を必要とし、またその製造設備であるコークス炉の建設、運転、補修等の費用を必要とするため、一般に高価である。このため高炉におけるコークスの使用量低減による銑鉄製造コストの削減が望まれている。
また、製銑工程におけるCO発生を抑制して、地球環境の保全に資する観点からも高炉におけるコークスの使用量低減は急務である。
Coke used as a reducing material in blast furnaces that produce pig iron generally requires expensive strong caking coal as a raw material, and also costs for the construction, operation, repair, etc. of the coke oven that is its production equipment. Expensive. For this reason, reduction of the pig iron manufacturing cost by reduction of the usage-amount of coke in a blast furnace is desired.
In addition, it is an urgent need to reduce the amount of coke used in the blast furnace from the viewpoint of suppressing the generation of CO 2 in the ironmaking process and contributing to the preservation of the global environment.

コークスの使用量を低減して製銑工程におけるCO発生を抑制する技術として、水素を多量に含む還元材(例えば、微粉炭、合成樹脂材など)を羽口から吹き込む技術が知られている。そして、微粉炭、合成樹脂材等の固体還元材の燃焼性を高めるために、前記固体還元材に天然ガス、都市ガスなどの気体還元材を同時に吹き込む技術が提案されている(例えば、特許文献1参照)。
特公平1−29847号公報
As a technique for reducing the amount of coke used and suppressing CO 2 generation in the iron making process, a technique for blowing a reducing material (for example, pulverized coal, synthetic resin material, etc.) containing a large amount of hydrogen from the tuyere is known. . And in order to improve the combustibility of solid reducing materials, such as pulverized coal and a synthetic resin material, the technique in which gaseous reducing materials, such as natural gas and city gas, are simultaneously blown into the solid reducing material is proposed (for example, patent documents). 1).
Japanese Patent Publication No. 1-289847

上記のように、水素を多量に含む還元材を羽口から吹き込むことによって製銑工程におけるCO発生の削減に効果的であると考えられているが、水素を投入することが炉内現象に及ぼす他の効果として以下のものを挙げることができる。
(1)低密度、低粘度による炉内圧損の緩和を図ることができる。
(2)還元速度上昇によるシャフト効率の上昇と還元材比の低下を図ることができる。また、還元材比低減により、ボッシュガス量を低減できるので、圧損の低下を図ることができる。
(3)融着帯の鉱石の溶け落ち性改善と、これに伴う圧損の低下を図ることができる。
(4)ソルロス負荷低下によるコークス粉化軽減と炉下部充填層の粉率の低下を図り、これに伴う圧損の低下を図ることができる。
このように、水素投入には様々な理由に基づく炉内圧損の低減に対する有効性が指摘できる。
As described above, it is considered that reducing material containing a large amount of hydrogen is blown from the tuyere to be effective in reducing CO 2 generation in the ironmaking process. The following effects can be given as other effects.
(1) Reducing pressure loss in the furnace due to low density and low viscosity can be achieved.
(2) The shaft efficiency can be increased and the reducing material ratio can be decreased by increasing the reduction speed. Moreover, since the amount of Bosch gas can be reduced by reducing the reducing material ratio, the pressure loss can be reduced.
(3) It is possible to improve the meltability of the ore in the cohesive zone and to reduce the pressure loss associated therewith.
(4) The coke pulverization can be reduced by reducing the solros load, and the powder rate of the packed portion in the lower part of the furnace can be reduced, and the pressure loss associated therewith can be reduced.
Thus, it can be pointed out that hydrogen charging is effective for reducing the pressure loss in the furnace based on various reasons.

以上のように水素投入が炉内圧損の低減に有効であることから、水素を多量に含む還元材の例である微粉炭、合成樹脂材などを補助還元材として吹き込むことによって、炉内圧損を低減できるように思える。
しかしながら、微粉炭、合成樹脂材などの固体還元材は発熱量が低いことや、またアッシュ成分がレースウェイ奥へ蓄積し易いことのため、実際には吹き込み量が増すほど通気性が悪化して炉内圧損が上昇することなどによって、コークスとの置換率を1.0以上にすることは困難である。
したがって、固体還元材の吹込み量を増やすことはコークス比の削減には有効であるが、還元材比はむしろ上昇するばかりか、CO発生の抑制や、増産要請に対しても逆効果となる。
As described above, since hydrogen injection is effective for reducing the pressure loss in the furnace, the pressure loss in the furnace is reduced by blowing pulverized coal, which is an example of a reducing material containing a large amount of hydrogen, or a synthetic resin material as an auxiliary reducing material. It seems to be able to reduce.
However, solid reducing materials such as pulverized coal and synthetic resin materials have a low calorific value, and ash components tend to accumulate in the back of the raceway. It is difficult to increase the replacement ratio with coke to 1.0 or more due to an increase in furnace pressure loss.
Therefore, increasing the blowing amount of the solid reducing material is effective for reducing the coke ratio, but the reducing material ratio is not only increased, but also has an adverse effect on the suppression of CO 2 generation and the demand for increased production. Become.

この点をさらに具体的に説明する。例えば、5〜7%程度の水素を含有する微粉炭を吹き込む場合、吹き込み量を増すほど水素投入量を増加させることが可能である。ここで、ボッシュガス中の還元性ガス(CO+H)全体の中の水素(H)濃度をH/COで代表させ、これを指標とする。
微粉炭比とH/COの関係をグラフで示した図5から分かるように、微粉炭比の増加と共に、H/COは直線的に上昇することから、水素投入の効果として圧損の低下などの効果を発揮すると予測される。
しかしながら、実際には本指標であるH/COと、高炉炉下部通気抵抗指数K(以下、「炉下部K値」という。K=(Pblast 2-P2)/V1.7 但し、Pblast:送風圧(kg/cm)、P:ボッシュ部直上の炉壁部静圧(kg/cm)、V:ボッシュガス量(Nm/t))の関係をグラフで示した図6から分かるように、上記の予測に反して水素投入量増加とともにK値は上昇しており、通気性に対しては水素投入によって期待されるのと逆の効果が得られた。
これは微粉炭に由来するアッシュの蓄積や、未燃チャーの発生と蓄積による圧損上昇の効果が水素投入による圧損緩和の効果を上回ったためと考えられる。
従って、水素投入による上記の効果を享受するためには、固体還元材を単独で吹き込むのでは不十分であり、水素投入方法や量の最適化など、さらに一段上の技術開発が必要である。
This point will be described more specifically. For example, when pulverized coal containing about 5 to 7% of hydrogen is blown, the amount of hydrogen input can be increased as the amount of blown is increased. Here, the hydrogen (H 2 ) concentration in the entire reducing gas (CO + H 2 ) in the Bosch gas is represented by H 2 / CO, and this is used as an index.
As can be seen from FIG. 5, which graphically shows the relationship between the pulverized coal ratio and H 2 / CO, as the pulverized coal ratio increases, H 2 / CO increases linearly, so the pressure loss decreases as an effect of hydrogen input. It is predicted that such effects will be demonstrated.
However, in actuality, this index H 2 / CO and blast furnace lower ventilation resistance index K (hereinafter referred to as “furnace lower K value”, K = (P blast 2 -P 2 ) / V 1.7 where P blast FIG. 6 is a graph showing the relationship between: blowing pressure (kg / cm 2 ), P: furnace wall static pressure (kg / cm 2 ) just above the Bosch part, and V: Bosch gas amount (Nm 3 / t)). As can be seen, contrary to the above prediction, the K value increased with an increase in the amount of hydrogen input, and the opposite effect to that expected by hydrogen input was obtained for the air permeability.
This is thought to be because the accumulation of ash derived from pulverized coal and the increase in pressure loss due to the generation and accumulation of unburned char exceeded the effect of pressure loss mitigation due to hydrogen input.
Therefore, in order to enjoy the above-described effects of hydrogen input, it is not sufficient to blow the solid reducing material alone, and further technological development such as optimization of the hydrogen input method and amount is necessary.

この点、確かに特許文献1においては発熱量が高く、かつアッシュを含まない天然ガスなどの気体還元材を固体還元材と共に吹き込んでいることから、通気性悪化防止に対して一定の効果は期待できるとも思える。
しかし、特許文献1においては、気体還元材をどのような条件で吹き込めば微粉炭等の固体還元材に由来するアッシュの蓄積や、未燃チャーの発生と蓄積による圧損上昇の効果よりも水素投入による圧損緩和の効果を上回らせて上記水素投入の効果が得られるかについては何らの開示及び示唆もされていない。
In this respect, in Patent Document 1, since a gas reducing material such as natural gas, which has a high calorific value and does not contain ash, is blown together with the solid reducing material, a certain effect is expected to prevent deterioration of air permeability. I think it can be done.
However, in Patent Document 1, if the gas reducing material is blown in under any condition, hydrogen is charged rather than the accumulation of ash derived from the solid reducing material such as pulverized coal and the increase in pressure loss due to the generation and accumulation of unburned char. There is no disclosure or suggestion as to whether the effect of hydrogen input can be obtained by exceeding the effect of reducing the pressure loss due to.

したがって、本発明の課題は水素を多量に含む還元材を補助還元材として羽口から吹き込む場合において、通気性維持と還元材比低減を両立させるためには、いかなる補助還元材をどのような条件で吹き込むかということを示すことにある。
本発明はかかる課題を解決するためになされたものであり、発熱量が高く、かつアッシュを含まない、重油や天然ガスなどの液体状またはガス状の補助還元材を固体還元材と共に吹き込む場合において、通気性が悪化することを防止しつつ水素投入の効果を最大限引き出すことのできる高炉操業方法を提供することを目的としている。
Therefore, the subject of the present invention is that when a reducing material containing a large amount of hydrogen is blown from the tuyere as an auxiliary reducing material, in order to achieve both the maintenance of air permeability and the reduction of the reducing material ratio, any auxiliary reducing material under what conditions It is to indicate whether or not to blow in.
The present invention has been made to solve such a problem, and in the case where a liquid or gaseous auxiliary reducing material such as heavy oil or natural gas, which has a high calorific value and does not contain ash, is blown together with the solid reducing material. An object of the present invention is to provide a method for operating a blast furnace capable of maximizing the effect of hydrogen input while preventing deterioration of air permeability.

上記の課題を解決するため発明者らは実高炉(内容積3224mのベルレス式装入装置を有する高炉)における吹き込み試験を実施して鋭意検討を重ねた。この試験は、微粉炭吹込み量を50kg/t-p、100kg/t-p、150kg/t-pの一定とした3つのケースについて、天然ガスを0〜100kg/t-pまで20kg/t-pずつ変化させて吹き込むことによってボッシュガス中のH/COを変化させ、炉下部K値とH/COの関係を調査するというものである。 In order to solve the above-mentioned problems, the inventors conducted a blow test in an actual blast furnace (a blast furnace having a bell-less charging device with an internal volume of 3224 m 3 ), and conducted extensive studies. In this test, Bosch was injected by changing natural gas from 0 to 100 kg / tp in increments of 20 kg / tp in three cases where the amount of pulverized coal injection was constant at 50 kg / tp, 100 kg / tp, and 150 kg / tp. changing the H 2 / CO in the gas, is that to investigate the relationship between the furnace bottom K value and the H 2 / CO.

図1はこの調査結果をグラフに示したものであり、縦軸は炉下部K値を、横軸はH/COをそれぞれ示している。
図1に示されるように、微粉炭吹き込み量によらず、天然ガス吹込みによってボッシュガス中のH/COを0.22以上とすれば、明らかに炉下部K値が減少に転じている。これらはアッシュを含まない還元材由来の水素投入によって、前述した水素投入の効果が享受できた結果と判断される。
FIG. 1 is a graph showing the results of this investigation. The vertical axis represents the furnace bottom K value, and the horizontal axis represents H 2 / CO.
As shown in FIG. 1, regardless of the amount of pulverized coal injected, if the H 2 / CO in the Bosch gas is increased to 0.22 or more by natural gas injection, the lower K value of the furnace clearly decreases. . These are judged to be the result of having enjoyed the above-described effects of hydrogen input by introducing hydrogen derived from a reducing material not containing ash.

なお、上記の実験では固体還元材と共に吹き込む気体還元材として天然ガスを例に挙げているが、上記効果を得るには発熱量が高く、かつアッシュを含まない水素を多量に含む気体又は液体還元材であればよい。   In the above experiment, natural gas is exemplified as a gas reducing material to be blown together with the solid reducing material. However, in order to obtain the above effect, a gas or liquid reduction having a high calorific value and a large amount of hydrogen containing no ash Any material can be used.

一般に、気体還元材または液体還元材としては以下に示されるものがある。
メタン(CH、H/C(平均的な組成中の水素と炭素のモル比)=4.0)、エタン(C、H/C=3.0)、プロパン(C、H/C=2.7)、ブタン(C10、H/C=2.5)、ペンタン(C12、H/C=2.4)、エチレン(C、H/C=2.0)、プロピレン(C、H/C=2.0)、ジメチルエーテル((CHO、H/C=3.0)、ベンゼン(C、H/C=1.0)、トルエン(CCH、H/C=1.33)、並びに、メタン、エチレン、プロパンなどの混合物である天然ガス(LNG)(H/Cは3.7〜4.0)、メタンと水素を主成分とするコークス炉ガス(COG)(H/Cは約5.9)、原油(H/Cは約1.87)、灯油(H/Cは約1.97)、軽油(H/Cは約1.84)、重油(1.55〜1.75)、トリオール(C、H/C=1.1)、ナフタリン(C、H/C=1.1)。
In general, examples of the gas reducing material or the liquid reducing material include those shown below.
Methane (CH 4 , H / C (molar ratio of hydrogen to carbon in average composition) = 4.0), ethane (C 2 H 6 , H / C = 3.0), propane (C 3 H 8 H / C = 2.7), butane (C 4 H 10 , H / C = 2.5), pentane (C 5 H 12 , H / C = 2.4), ethylene (C 2 H 4 , H /C=2.0), propylene (C 3 H 6 , H / C = 2.0), dimethyl ether ((CH 3 ) 2 O, H / C = 3.0), benzene (C 6 H 6 , H /C=1.0), toluene (C 6 H 5 CH 3 , H / C = 1.33), and natural gas (LNG) which is a mixture of methane, ethylene, propane, etc. (H / C is 3. 7 to 4.0), coke oven gas (COG) mainly composed of methane and hydrogen (H / C is about 5.9), crude oil (H / C is about 1.87), kerosene (H / C is About 1.97), light oil (H / C is about 1.84), heavy oil (1.55 to 1.75), triol (C 7 H 8 , H / C = 1.1), naphthalene (C 7 H 8 , H / C = 1) .1).

これらの気体還元材または液体還元材の内、H/Cが1.5以下の気体還元材(ベンゼン、トルエンなど)または液体還元材(トリオール、ナフタリンなど)は、吹き込み直後に熱分解して固体状C(すす)を発生し易く、熱源としての有効性に問題がある。
従って、気体還元材および液体還元材としてはH/Cが1.5以上のものが望ましく、上述したエタンやメタンなどを単独で、もしくは複数種を混合して用いればよい。
なお、予め各種ガスが混合されているCOGやLNGなどもこの条件に符合する。
具体的には入手のし易さの観点から気体還元材としては天然ガスが、液体還元材としては重油が特に好ましい。
本発明はかかる知見に基づいてなされたものであり、具体的には以下の(1)〜(3)の構成を有するものである。
Among these gas reducing materials or liquid reducing materials, gas reducing materials (benzene, toluene, etc.) or liquid reducing materials (triol, naphthalene, etc.) with H / C of 1.5 or less are thermally decomposed and solidified immediately after blowing. Form C (soot) is likely to occur, and there is a problem in effectiveness as a heat source.
Accordingly, it is desirable that the gas reducing material and the liquid reducing material have H / C of 1.5 or more, and the above-described ethane, methane, or the like may be used alone or in combination.
Note that COG, LNG, and the like in which various gases are mixed in advance also meet this condition.
Specifically, from the viewpoint of easy availability, natural gas is particularly preferred as the gas reducing material, and heavy oil is particularly preferred as the liquid reducing material.
This invention is made | formed based on this knowledge, and has the structure of the following (1)-(3) specifically ,.

(1)本発明の高炉操業方法は、羽口から補助還元材として固体還元材と気体還元材および/または液体還元材を吹込む高炉操業方法において、固体還元材と共にH/Cが1.5以上の液体還元材または気体還元材を同時に吹き込み、かつボッシュガス中のH/COが0.22以上となるように前記固体還元材および/または気体還元材もしくは液体還元材の吹き込み量を調整することを特徴とするものである。 (1) The blast furnace operating method of the present invention is a blast furnace operating method in which a solid reducing material and a gas reducing material and / or a liquid reducing material are blown from the tuyere as an auxiliary reducing material. The above liquid reducing material or gas reducing material is simultaneously blown, and the amount of blowing of the solid reducing material and / or gas reducing material or liquid reducing material is adjusted so that H 2 / CO in the Bosch gas is 0.22 or more. It is characterized by doing.

なお、H/COを0.22以上とする方法は特に限定されるものではなく、例えば、物質収支計算によるボッシュガス中のガス濃度の推算値に基づいて固体還元材および気体還元材の吹込み量を決定する、あるいは実測によってボッシュガス中のH/COをモニターしながら、液体または気体還元材の吹き込み量を適正に調整するなどすればよい。 The method of setting H 2 / CO to 0.22 or more is not particularly limited. For example, the blowing of the solid reducing material and the gas reducing material based on the estimated value of the gas concentration in the Bosch gas by the mass balance calculation. The injection amount of the liquid or gas reducing material may be adjusted appropriately while determining the injection amount or monitoring H 2 / CO in the Bosch gas by actual measurement.

(2)また本発明の他の高炉操業方法は、上記(1)に示した液体還元材として重油、気体還元材として天然ガスを用いることを特徴とするものである。 (2) Further, another blast furnace operating method of the present invention is characterized in that heavy oil is used as the liquid reducing material shown in (1) and natural gas is used as the gas reducing material.

(3)また、上記(1)または(2)における固体還元材として微粉炭および/または合成樹脂材を用いることを特徴とするものである。 (3) Moreover, pulverized coal and / or a synthetic resin material is used as the solid reducing material in the above (1) or (2).

本発明においては、羽口から補助還元材として固体還元材と気体還元材または液体還元材を吹込む高炉操業方法において、固体還元材と共にH/Cが1.5以上の液体還元材または気体還元材を同時に吹き込み、かつボッシュガス中のH/COが0.22以上となるように前記固体還元材および/または気体還元材もしくは液体還元材の吹き込み量を調整するようにしたので、COを大幅に削減できると共に、炉内圧損の上昇を抑制しながら、還元材比を低減できる。 In the present invention, in a blast furnace operating method in which a solid reducing material and a gas reducing material or a liquid reducing material are blown from the tuyere as auxiliary reducing materials, the liquid reducing material or the gas reducing material having an H / C of 1.5 or more together with the solid reducing material. blowing timber simultaneously, and since H 2 / CO in the Bosch gas is to adjust the blowing amount of the solid reducing material and / or gaseous reducing agent or liquid reducing agent so that the 0.22 or more, CO 2 Can be significantly reduced, and the reducing material ratio can be reduced while suppressing an increase in pressure loss in the furnace.

本発明においては、ボッシュガス中のH/COに着目し、その具体的数値を0.22以上にすることで、微粉炭等の固体還元材に由来するアッシュの蓄積や、未燃チャーの発生と蓄積による圧損上昇の効果よりも水素投入による圧損緩和の効果を上回らせることができることを示したが、このことに大きな意義がある。なぜなら、このような指標が示されることで、従来では圧損上昇によって固体還元材の吹込みに限界があったものを、ボッシュガス中のH/COを0.22以上にするという具体的な数値と共に、この数値を境界として急激に圧損上昇を緩和できることを示したことにより、高炉操業における操業条件の弾力化を可能にしたからである。 In the present invention, paying attention to H 2 / CO in the Bosch gas, by making the specific value 0.22 or more, accumulation of ash derived from a solid reducing material such as pulverized coal or unburned char Although it has been shown that the pressure loss mitigation effect by hydrogen injection can be surpassed by the pressure loss increase effect due to generation and accumulation, this has great significance. This is because, by indicating such an index, a specific example in which H 2 / CO in the Bosch gas is 0.22 or more in the conventional case where there is a limit in blowing the solid reducing material due to an increase in pressure loss. This is because, together with the numerical value, it was shown that the increase in pressure loss can be alleviated sharply with this numerical value as a boundary, thereby making it possible to make the operating conditions more flexible in blast furnace operation.

図2は本実施の形態に係る高炉操業方法の実施に使用したベルレス式装入装置を有する高炉及びその周辺設備の概要の説明図である。
本実施の形態に使用した高炉及びその周辺設備は、図2に示すように、内容積が3223mである高炉1と、この高炉1に熱風を送る送風管2とを備え、この送風管2を貫通して微粉炭吹込みランス3、合成樹脂材吹込みランス4、気体還元材吹込みランス5が設置されている。
FIG. 2 is an explanatory view of the outline of a blast furnace having a bell-less charging device used for carrying out the blast furnace operating method according to the present embodiment and its peripheral equipment.
As shown in FIG. 2, the blast furnace used in the present embodiment and its peripheral equipment include a blast furnace 1 having an internal volume of 3223 m 3 and a blower pipe 2 for sending hot air to the blast furnace 1. A pulverized coal blowing lance 3, a synthetic resin material blowing lance 4, and a gas reducing material blowing lance 5 are installed.

本実施の形態の高炉操業方法は、羽口から補助還元材である固体還元材として微粉炭を吹込み、同じく補助還元材であるH/Cが1.5以上の気体還元材として天然ガスを吹き込む。
そして、補助還元材の吹込みに際してはボッシュガス中のH/COが0.22以上となるように補助還元材の吹込み量を調整する。
In the blast furnace operating method of the present embodiment, pulverized coal is blown from the tuyere as a solid reducing material that is an auxiliary reducing material, and natural gas is used as a gaseous reducing material that also has an H / C of 1.5 or more as an auxiliary reducing material. Infuse.
When the auxiliary reducing material is blown, the amount of blowing the auxiliary reducing material is adjusted so that H 2 / CO in the Bosch gas is 0.22 or more.

補助還元材の吹込み量の調整方法としては、例えば以下のようにする。
微粉炭と天然ガスを吹込む場合に、微粉炭及び天然ガスの化学組成(C、O、H、Nなど)とこれらの吹込み量、送風中の全酸素原単位から計算によって、ボッシュガス中のH/COが0.22以上の条件を満足する微粉炭吹込み比と天然ガス吹込み比の推算値を予め求めておく。
As a method for adjusting the amount of blowing in the auxiliary reducing material, for example, the following is performed.
When pulverized coal and natural gas are injected, the chemical composition (C, O, H, N, etc.) of pulverized coal and natural gas, the amount of these injections, and the total oxygen intensity in the blown air are calculated. Estimated values of the pulverized coal injection ratio and the natural gas injection ratio satisfying the condition of H 2 / CO of 0.22 or more are obtained in advance.

図3は酸素富化率が3%で一定の場合の、ボッシュガス中のH/COが所定値を満たすための条件をグラフで示したものであり、縦軸が天然ガス吹込み比を示し、横軸が微粉炭吹込み比を示している。図3においては、ボッシュガス中のH/COが0.22以上となる領域の境界線を太線で示し、その他にH/COが0.2、0.3、0.4となる領域の境界線を破線で示している。
なお、酸素富化率が異なる場合も同様な図を得ることができる。
FIG. 3 is a graph showing conditions for satisfying a predetermined value of H 2 / CO in the Bosch gas when the oxygen enrichment rate is constant at 3%, and the vertical axis represents the natural gas blowing ratio. The horizontal axis represents the pulverized coal injection ratio. In FIG. 3, the boundary line of the region where H 2 / CO in the Bosch gas is 0.22 or more is indicated by a bold line, and the other region where H 2 / CO is 0.2, 0.3, or 0.4. The boundary line is indicated by a broken line.
A similar diagram can be obtained when the oxygen enrichment rates are different.

図3によれば、ボッシュガス中のH/COを0.22以上にするためには、例えば微粉炭吹込み比が50kg/t-pの場合には天然ガス吹込み比を約24kg/t-p以上、微粉炭比が100kg/t-pの場合には天然ガス吹込み比を約15kg/t-p以上、微粉炭比が150kg/t-pの場合には天然ガス吹込み比を約5kg/t-p以上にすればよい。
もっとも、上記の図3に基づいて天然ガス吹込み比を決定しても、操業時にボッシュガスを直接サンプリングしてガス中のCO、H、H、Nの濃度を把握しながら、天然ガス吹込み比をさらに調整するようにしてもよい。
According to FIG. 3, in order to make H 2 / CO in the Bosch gas 0.22 or more, for example, when the pulverized coal injection ratio is 50 kg / tp, the natural gas injection ratio is about 24 kg / tp or more. When the pulverized coal ratio is 100 kg / tp, the natural gas injection ratio is about 15 kg / tp or more. When the pulverized coal ratio is 150 kg / tp, the natural gas injection ratio is about 5 kg / tp or more. .
However, even if the natural gas injection ratio is determined based on FIG. 3 above, the natural gas is obtained by directly sampling the Bosch gas during operation and grasping the concentrations of CO, H 2 , H 2 and N 2 in the gas. The gas blowing ratio may be further adjusted.

以上のように、ボッシュガス中のH/COが0.22以上になるように天然ガス吹込み比を設定することにより、図1に示したように、微粉炭吹き込み比によらず炉下部K値が低下し、炉内通気抵抗を緩和できる。これに対応して還元材比を低下し易くなる。 As described above, by setting the natural gas injection ratio so that H 2 / CO in the Bosch gas is 0.22 or more, as shown in FIG. The K value decreases and the ventilation resistance in the furnace can be relaxed. Correspondingly, the reducing material ratio is easily lowered.

なお、上記の例では、ボッシュガス中のH/COが0.22以上にする方法として、ボッシュガス中のH/COが0.22以上の条件を満足する微粉炭吹込み比と天然ガス吹込み比の推算値を予め求めておき、この予め求めた推算値に基づいて天然ガスの吹込みを実施する例を示した。
しかし、本発明はこれに限られるものではなく、例えば予め計算によって基礎となる値を求めていなくても、実操業においてボッシュガスを直接サンプリングしてガス中のCO、H、H、Nの濃度を把握しながら、天然ガス吹込み比を調整するようにしてもよい。
また、ボッシュガス中のH/COが0.22以上に調整する方法として、天然ガス吹込み比を調整するのみならず、微粉炭等の固体還元材の吹込み比を調整するようにしてもよい。
In the above example, as a method of H 2 / CO in the Bosch gas to 0.22 or more, pulverized coal blowing ratio H 2 / CO in the Bosch gas satisfies 0.22 or more conditions and natural An example is shown in which an estimated value of the gas injection ratio is obtained in advance, and natural gas is injected based on the estimated value obtained in advance.
However, the present invention is not limited to this. For example, even if a basic value is not obtained in advance by calculation, the Bosch gas is directly sampled in actual operation to obtain CO, H 2 , H 2 , N in the gas. While grasping the concentration of 2 , the natural gas blowing ratio may be adjusted.
As a method for adjusting H 2 / CO in the Bosch gas to 0.22 or more, not only the natural gas blowing ratio but also the blowing ratio of a solid reducing material such as pulverized coal is adjusted. Also good.

なお、上記の実施の形態においては、固体還元材として微粉炭のみを吹込んだ例を挙げたが、本発明はこれに限られるものではなく、微粉炭と合成樹脂材を同時に吹込んでもよいし、あるいは合成樹脂を単独で吹込んでもよい。   In the above embodiment, an example in which only pulverized coal is blown as a solid reducing material has been described. However, the present invention is not limited to this, and pulverized coal and a synthetic resin material may be simultaneously blown. Alternatively, the synthetic resin may be blown alone.

以下においては、ボッシュガス中のH/COを0.22以上に調整したときの効果を具体的に説明する。
微粉炭吹込み比を50kg/t-p、100kg/t-p、150kg/t-p、とした3つのケースについて、天然ガスの吹き込み比を20kg/t-pごとに変えることでボッシュガス中のH/COを変化させ、そのときの還元材比とH/COとの関係を求めた。
図4は還元材比とボッシュガス中のH/COとの関係を示すグラフであり、縦軸が還元材比を、横軸がボッシュガス中のH/COをそれぞれ示している。
Hereinafter, detailed explanation of the effect of adjusting the H 2 / CO in the Bosch gas 0.22 or more.
For three cases with pulverized coal injection ratios of 50 kg / tp, 100 kg / tp, and 150 kg / tp, the H 2 / CO in the Bosch gas is changed by changing the natural gas injection ratio every 20 kg / tp. The relationship between the reducing material ratio and H 2 / CO at that time was determined.
FIG. 4 is a graph showing the relationship between the reducing material ratio and H 2 / CO in Bosch gas, where the vertical axis shows the reducing material ratio and the horizontal axis shows H 2 / CO in Bosch gas.

図4に示されるように、天然ガスを吹込んでもボッシュガス中のH/COが0.22未満では、上記3つのいずれのケースにおいても還元材比低減の効果はほとんどみられない。
しかし、天然ガスの吹込み比を増やし、ボッシュガス中のH/COを0.22以上にすると、上記3つのいずれのケースにおいても還元材比低減の効果が顕著に現れている。
As shown in FIG. 4, even when natural gas is blown in, if the H 2 / CO in the Bosch gas is less than 0.22, the effect of reducing the reducing agent ratio is hardly seen in any of the above three cases.
However, when the natural gas blowing ratio is increased and the H 2 / CO in the Bosch gas is set to 0.22 or more, the effect of reducing the reducing material ratio is remarkable in any of the above three cases.

例えば、微粉炭吹込み比50kg/t-pのケースでは、ボッシュガス中のH/COを0.29にしたときの還元材比は493kg/t-pとなっており、ボッシュガス中のH/COが0.22未満のときの498kg/t-pに比較すると、5kg/t-p低減できている。
また、微粉炭吹込み比100kg/t-pのケースでは、ボッシュガス中のH/COを0.32にしたときの還元材比は499kg/t-pとなっており、ボッシュガス中のH/COが0.22未満のときの505kg/t-pに比較すると、6kg/t-p低減できている。
さらに、微粉炭吹込み比150kg/t-pのケースでは、ボッシュガス中のH/COを0.35にしたときの還元材比は505kg/t-pとなっており、ボッシュガス中のH/COが0.22未満のときの512kg/t-pに比較すると、7kg/t-p低減できている。
For example, in the case of a pulverized coal injection ratio of 50 kg / tp, the reducing material ratio is 493 kg / tp when H 2 / CO in Bosch gas is 0.29, and H 2 / CO in Bosch gas is Compared to 498 kg / tp when the value is less than 0.22, it is reduced by 5 kg / tp.
In the case of the pulverized coal injection ratio of 100 kg / tp, the reducing material ratio is 499 kg / tp when H 2 / CO in the Bosch gas is 0.32, and the H 2 / CO in the Bosch gas is Compared to 505 kg / tp when the value is less than 0.22, 6 kg / tp can be reduced.
Furthermore, in the case of the pulverized coal injection ratio of 150 kg / tp, the reducing material ratio when the H 2 / CO in the Bosch gas is 0.35 is 505 kg / tp, and the H 2 / CO in the Bosch gas is Compared to 512 kg / tp when the value is less than 0.22, it is reduced by 7 kg / tp.

以上のように、天然ガス吹込みによってボッシュガス中のH/COを0.22以上にすることで、通気性が改善し、水素投入による効果として還元材比低減が実現できるのである。 As described above, by setting H 2 / CO in the Bosch gas to 0.22 or more by blowing natural gas, the air permeability is improved, and a reduction in the reducing material ratio can be realized as an effect of hydrogen input.

本発明の根拠を説明するためのグラフである。It is a graph for demonstrating the basis of this invention. 本発明を実施する高炉びその周辺設備の説明図である。It is explanatory drawing of the blast furnace and its peripheral equipment which implements this invention. 本発明の一実施の形態における気体還元材の吹込み比の調整方法を説明する説明図である。It is explanatory drawing explaining the adjustment method of the blowing ratio of the gas reducing material in one embodiment of this invention. 本発明の実施例の効果を説明するためのグラフである。It is a graph for demonstrating the effect of the Example of this invention. 本発明の課題を説明するためのグラフであり、微粉炭の吹込み比とボッシュガス中のHとCOの濃度比(H/CO)の関係を示すグラフである。Is a graph for explaining a problem of the present invention, is a graph showing the relationship between the concentration ratio of H 2 and CO in the pulverized coal blow ratio and Bosch gas (H 2 / CO). 本発明の課題を説明するためのグラフであり、H/COと実炉の炉下部K値の関係を示すグラフである。Is a graph for explaining a problem of the present invention, is a graph showing the relationship between the furnace bottom K value of H 2 / CO and actual furnace.

符号の説明Explanation of symbols

1 高炉、2 送風管、3 微粉炭吹込みランス、4 合成樹脂材吹込みランス、5 気体還元材吹込みランス。     1 Blast furnace, 2 air duct, 3 pulverized coal injection lance, 4 synthetic resin material injection lance, 5 gas reducing material injection lance.

Claims (3)

羽口から補助還元材として固体還元材と気体還元材および/または液体還元材を吹込む高炉操業方法において、固体還元材と共にH/Cが1.5以上の液体還元材または気体還元材を同時に吹き込み、かつボッシュガス中のH/COが0.22以上となるように前記固体還元材および/または気体還元材もしくは液体還元材の吹き込み量を調整することを特徴とする高炉操業方法。 In a blast furnace operation method in which a solid reducing material and a gas reducing material and / or a liquid reducing material are blown as auxiliary reducing materials from a tuyere, a liquid reducing material or a gas reducing material having an H / C of 1.5 or more is simultaneously added together with the solid reducing material. A method for operating a blast furnace, characterized in that the blowing amount of the solid reducing material and / or the gas reducing material or the liquid reducing material is adjusted so that H 2 / CO in the Bosch gas is 0.22 or more. 液体還元材として重油、気体還元材として天然ガスを用いることを特徴とする請求項1記載の高炉操業方法。 The blast furnace operating method according to claim 1, wherein heavy oil is used as the liquid reducing material and natural gas is used as the gas reducing material. 固体還元材として微粉炭および/または合成樹脂材を用いることを特徴とする請求項1または2に記載の高炉操業方法。 The blast furnace operating method according to claim 1 or 2, wherein pulverized coal and / or a synthetic resin material is used as the solid reducing material.
JP2005024496A 2005-01-31 2005-01-31 Blast furnace operation method Active JP4984396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005024496A JP4984396B2 (en) 2005-01-31 2005-01-31 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005024496A JP4984396B2 (en) 2005-01-31 2005-01-31 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2006207009A true JP2006207009A (en) 2006-08-10
JP4984396B2 JP4984396B2 (en) 2012-07-25

Family

ID=36964181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005024496A Active JP4984396B2 (en) 2005-01-31 2005-01-31 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP4984396B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252200A (en) * 2010-06-02 2011-12-15 Jfe Steel Corp Method for operating blast furnace
JP2012177141A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method for operating blast furnace
JP2012188744A (en) * 2011-02-21 2012-10-04 Jfe Steel Corp Method for operating blast furnace
JP2020066753A (en) * 2018-10-22 2020-04-30 日本製鉄株式会社 Method for operating blast furnace
JP2020152989A (en) * 2019-03-22 2020-09-24 日本製鉄株式会社 Operation method of blast furnace and manufacturing method of pig iron
CN114787391A (en) * 2019-11-29 2022-07-22 日本制铁株式会社 Method for operating blast furnace
KR20230046067A (en) * 2021-09-29 2023-04-05 현대제철 주식회사 Method of controlling a blast furnace operation
WO2023162344A1 (en) * 2022-02-24 2023-08-31 Jfeスチール株式会社 Method for operating blast furnace, method for producing hot metal, and auxiliary facility for blast furnace
TWI842335B (en) 2022-02-24 2024-05-11 日商杰富意鋼鐵股份有限公司 Blast furnace operating method, molten iron manufacturing method and blast furnace ancillary equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108219880A (en) * 2018-01-18 2018-06-29 枣庄薛能天然气有限公司 A kind of method that low hydrogen-carbon ratio coke-stove gas mends hydrogen methanation synthetic natural gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497114A (en) * 1972-05-11 1974-01-22
JPH04268003A (en) * 1991-02-21 1992-09-24 Nippon Steel Corp Method for operating blast furnace
JPH05179323A (en) * 1992-01-06 1993-07-20 Nippon Steel Corp Operating method for blast furnace
JPH11241109A (en) * 1997-12-24 1999-09-07 Nippon Steel Corp Method for injecting pulverized fine coal and reducing gas into blast furnace
JPH11241108A (en) * 1997-12-24 1999-09-07 Nippon Steel Corp Method for injecting pulverized fine coal into blast furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497114A (en) * 1972-05-11 1974-01-22
JPH04268003A (en) * 1991-02-21 1992-09-24 Nippon Steel Corp Method for operating blast furnace
JPH05179323A (en) * 1992-01-06 1993-07-20 Nippon Steel Corp Operating method for blast furnace
JPH11241109A (en) * 1997-12-24 1999-09-07 Nippon Steel Corp Method for injecting pulverized fine coal and reducing gas into blast furnace
JPH11241108A (en) * 1997-12-24 1999-09-07 Nippon Steel Corp Method for injecting pulverized fine coal into blast furnace

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252200A (en) * 2010-06-02 2011-12-15 Jfe Steel Corp Method for operating blast furnace
JP2012188744A (en) * 2011-02-21 2012-10-04 Jfe Steel Corp Method for operating blast furnace
JP2012177141A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method for operating blast furnace
JP2020066753A (en) * 2018-10-22 2020-04-30 日本製鉄株式会社 Method for operating blast furnace
JP7103155B2 (en) 2018-10-22 2022-07-20 日本製鉄株式会社 Blast furnace operation method
JP7348467B2 (en) 2019-03-22 2023-09-21 日本製鉄株式会社 Blast furnace operating method and pig iron manufacturing method
JP2020152989A (en) * 2019-03-22 2020-09-24 日本製鉄株式会社 Operation method of blast furnace and manufacturing method of pig iron
CN114787391A (en) * 2019-11-29 2022-07-22 日本制铁株式会社 Method for operating blast furnace
CN114787391B (en) * 2019-11-29 2023-09-12 日本制铁株式会社 Method for operating blast furnace
KR20230046067A (en) * 2021-09-29 2023-04-05 현대제철 주식회사 Method of controlling a blast furnace operation
KR102607615B1 (en) * 2021-09-29 2023-11-30 현대제철 주식회사 Method of controlling a blast furnace operation
WO2023162344A1 (en) * 2022-02-24 2023-08-31 Jfeスチール株式会社 Method for operating blast furnace, method for producing hot metal, and auxiliary facility for blast furnace
JP7375980B1 (en) 2022-02-24 2023-11-08 Jfeスチール株式会社 Blast furnace operating method, hot metal production method, and blast furnace auxiliary equipment
TWI842335B (en) 2022-02-24 2024-05-11 日商杰富意鋼鐵股份有限公司 Blast furnace operating method, molten iron manufacturing method and blast furnace ancillary equipment

Also Published As

Publication number Publication date
JP4984396B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4984396B2 (en) Blast furnace operation method
KR101355325B1 (en) Blast furnace operation method
KR20130109237A (en) Method for operating blast furnace
KR20130122659A (en) Method for operating blast furnace
JP4894989B2 (en) Blast furnace operation method
JP2003286511A (en) Method for improving flammability of low-volatile pulverized coal in blast furnace
CN104471078A (en) Method for preparing blast furnace blow-in coal
JP5200618B2 (en) Blast furnace operation method
JP7103155B2 (en) Blast furnace operation method
CA2917759C (en) Method for operating a blast furnace
JP5581897B2 (en) Blast furnace operation method
CA2976885C (en) Method for operating blast furnace
CA2976883C (en) Method for operating blast furnace
EP3421618A1 (en) Double wall lance
JP2006291251A (en) Method for blowing reducing material into blast furnace and device therefor
WO2018180892A1 (en) Method for operating blast furnace
JP6489060B2 (en) Blast furnace operation method
JP2020045508A (en) Operation method of blast furnace
JP7348466B2 (en) Blast furnace operating method and pig iron manufacturing method
JP2011190471A (en) Method for operating blast furnace
WO2022264561A1 (en) Oxygen blast furnace and oxygen blast furnace operation method
JP5855536B2 (en) Blast furnace operation method
WO2023199550A1 (en) Operation method for blast furnace
JP4742686B2 (en) Blowing synthetic resin into blast furnace
JP4714544B2 (en) Blast furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4984396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250