JP2020066753A - Method for operating blast furnace - Google Patents

Method for operating blast furnace Download PDF

Info

Publication number
JP2020066753A
JP2020066753A JP2018198466A JP2018198466A JP2020066753A JP 2020066753 A JP2020066753 A JP 2020066753A JP 2018198466 A JP2018198466 A JP 2018198466A JP 2018198466 A JP2018198466 A JP 2018198466A JP 2020066753 A JP2020066753 A JP 2020066753A
Authority
JP
Japan
Prior art keywords
blast furnace
hydrogen
basic unit
gas
thm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018198466A
Other languages
Japanese (ja)
Other versions
JP7103155B2 (en
Inventor
中野 薫
Kaoru Nakano
薫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018198466A priority Critical patent/JP7103155B2/en
Publication of JP2020066753A publication Critical patent/JP2020066753A/en
Application granted granted Critical
Publication of JP7103155B2 publication Critical patent/JP7103155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

To suppress reduction in the basic unit of blast furnace gas calorific value without increasing the basic unit of carbon consumption.SOLUTION: In a method for operating a blast furnace where a hydrogen-based reduction material is blown from a tuyere, when evaluation value for evaluating the reduction efficiency of the blast furnace is changed, an action for increasing the blowing amount of the hydrogen-based reduction material blown from the tuyere is practiced. For example, correlation information of linearly increasing the basic unit of blast furnace gas calorific value as the blowing amount of the hydrogen-based reduction material is increased has been acquired correspondingly to the evaluation value in advance, and, when the evaluation value is changed to a direction of improving the reduction efficiency, the blowing amount of the hydrogen-based reduction material is determined using the correlation information, and the action can be practiced.SELECTED DRAWING: Figure 6

Description

本発明は、羽口から水素系還元材を吹き込む高炉操業方法に関するものである。  The present invention relates to a blast furnace operating method in which a hydrogen-based reducing material is blown from a tuyere.

一般に、高炉、転炉、圧延設備及びこれらにエネルギーを供給するエネルギー供給設備を備えた鉄鋼一貫製鉄所においては、主要なエネルギー源として石炭が用いられており、石炭の大部分は製銑工程(高炉、コークス炉、焼結機)で消費されるとともに、製銑工程で発生した副生ガスは製鉄所内の諸設備におけるエネルギー源として有効利用されている。   Generally, in an integrated steel mill having a blast furnace, a converter, a rolling facility, and an energy supply facility for supplying energy to these, coal is used as a main energy source, and most of the coal is used in the ironmaking process ( It is consumed by the blast furnace, coke oven, and sinter machine), and the by-product gas generated in the ironmaking process is effectively used as an energy source in various equipment in the steelworks.

近年、地球の環境問題を背景として、製鉄所においても、省エネ、省資源、炭酸ガス(CO2)発生量の抑制等に対する要求が高まっている。製鉄所全体から発生するCO2のうち、製銑工程から発生するCO2発生量がその大部分を占めており、特に高炉から排出されるCO2は最も多いため、高炉で使用する原料の被還元性向上、炉頂装入物分布の適正化等の還元効率向上施策による低還元材比操業が指向されている。 In recent years, against the background of global environmental problems, demands for energy saving, resource saving, suppression of carbon dioxide (CO 2 ) generation amount, etc. have been increasing in steelworks as well. Of the CO 2 generated from the entire steel plant, the large amount of CO 2 generated from the ironmaking process accounts for the majority of the CO 2, and the most CO 2 emitted from the blast furnace is the largest. Low reducing agent ratio operation is aimed at by reducing efficiency improvement measures such as improvement of reducing property and optimization of distribution of top charge.

しかしながら、上記のような方法で高炉の還元効率を向上させると、高炉の炉頂から排出されるガス(つまり、高炉ガス)の発熱量が減少する。この為、製鉄所の諸設備に供給されるエネルギーの供給量が需要量を下回る場合には、外部からエネルギーを調達しなければならない。その結果、高炉で炭素消費量を低減しても、製鉄所全体としては、必ずしも炭素消費量の削減が十分でなかった。   However, when the reduction efficiency of the blast furnace is improved by the method as described above, the calorific value of the gas discharged from the top of the blast furnace (that is, the blast furnace gas) is reduced. Therefore, if the amount of energy supplied to the facilities of the steel mill is less than the demand, energy must be procured from outside. As a result, even if the carbon consumption was reduced in the blast furnace, the reduction of carbon consumption was not always sufficient for the steel mill as a whole.

ここで、特許文献1には、高炉の炉頂から排出されるガスの発熱量低下を防止するために、高炉に送風する空気中の酸素濃度を25〜96%に濃度調整して、高炉ガス中の窒素濃度を低減し、更に、二酸化炭素分離装置を通して高炉ガス中の二酸化炭素を分離除去することにより、高炉ガスの単位体積当たりの発熱量を増加させる方法が開示されている。   Here, in Patent Document 1, in order to prevent a decrease in the calorific value of the gas discharged from the furnace top of the blast furnace, the oxygen concentration in the air blown to the blast furnace is adjusted to 25 to 96%, and the blast furnace gas is adjusted. A method of increasing the calorific value per unit volume of blast furnace gas by reducing the nitrogen concentration in the blast furnace gas and further separating and removing carbon dioxide in the blast furnace gas through a carbon dioxide separator is disclosed.

しかしながら、還元効率向上を指向して特許文献1記載の方法を実施しても、高炉ガスの単位体積当たりの発熱量は増加するものの、溶銑1tを製造する際に発生する高炉ガスの総発熱量(以下、高炉ガス発熱量原単位と称する)は減少するため、上述のように製鉄所内の諸設備に供給されるエネルギーの供給量が需要量を下回る場合には、外部からエネルギーを調達しなければならない。   However, even if the method described in Patent Document 1 aimed at improving the reduction efficiency is implemented, the calorific value per unit volume of the blast furnace gas increases, but the total calorific value of the blast furnace gas generated during the production of molten iron 1t. (Hereinafter referred to as blast furnace gas calorific value basic unit) will decrease, so if the amount of energy supplied to the various facilities in the steelworks is below the demand as described above, energy must be procured from outside. I have to.

WO2009/116672WO2009 / 116672

小野陽一;鉄と鋼 Vol. 79 (1993), p N618Ono Yoichi; Iron and Steel Vol. 79 (1993), p N618 小野陽一;鉄と鋼 Vol. 79 (1993), p N711(特に、第6.3節天然ガス吹き込みの影響)Ono Yoichi; Iron and Steel Vol. 79 (1993), p N711 (Especially Section 6.3 Effects of Natural Gas Injection)

本発明は、シャフト効率等の高炉の還元効率を評価する評価値が変動したときの操業アクションとして、炭素消費原単位の低減(増大の抑制)と、高炉ガス発熱量原単位の低下の抑制(増加)とを両立し得る、高炉の操業方法を実現することを目的とする。   INDUSTRIAL APPLICABILITY The present invention reduces carbon consumption intensity (suppression of increase) and suppression of reduction of blast furnace gas heat generation intensity as operation actions when an evaluation value for evaluating reduction efficiency of a blast furnace such as shaft efficiency changes. The purpose is to realize a method of operating a blast furnace that can achieve both the increase and the increase.

本発明者は、上記の課題を解決するため、羽口から水素系還元材を吹き込む場合の、炭素消費原単位及び高炉ガス発熱量原単位の変化を検討した。その結果、高炉の還元効率を管理指標とし、還元効率の変化に応じて水素系還元材の吹込量を制御することで上記課題を解決できることを知見し、本発明を完成するに至った。   In order to solve the above problems, the present inventor examined changes in the carbon consumption basic unit and the blast furnace gas calorific value basic unit when blowing the hydrogen-based reducing material from the tuyere. As a result, they have found that the above problems can be solved by using the reduction efficiency of the blast furnace as a management index and controlling the injection amount of the hydrogen-based reducing material according to changes in the reduction efficiency, and have completed the present invention.

すなわち、本発明に係る高炉操業方法は、羽口から水素系還元材を吹き込む高炉の操業方法において、高炉の還元効率を評価する評価値が変動した際に、前記羽口から吹き込まれる前記水素系還元材の吹込量を増大させるアクションを実行することを特徴とする。ここで、予め、前記水素系還元材の吹込量が増大するに従って高炉ガス発熱量原単位がリニアに増加する相関情報を前記評価値の値に対応づけて取得しておき、前記還元効率が向上する方向に前記評価値が変動した際に、前記相関情報を用いて前記水素系還元材の吹込量を決定し、前記アクションを実行することができる。何らかの原因で還元効率が向上し、高炉ガス発熱量原単位が低下した場合には、水素系還元材の吹込量を増大させるアクションを実行することにより、高炉ガス発熱量原単位の低下を抑制することができる。   That is, the blast furnace operating method according to the present invention is a method of operating a blast furnace in which a hydrogen-based reducing material is blown from a tuyere, and when the evaluation value for evaluating the reduction efficiency of the blast furnace changes, the hydrogen system blown from the tuyere It is characterized in that an action for increasing the blowing amount of the reducing material is executed. Here, in advance, correlation information in which the blast furnace gas calorific value basic unit linearly increases as the blowing amount of the hydrogen-based reducing material increases is acquired in association with the value of the evaluation value to improve the reduction efficiency. When the evaluation value fluctuates in the direction of performing the action, it is possible to determine the injection amount of the hydrogen-based reducing material using the correlation information and execute the action. When the reduction efficiency is improved for some reason and the blast furnace gas calorific value basic unit is lowered, the action to increase the blowing amount of the hydrogen-based reducing material is executed to suppress the decrease of the blast furnace gas calorific value basic unit. be able to.

好ましくは、前記アクションを実行した後の高炉ガス発熱量原単位が、前記アクションを実行する前の高炉ガス発熱量原単位以上となるように、前記水素系還元材の吹込量を決定することができる。   Preferably, the blowing amount of the hydrogen-based reducing material may be determined such that the blast furnace gas calorific value basic unit after performing the action is equal to or higher than the blast furnace gas calorific value basic unit before performing the action. it can.

また、予め、前記水素系還元材の吹込量が増大するにしたがって炭素消費原単位がリニアに減少する相関情報を前記評価値の値に対応づけて取得しておき、前記還元効率が低下する方向に前記評価値が変動した際に、前記相関情報を用いて前記水素系還元材の吹込量を決定し、前記アクションを実行することができる。何らかの原因で還元効率が低下し、炭素消費原単位が増大した場合には、水素系還元材の吹込量を増大させるアクションを実行することにより、炭素消費原単位の増大を抑制することができる。好ましくは、前記アクションを実行した後の炭素消費原単位が、前記アクションを実行する前の炭素消費原単位以下となるように、前記水素系還元材の吹込量を決定することができる。   Further, in advance, correlation information in which the carbon consumption intensity linearly decreases as the blowing amount of the hydrogen-based reducing material increases is obtained in association with the value of the evaluation value, and the reduction efficiency decreases. When the evaluation value changes, the correlation information can be used to determine the injection amount of the hydrogen-based reducing material, and the action can be executed. When the reduction efficiency decreases for some reason and the carbon consumption basic unit increases, the increase of the carbon consumption basic unit can be suppressed by executing the action of increasing the blowing amount of the hydrogen-based reducing material. Preferably, the blowing amount of the hydrogen-based reducing material can be determined such that the carbon consumption basic unit after the action is executed is equal to or less than the carbon consumption basic unit before the action is executed.

前記評価値には、シャフト効率又は炉頂COガス利用率を用いることができる。   As the evaluation value, shaft efficiency or furnace top CO gas utilization rate can be used.

本発明によれば、シャフト効率等の高炉の還元効率を評価する評価値が変動したときの操業アクションとして、炭素消費原単位の低減(増大の抑制)と、高炉ガス発熱量原単位の低下の抑制(増加)とを両立し得る、高炉の操業方法を提供することができる。   According to the present invention, as the operation action when the evaluation value for evaluating the reduction efficiency of the blast furnace such as the shaft efficiency changes, reduction of the carbon consumption basic unit (suppression of increase) and reduction of the blast furnace gas calorific value basic unit are performed. It is possible to provide a method of operating a blast furnace that can achieve both suppression (increase).

シャフト効率と炭素消費原単位との関係を示すグラフである。It is a graph which shows the relationship between shaft efficiency and carbon consumption basic unit. 炭素消費原単位と高炉ガス発熱量原単位との関係を示すグラフである。It is a graph which shows the relationship between a carbon consumption basic unit and a blast furnace gas calorific value basic unit. 炭素消費原単位と高炉ガスLHVとの関係を示すグラフである。It is a graph which shows the relationship between carbon consumption basic unit and blast furnace gas LHV. シャフト効率に応じた水素ガス吹込量と高炉ガス発熱量原単位との関係を示すグラフである。It is a graph which shows the relationship between the amount of hydrogen gas injection according to shaft efficiency, and the basic unit of calorific value of blast furnace gas. シャフト効率に応じた水素ガス吹込量と炭素消費原単位との関係を示すグラフである。It is a graph which shows the relationship between the amount of hydrogen gas injection according to shaft efficiency, and a carbon consumption basic unit. 水素ガス吹込量を増大させたときの高炉ガス発熱量原単位の変化を説明するためのグラフである(シャフト効率増加の例)。4 is a graph for explaining a change in the basic unit of calorific value of blast furnace gas when the amount of hydrogen gas injected is increased (example of increase in shaft efficiency). 水素ガス吹込量を増大させたときの炭素消費原単位の変化を説明するためのグラフである(シャフト効率増加の例)。4 is a graph for explaining a change in carbon consumption intensity when the hydrogen gas injection amount is increased (example of increase in shaft efficiency). 水素ガス吹込量を増大させたときの炭素消費原単位の変化を説明するためのグラフである(シャフト効率低下の例)。6 is a graph for explaining a change in carbon consumption intensity when the hydrogen gas injection amount is increased (an example of a decrease in shaft efficiency). 水素ガス吹込量を増大させたときの高炉ガス発熱量原単位の変化を説明するためのグラフである(シャフト効率低下の例)。6 is a graph for explaining a change in the basic unit of calorific value of blast furnace gas when the amount of hydrogen gas injected is increased (an example of reduction in shaft efficiency). シャフト効率に応じたメタンガス吹込量と炭素消費原単位との関係を示すグラフである。It is a graph which shows the relationship between the amount of methane gas injection according to shaft efficiency, and a carbon consumption basic unit. シャフト効率に応じたメタンガス吹込量と高炉ガス発熱量原単位との関係を示すグラフである。It is a graph which shows the relationship between the amount of methane gas injection and the blast furnace gas calorific value basic unit according to shaft efficiency. シャフト効率に応じたCOGガス吹込量と炭素消費原単位との関係を示すグラフである。It is a graph which shows the relationship between the amount of COG gas injection according to shaft efficiency, and carbon consumption basic unit. シャフト効率に応じたCOGガス吹込量と高炉ガス発熱量原単位との関係を示すグラフである。6 is a graph showing the relationship between the COG gas injection amount and the blast furnace gas calorific value basic unit according to the shaft efficiency. ηCOに応じた水素ガス吹込量と高炉ガス発熱量原単位との関係を示すグラフである。It is a graph which shows the relationship between the amount of hydrogen gas injection according to (eta) CO, and a blast furnace gas calorific value basic unit. ηCOに応じた水素ガス吹込量と炭素消費原単位との関係を示すグラフである。It is a graph which shows the relationship between the amount of hydrogen gas injection according to eta CO, and the carbon consumption basic unit. ηCOに応じたメタンガス吹込量と高炉ガス発熱量原単位との関係を示すグラフである。It is a graph which shows the relationship between the amount of methane gas injection according to eta CO, and the basic unit of calorific value of blast furnace gas. ηCOに応じたメタンガス吹込量と炭素消費原単位との関係を示すグラフである。It is a graph which shows the relationship between the amount of methane gas injection according to eta CO, and the carbon consumption basic unit. ηCOに応じたCOGガス吹込量と高炉ガス発熱量原単位との関係を示すグラフである。It is a graph which shows the relationship between the amount of COG gas injection according to ηCO, and the basic unit of calorific value of blast furnace gas. ηCOに応じたCOGガス吹込量と炭素消費原単位との関係を示すグラフである。It is a graph which shows the relationship between the amount of COG gas injection according to etaCO, and a carbon consumption basic unit. シャフト効率に応じた混合ガス吹込量と高炉ガス発熱量原単位との関係を示すグラフである。It is a graph which shows the relationship between the mixed gas injection amount and the blast furnace gas calorific value basic unit according to shaft efficiency. シャフト効率に応じた混合ガス吹込量と炭素消費原単位との関係を示すグラフである。It is a graph which shows the relationship between a mixed gas injection amount and carbon consumption basic unit according to shaft efficiency. 第1実施形態の変形例に相当する図6に対応するグラフである。7 is a graph corresponding to FIG. 6 corresponding to a modified example of the first embodiment.

まず、図1〜5を参照して、本発明を創出するに至った背景を説明する。図1は、表1の基準条件に基づき試算したシャフト効率と炭素消費原単位との関係を示しており、横軸がシャフト効率(%)、縦軸が炭素消費原単位(kg/THM)である。図2は、炭素消費原単位と高炉ガス発熱量原単位との関係を示しており、横軸が炭素消費原単位(kg/THM)、縦軸が高炉ガス熱量原単位(Mcal/THM)である。シャフト効率は、非特許文献1及び2に記載されたRistモデルに基づき試算した。
First, the background that led to the creation of the present invention will be described with reference to FIGS. Figure 1 shows the relationship between shaft efficiency and carbon consumption intensity calculated based on the standard conditions in Table 1, where the horizontal axis is shaft efficiency (%) and the vertical axis is carbon consumption intensity (kg / THM). is there. Figure 2 shows the relationship between carbon consumption intensity and blast furnace gas calorific value intensity.The horizontal axis is carbon consumption intensity (kg / THM), and the vertical axis is blast furnace gas heat intensity (Mcal / THM). is there. The shaft efficiency was calculated based on the Rist model described in Non-Patent Documents 1 and 2.

ここで、シャフト効率とは高炉の原料被還元性の制御、装入物分布の制御等により変化し得る高炉の還元効率を表す指標であり、高炉操業の解析で一般的に利用されるRistモデルに基づき定義することができる。   Here, the shaft efficiency is an index showing the reduction efficiency of the blast furnace that can be changed by controlling the reducibility of the raw material of the blast furnace, controlling the distribution of the charge, etc., and is a Rist model generally used in the analysis of blast furnace operation. Can be defined based on

Ristモデルとは、総括物質収支と炉下部高温域の部分熱収支に加え、FeO酸化鉄の還元に関して化学平衡論を考慮したプロセス評価モデルのことである。Ristモデルに基づく操業線図では、横軸Xに還元ガスの酸化度(例えば、(O+H2)/(C+H2))、縦軸Yに酸化鉄の酸化度(例えばO/Fe)を取り、間接還元帯の任意の断面での酸素の物質収支を考慮することにより、直線の操業線図が得られる。理想操業における操業線と実操業における操業線とを比較し、これらのずれ量からシャフト効率を求めることができる。シャフト効率が100%であるとき、操業線はW点(平衡点)と称されるウスタイト還元(FeO→Fe)の組成を表す点を通る。COガスとH2ガスが共存する場合、W点はウスタイトのCO還元とH2還元の各平衡組成をCO系ガスとH2系ガスの存在比率に応じて平均化した組成で決定される。Ristモデルの詳細については、例えば、非特許文献1等に記載されているから、上述の説明に留める。 The Rist model is a process evaluation model that takes into consideration the chemical equilibrium theory for the reduction of FeO iron oxide in addition to the overall mass balance and the partial heat balance in the lower high temperature region of the furnace. In the operating diagram based on the Rist model, the horizontal axis X represents the degree of oxidation of the reducing gas (e.g., (O + H 2 ) / (C + H 2 )), and the vertical axis Y represents the degree of oxidation of iron oxide (e.g., O / Fe). ) Is taken into consideration and the mass balance of oxygen at any cross section of the indirect reduction zone is taken into consideration, a linear operation diagram is obtained. It is possible to compare the operating line in the ideal operation and the operating line in the actual operation, and obtain the shaft efficiency from the deviation amount thereof. When the shaft efficiency is 100%, the operating line passes through the point that represents the composition of Wustite reduction (FeO → Fe) called the W point (equilibrium point). When CO gas and H 2 gas coexist, the W point is determined by a composition obtained by averaging each equilibrium composition of CO reduction and H 2 reduction of wustite according to the abundance ratio of CO gas and H 2 gas. The details of the Rist model are described in, for example, Non-Patent Document 1 and the like, and therefore only the above description will be given.

図1を参照して、シャフト効率(%)が増加するにしたがって炭素消費原単位(kg/THM)はリニアに減少する。図2を参照して、炭素消費原単位(kg/THM)が増加するにしたがって高炉ガス発熱量原単位(Mcal/THM)はリニアに増加する。つまり、シャフト効率(%)が増加すると炭素消費原単位(kg/THM)及び高炉ガス熱量原単位(Mcal/THM)が共にリニアに減少する。ここで、炭素消費原単位(kg/THM)とは、溶銑1tを製造するのに必要な炭素消費量(kg)のことである。また、高炉ガス発熱量原単位(Mcal/THM)は、溶銑1tを製造する際に発生する高炉ガスの総発熱量(Mcal)のことである。   Referring to FIG. 1, the carbon consumption basic unit (kg / THM) decreases linearly as the shaft efficiency (%) increases. Referring to FIG. 2, the basic unit of calorific value of blast furnace gas (Mcal / THM) increases linearly as the basic unit of carbon consumption (kg / THM) increases. In other words, when the shaft efficiency (%) increases, both the carbon consumption intensity (kg / THM) and the blast furnace gas heat energy intensity (Mcal / THM) both decrease linearly. Here, the carbon consumption basic unit (kg / THM) is the carbon consumption amount (kg) required to produce 1 ton of hot metal. The unit calorific value of blast furnace gas (Mcal / THM) is the total calorific value (Mcal) of blast furnace gas generated when 1 ton of hot metal is produced.

ここで、図1及び図2の試算に当たっては、酸素富化率を6(vol%)から14(vol%)まで、2(vol%)ずつ変化させて5通りの酸素富化率で試算している。高炉ガス発熱量原単位(Mcal/THM)は、炭素消費原単位(シャフト効率)が同じであれば酸素富化率によらずほぼ同じ線上を辿る。他方、高炉の炭素消費原単位(kg/THM)と高炉ガスの単位体積当たりの低位発熱量(以下、LHVと称する)との関係を示す図3から明らかなように、炭素消費原単位(kg/THM)を低減するとLHVは低下するものの酸素富化率を増加すれば、高炉ガスのLHVを増加させることが出来る。つまり、酸素富化率を上げると、高炉ガスに含まれる窒素の割合が減る(言い換えると、LHVを規定する分母の数値が小さくなる)ため、LHVが増加する。従って、高炉の炭素消費原単位(kg/THM)が低下(シャフト効率が増加)しても酸素富化率を増加すれば高炉ガスのLHVを増加させることができる。ただし、高炉ガス発熱量原単位(Mcal/THM)は酸素富化率に左右されないため、炭素消費原単位(kg/THM)が低下することにより、高炉ガス発熱量原単位(Mcal/THM)は減少してしまう。なお、高炉では、羽口から吹き込まれるガスの酸素濃度を空気及び純酸素の混合比率を変えることにより調整している。本明細書では、以下に定義する酸素富化率を用いて空気中への純酸素の混合比率を表す。酸素富化率は、空気と混合する純酸素を合わせた混合気体中の酸素濃度から21(vol%)を減じた濃度(vol%)として定義する。従って、例えば、空気と混合する純酸素を合わせた混合気体中の酸素濃度が31(vol%)なら、酸素富化率は、10(%)となる。   Here, in the trial calculation of FIG. 1 and FIG. 2, the oxygen enrichment rate was changed from 6 (vol%) to 14 (vol%) by 2 (vol%), and the trial calculation was performed with 5 different oxygen enrichment rates. ing. The basic unit of calorific value of blast furnace gas (Mcal / THM) follows almost the same line regardless of the oxygen enrichment rate if the basic unit of carbon consumption (shaft efficiency) is the same. On the other hand, as is clear from Fig. 3, which shows the relationship between the carbon consumption basic unit (kg / THM) of the blast furnace and the lower heating value per unit volume of the blast furnace gas (hereinafter referred to as LHV), the carbon consumption basic unit (kg (/ THM) decreases the LHV, but increasing the oxygen enrichment ratio can increase the LHV of the blast furnace gas. That is, when the oxygen enrichment rate is increased, the proportion of nitrogen contained in the blast furnace gas is decreased (in other words, the denominator value that defines LHV is decreased), so that LHV is increased. Therefore, the LHV of the blast furnace gas can be increased by increasing the oxygen enrichment rate even if the carbon consumption basic unit (kg / THM) of the blast furnace is decreased (the shaft efficiency is increased). However, since the basic unit of calorific value of blast furnace gas (Mcal / THM) is not affected by the oxygen enrichment rate, the basic unit of calorific value of gas (Mcal / THM) decreases due to the decrease of the basic unit of carbon consumption (kg / THM). Will decrease. In the blast furnace, the oxygen concentration of the gas blown from the tuyere is adjusted by changing the mixing ratio of air and pure oxygen. In this specification, the oxygen enrichment rate defined below is used to represent the mixing ratio of pure oxygen in the air. The oxygen enrichment rate is defined as the concentration (vol%) obtained by subtracting 21 (vol%) from the oxygen concentration in a mixed gas of pure oxygen mixed with air. Therefore, for example, if the oxygen concentration in the mixed gas including pure oxygen mixed with air is 31 (vol%), the oxygen enrichment rate will be 10 (%).

本発明者は、上述の課題を解決するために、水素系還元材の一例である水素を高炉の羽口から吹き込むことによる、高炉ガス発熱量原単位(Mcal/THM)及び炭素消費原単位(kg/THM)に与える影響について考察した。本明細書において水素系還元材とは、水素ガス若しくは、高炉の羽口に吹込んだ時、レースウェイ部で分解され、水素ガスを発生するものの内、微粉炭と水蒸気を除く還元材をいい、例えば、水素ガス、メタンガス、コークス炉ガス(COGガス)等である。水素系還元材は気体だけでなく、固体、液体をも含む。   The present inventor, in order to solve the above problems, by blowing hydrogen, which is an example of a hydrogen-based reducing material, from the tuyere of the blast furnace, blast furnace gas calorific value basic unit (Mcal / THM) and carbon consumption basic unit ( The effect on (kg / THM) was discussed. In the present specification, the hydrogen-based reducing agent refers to hydrogen gas or a reducing agent that decomposes in the raceway portion to generate hydrogen gas when blown into the tuyere of a blast furnace, except for pulverized coal and steam. For example, hydrogen gas, methane gas, coke oven gas (COG gas) and the like. The hydrogen-based reducing material includes not only gas but also solid and liquid.

図4はシャフト効率(%)に応じて異なる水素ガス吹込量と高炉ガス発熱量原単位との関係を示しており、横軸が水素ガス吹込量(Nm3/THM)であり、縦軸が高炉ガス発熱量原単位(Mcal/THM)である。図5はシャフト効率(%)に応じて異なる水素ガス吹込量と炭素消費原単位との関係を示しており、横軸が水素ガス吹込量(Nm3/THM)であり、縦軸が炭素消費原単位(kg/THM)である。 Figure 4 shows the relationship between the hydrogen gas injection rate and the blast furnace gas calorific value basic unit, which varies depending on the shaft efficiency (%). The horizontal axis is the hydrogen gas injection rate (Nm 3 / THM), and the vertical axis is. It is the basic unit of calorific value of blast furnace gas (Mcal / THM). Figure 5 shows the relationship between the hydrogen gas injection amount and the carbon consumption intensity, which differ depending on the shaft efficiency (%). The horizontal axis is the hydrogen gas injection amount (Nm 3 / THM), and the vertical axis is the carbon consumption. It is a basic unit (kg / THM).

図4及び図5のグラフは、基準の操業条件及び非特許文献2に記載されたRistモデルを利用して、求めることができる。図4に示すように、シャフト効率(%)が一定の場合、水素ガス吹込量(Nm3/THM)の増大により、炉頂ガスの水素濃度が増加するため、高炉ガス発熱量原単位(Mcal/THM)がリニアに増加する。図5に示すように、シャフト効率(%)が一定の場合、水素ガス吹込量(Nm3/THM)の増大により、水素還元率が増加して直接還元率が低下するため、炭素消費原単位(kg/THM)がリニアに減少する。 The graphs in FIGS. 4 and 5 can be obtained by using the standard operating conditions and the Rist model described in Non-Patent Document 2. As shown in Fig. 4, when the shaft efficiency (%) is constant, the hydrogen concentration in the furnace top gas increases with an increase in the hydrogen gas injection amount (Nm 3 / THM). / THM) increases linearly. As shown in Fig. 5, when the shaft efficiency (%) is constant, the hydrogen reduction rate increases and the direct reduction rate decreases due to an increase in the hydrogen gas injection amount (Nm 3 / THM). (kg / THM) decreases linearly.

したがって、シャフト効率(%)を維持して水素ガス吹込量(Nm3/THM)を増大させると高炉ガス発熱量原単位(Mcal/THM)を増加させることができる。また、シャフト効率(%)が増加すると、COガス、H2ガスの還元ガスとしての利用率が増加するため、高炉ガス発熱量原単位(Mcal/THM)は減少する。 Therefore, if the hydrogen gas injection amount (Nm 3 / THM) is increased while maintaining the shaft efficiency (%), the blast furnace gas calorific value basic unit (Mcal / THM) can be increased. Further, when the shaft efficiency (%) increases, the utilization rate of CO gas and H 2 gas as the reducing gas increases, so that the blast furnace gas calorific value basic unit (Mcal / THM) decreases.

図4に示すシャフト効率に応じた各ラインは線形であるため、高炉ガス発熱量原単位(Mcal/THM)は水素ガス吹込量(Nm3/THM)及びシャフト効率(%)の関数として、以下の式(1)により規定することができる。
高炉ガス発熱量原単位= (ag*ηs+bg)*V + (cg*ηs+dg)・・・・・(式1)
ここで、ηs:シャフト効率(%)、V:水素ガス吹込量(Nm3/THM)であり、ag,bg, cg及びdgは水素系還元材の種類に応じて異なる定数であり、水素ガスの場合 ag=-0.0154, bg=2.16, cg=-25.9, dg=3657である。式(1)から、高炉ガス発熱量原単位(Mcal/THM)は、水素ガス吹込量が1(Nm3/THM)変化すると、 (ag*ηs+bg) (Mcal/THM)だけ変化することが判る。
Since each line corresponding to the shaft efficiency shown in Fig. 4 is linear, the blast furnace gas calorific value basic unit (Mcal / THM) is as a function of the hydrogen gas injection amount (Nm 3 / THM) and the shaft efficiency (%). It can be defined by the equation (1).
Basic unit of calorific value of blast furnace gas = (a g * ηs + b g ) * V + (c g * ηs + d g ) ・ ・ ・ ・ ・ (Equation 1)
Here, ηs: shaft efficiency (%), V: hydrogen gas injection amount (Nm 3 / THM), and a g , b g , c g and d g are constants that differ depending on the type of hydrogen-based reducing material. Yes, and for hydrogen gas a g = -0.0154, b g = 2.16, c g = -25.9, d g = 3657. From equation (1), the basic unit of calorific value of blast furnace gas (Mcal / THM) changes by (a g * ηs + b g ) (Mcal / THM) when the hydrogen gas injection amount changes by 1 (Nm 3 / THM). I understand that

また、シャフト効率が1(%)変化すると、高炉ガス発熱量原単位は(ag*V +cg) (Mcal/THM)だけ変化することもわかる。従って、基準となる操業に対して、シャフト効率がΔηs(%)だけ増加したときに、高炉ガス発熱量原単位(Mcal/THM)を維持するためには、水素ガス吹込量を以下の式(2)にしたがって、ΔV(Nm3/THM)だけ増加させる必要がある。
ΔV = -(ag*V + cg)*Δηs/(ag*ηs + bg) ・・・・・(式2)
ここで、Vは基準操業における水素ガス吹込量 (Nm3/THM)、ηsは基準操業におけるシャフト効率(%)、Δηsは基準操業からのシャフト効率の増加量(%)である。
It can also be seen that when the shaft efficiency changes by 1 (%), the blast furnace gas calorific value basic unit changes by (a g * V + c g ) (Mcal / THM). Therefore, in order to maintain the basic unit of calorific value of blast furnace gas (Mcal / THM) when the shaft efficiency is increased by Δηs (%) with respect to the standard operation, the hydrogen gas injection amount is calculated by the following formula ( According to 2), it is necessary to increase by ΔV (Nm 3 / THM).
ΔV =-(a g * V + c g ) * Δηs / (a g * ηs + b g ) (Equation 2)
Here, V is the hydrogen gas injection amount (Nm 3 / THM) in the standard operation, ηs is the shaft efficiency (%) in the standard operation, and Δηs is the increase amount (%) of the shaft efficiency from the standard operation.

以下の式(1´)を、「Δηs×ΔV項」を無視して、ΔVについて解くことにより上述の式(2)を算出することができる。
(ag*ηs+bg)*V + (cg*ηs+dg)
=(ag*(ηs+Δηs)+bg)*(V+ΔV) + (cg*(ηs+Δηs)+ dg) ・・・・・(式1´)
The above equation (2) can be calculated by solving the following equation (1 ′) for ΔV, ignoring the “Δηs × ΔV term”.
(a g * ηs + b g ) * V + (c g * ηs + d g )
= (a g * (ηs + Δηs) + b g ) * (V + ΔV) + (c g * (ηs + Δηs) + d g ) (Equation 1 ')

同様に、図5に示すシャフト効率(%)に応じた各ラインは線形であるため、炭素消費原単位(kg/THM)は水素ガス吹込量(Nm3/THM)及びシャフト効率(%)の関数として、以下の式(3)により規定することができる。
炭素消費原単位= (ac*ηs+bc)*V+(cc*ηs+ dc) ・・・・・(式3)
ここで、ηs:シャフト効率(%)、V: 水素ガス吹込量(Nm3/THM)であり、ac,bc, cc及びdcは水素系還元材の種類に応じて異なる定数であり、水素ガスの場合ac=-0.0022, bc=0, cc=-3.20, dc=725である。式(3)から、炭素消費原単位(kg/THM)は、水素ガス吹込量1(Nm3/THM)あたり、(ac*ηs+bc) (kg/THM)だけ変動する。また、シャフト効率が1(%)変化すると、(ac*V + cc) (kg/THM)だけ変化する。従って、ある基準となる操業に対して、シャフト効率がΔηs(%)だけ減少(Δηs<0)したときに、炭素消費原単位(kg/THM)が等しくなるような水素ガス吹込量の増分ΔV(Nm3/THM)は、式(4)となる。
ΔV = -(ac*V + cc)*Δηs/(ac*ηs + bc) ・・・・・ (式4)
ここで、Vは基準操業における水素ガス吹込量 (Nm3/THM)、ηsは基準操業におけるシャフト効率、Δηsは基準操業からのシャフト効率の変化量(%)である。
Similarly, since each line corresponding to the shaft efficiency (%) shown in FIG. 5 is linear, the carbon consumption intensity (kg / THM) is the hydrogen gas injection amount (Nm 3 / THM) and the shaft efficiency (%). As a function, it can be defined by the following equation (3).
Carbon consumption intensity = (a c * ηs + b c ) * V + (c c * ηs + d c ) (Equation 3)
Where ηs is the shaft efficiency (%), V is the hydrogen gas injection amount (Nm 3 / THM), and a c , b c , c c, and d c are constants that differ depending on the type of hydrogen-based reducing material. Yes, in the case of hydrogen gas, a c = -0.0022, b c = 0, c c = -3.20, d c = 725. From the formula (3), the carbon consumption basic unit (kg / THM) varies by (a c * ηs + b c ) (kg / THM) per 1 (Nm 3 / THM) injection of hydrogen gas. When the shaft efficiency changes by 1 (%), it changes by (a c * V + c c ) (kg / THM). Therefore, for a certain standard operation, when the shaft efficiency decreases by Δηs (%) (Δηs <0), the increment of hydrogen gas injection amount ΔV that makes the carbon consumption basic unit (kg / THM) equal (Nm 3 / THM) is given by equation (4).
ΔV =-(a c * V + c c ) * Δηs / (a c * ηs + b c ) (Equation 4)
Here, V is the hydrogen gas injection amount (Nm 3 / THM) in the standard operation, ηs is the shaft efficiency in the standard operation, and Δηs is the change amount (%) of the shaft efficiency from the standard operation.

以上の考察結果から、シャフト効率等の高炉の還元効率を評価する評価値を管理指標とし、当該評価値の変化に応じて、例えば水素等の水素系還元材の吹込量を制御すれば良いことがわかる。すなわち、還元効率が向上し、高炉ガス発熱量原単位が低下した場合には、水素系還元材の吹込量を増大させるアクションを実行することにより、高炉ガス発熱量原単位を維持できる。また、還元効率が低下し、炭素消費原単位が増大した場合には、水素系還元材の吹込量を増大させるアクションを実行することにより、炭素消費原単位を維持できる。   From the above consideration results, it is sufficient to use the evaluation value for evaluating the reduction efficiency of the blast furnace such as the shaft efficiency as a management index, and control the injection amount of hydrogen-based reducing material such as hydrogen according to the change of the evaluation value. I understand. That is, when the reduction efficiency is improved and the blast furnace gas calorific value basic unit is reduced, the blast furnace gas calorific value basic unit can be maintained by executing the action of increasing the blowing amount of the hydrogen-based reducing material. Further, when the reduction efficiency decreases and the carbon consumption basic unit increases, the carbon consumption basic unit can be maintained by executing the action of increasing the blowing amount of the hydrogen-based reducing material.

次に、本発明の実施形態について説明する。
(第1実施形態)
本実施形態では、高炉のシャフト効率(ηs1)を監視し、予め定められた基準のシャフト効率(ηs0)からの差(Δηs=ηs1-ηs0)が管理上限値(Δηs-U)を超えた場合に、水素ガスの吹込量を、予め定められた基準の吹込量(V0(Nm3/THM))から、式(2)で定めるΔV以上増加させる。吹込方法については、特に限定しないが、例えば、ブローパイプ内に延出したランスを介して高炉の羽口から吹き込むことができる(他の実施形態においても、同様である)。
Next, an embodiment of the present invention will be described.
(First embodiment)
In this embodiment, monitors the blast furnace shaft efficiency (.eta.s 1), the difference from the predetermined reference of the shaft efficiency (ηs 0) (Δηs = ηs 1 -ηs 0) the management upper limit value (Δηs -U) When it exceeds, the amount of hydrogen gas blown is increased from the predetermined reference amount of blown gas (V 0 (Nm 3 / THM)) by ΔV or more, which is determined by the equation (2). The blowing method is not particularly limited, but, for example, it can be blown from the tuyere of the blast furnace via a lance extending into the blow pipe (the same applies to other embodiments).

過去の当該高炉の操業実績から、基準とすべき高炉の炭素消費原単位(kg/THM)及び高炉ガス発熱量原単位(Mcal/THM)を決定し、その操業時のシャフト効率(%)及び水素ガス吹込量(Nm3/THM)を基準となる操業条件とすることができる。シャフト効率(%)の管理上限値の設定は、高炉の炭素消費原単位(kg/THM)及び高炉ガス発熱量原単位(Mcal/THM)の変化を勘案し、好ましくは、0.5〜2.0%である。 Based on the past operating results of the blast furnace, the carbon consumption basic unit (kg / THM) and the blast furnace gas calorific value basic unit (Mcal / THM) that should be the standard were determined, and the shaft efficiency (%) and The hydrogen gas injection amount (Nm 3 / THM) can be set as a standard operating condition. The upper limit of the shaft efficiency (%) control is set in consideration of the changes in the basic unit of carbon consumption (kg / THM) and the basic unit of calorific value of blast furnace gas (Mcal / THM), preferably 0.5-2.0%. is there.

本実施形態では、表1の操業条件、水素ガス吹込量=0 (Nm3/THM)、シャフト効率94%を基準操業とすることができる。図6は、図4に対応しており、基準操業時における水素ガス吹込量及び高炉ガス発熱量原単位の値を黒塗りの丸印でプロットしている。なお、図6のグラフが、請求項2に記載の相関情報に相当する。図7は、図5に対応しており、基準操業時における水素ガス吹込量及び炭素消費原単位の値を黒塗りの丸印でプロットしている。 In the present embodiment, it is possible to set the operating conditions of Table 1, the amount of hydrogen gas blown = 0 (Nm 3 / THM), and the shaft efficiency of 94% as the standard operation. FIG. 6 corresponds to FIG. 4, and the values of the hydrogen gas injection amount and the blast furnace gas calorific value basic unit at the time of the standard operation are plotted by solid circles. The graph in FIG. 6 corresponds to the correlation information described in claim 2. FIG. 7 corresponds to FIG. 5, and plots the amount of hydrogen gas blown in and the value of carbon consumption intensity at the time of the standard operation by the solid circles.

ここで、基準操業中に、原料の被還元性を向上させたり、装入物分布を改善させたり等することにより、シャフト効率が96%に増加したと仮定する。高炉ガス発熱量原単位(Mcal/THM)を一定に維持するために要する水素ガス吹込量の増加量は、式(2)より、ΔV = 72.5 (Nm3/THM)である。図6における白抜きの丸印は、水素ガス吹込量を増大した後の高炉ガス発熱量原単位の値を示している。図7における白抜きの丸印は、水素ガス吹込量を増大した後の炭素消費原単位の値を示している。 Here, it is assumed that the shaft efficiency is increased to 96% by improving the reducibility of the raw material or improving the distribution of the charge during the standard operation. From the equation (2), the increase amount of the hydrogen gas injection amount required to maintain the blast furnace gas calorific value basic unit (Mcal / THM) constant is ΔV = 72.5 (Nm 3 / THM). The white circles in FIG. 6 indicate the values of the blast furnace gas calorific value basic unit after increasing the hydrogen gas injection amount. The white circles in FIG. 7 indicate the values of carbon consumption intensity after increasing the amount of hydrogen gas blown.

図6に示すように、基準の水素ガス吹込量(0)にΔVを加えて、72.5 (Nm3/THM)以上の水素ガスを吹き込むことにより、高炉ガス発熱量原単位(Mcal/THM)の低下を防止することができる。このとき、図7に示すように、炭素消費原単位は低下する。 As shown in FIG. 6, by adding ΔV to the reference hydrogen gas injection amount (0), by injecting hydrogen gas of 72.5 (Nm 3 / THM) or more, the blast furnace gas calorific value basic unit (Mcal / THM) The decrease can be prevented. At this time, as shown in FIG. 7, the carbon consumption intensity decreases.

(第2実施形態)
本実施形態では、高炉のシャフト効率(ηs1)を監視し、予め定められた基準のシャフト効率(ηs0)からの差(Δηs=ηs1-ηs0)が管理下限値(Δηs-L)を下回った場合に、水素ガスの吹込量を、予め定められた基準の吹込量(V0(Nm3/THM))から、式(4)で定めるΔV以上増加させる。
(Second embodiment)
In this embodiment, monitors the blast furnace shaft efficiency (.eta.s 1), the difference from the predetermined reference of the shaft efficiency (ηs 0) (Δηs = ηs 1 -ηs 0) the management lower limit value (Δηs -L) When it is less than, the amount of hydrogen gas blown is increased from the predetermined reference amount of blown gas (V 0 (Nm 3 / THM)) by ΔV or more determined by the equation (4).

過去の当該高炉の操業実績から、基準とすべき高炉の炭素消費原単位(kg/THM)及び高炉ガス発熱量原単位(Mcal/THM)を決定し、その操業時のシャフト効率(%)及び水素ガス吹込量(Nm3/THM)を基準となる操業条件とすることができる。シャフト効率の管理下限値の設定は、高炉の炭素消費原単位(kg/THM)及び高炉ガス発熱量原単位(Mcal/THM)の変化を勘案し、好ましくは、-0.5〜-2.0%である。 Based on the past operating results of the blast furnace, the carbon consumption basic unit (kg / THM) and the blast furnace gas calorific value basic unit (Mcal / THM) that should be the standard were determined, and the shaft efficiency (%) and The hydrogen gas injection amount (Nm 3 / THM) can be set as a standard operating condition. The lower limit of control of shaft efficiency is set in consideration of changes in blast furnace carbon consumption intensity (kg / THM) and blast furnace gas calorific value intensity (Mcal / THM), preferably -0.5 to -2.0%. .

第1実施形態と同様に、表1の操業条件、水素ガス吹込量=0 (Nm3/THM)、シャフト効率94%を基準操業とすることができる。図8は、図5に対応しており、基準操業時における水素ガス吹込量及び炭素消費原単位の値を黒塗りの丸印でプロットしている。なお、図8のグラフが請求項4に記載の相関情報に相当する。図9は、図4に対応しており、基準操業時における水素ガス吹込量及び高炉ガス発熱量原単位の値を黒塗りの丸印でプロットしている。 Similar to the first embodiment, it is possible to set the operating conditions in Table 1, the hydrogen gas injection amount = 0 (Nm 3 / THM), and the shaft efficiency of 94% as the standard operation. FIG. 8 corresponds to FIG. 5, and plots the amount of hydrogen gas blown in and the value of carbon consumption basic unit at the time of the standard operation by the solid circles. The graph in FIG. 8 corresponds to the correlation information described in claim 4. FIG. 9 corresponds to FIG. 4, and the values of the hydrogen gas injection amount and the blast furnace gas calorific value basic unit at the time of the standard operation are plotted by the filled circles.

ここで、基準操業中に、原料の被還元性等の悪化により、シャフト効率が92%に低下したと仮定する。炭素消費原単位(kg/THM)を一定に維持するのに要する水素ガス吹込量の増加量は、式(4)より、ΔV = 30.9 (Nm3/THM)である。図8における白抜きの丸印は、水素ガス吹込量を増大した後の炭素消費原単位(kg/THM)の値を示している。図9における白抜きの丸印は、水素ガス吹込量を増大した後の高炉ガス発熱量原単位(Mcal/THM)の値を示している。 Here, it is assumed that the shaft efficiency is reduced to 92% due to deterioration of the reducibility of the raw material during the standard operation. From the equation (4), the increase amount of the hydrogen gas injection amount required to keep the carbon consumption basic unit (kg / THM) constant is ΔV = 30.9 (Nm 3 / THM). The white circles in FIG. 8 show the values of carbon consumption basic unit (kg / THM) after increasing the hydrogen gas injection amount. The white circles in FIG. 9 indicate the values of the blast furnace gas calorific value basic unit (Mcal / THM) after increasing the hydrogen gas injection amount.

図8に示すように、基準の水素ガス吹込量(0)にΔVを加えて、30.9 (Nm3/THM)以上の水素ガスを吹き込むことにより、高炉の炭素消費原単位の増大を防止することができる。このとき、図9に示すように、高炉ガス発熱量原単位(Mcal/THM)は基準操業時よりも増大する。 As shown in Fig. 8, by adding ΔV to the standard hydrogen gas injection amount (0) and injecting hydrogen gas of 30.9 (Nm 3 / THM) or more, it is possible to prevent an increase in the carbon consumption basic unit of the blast furnace. You can At this time, as shown in FIG. 9, the basic unit of calorific value of blast furnace gas (Mcal / THM) increases more than in the standard operation.

(第3実施形態)
本実施形態では、水素系還元材としてメタンガスを使用する。図10は、図5に対応しており、シャフト効率に応じて異なるメタンガス吹込量と炭素消費原単位との関係を示しており、横軸がメタンガス吹込量(Nm3/THM)であり、縦軸が炭素消費原単位(kg/THM)である。図11は、図4に対応しており、シャフト効率に応じて異なるメタンガス吹込量と高炉ガス発熱量原単位との関係を示しており、横軸がメタンガス吹込量(Nm3/THM)であり、縦軸が高炉ガス発熱量原単位(Mcal/THM)である。これらのグラフは、基準の操業条件及び非特許文献2に記載されたRistモデルを利用して求めることができる。図10に示すグラフが請求項4に記載の相関情報に相当し、図11に示すグラフが請求項2に記載の相関情報に相当する。
(Third embodiment)
In this embodiment, methane gas is used as the hydrogen-based reducing material. FIG. 10 corresponds to FIG. 5 and shows the relationship between the methane gas injection amount and the carbon consumption basic unit that differ depending on the shaft efficiency.The horizontal axis is the methane gas injection amount (Nm 3 / THM), and the vertical axis is the vertical axis. The axis is carbon consumption intensity (kg / THM). Fig. 11 corresponds to Fig. 4 and shows the relationship between the methane gas injection amount and the blast furnace gas calorific value basic unit that differ depending on the shaft efficiency, and the horizontal axis is the methane gas injection amount (Nm 3 / THM). The vertical axis is the blast furnace gas calorific value basic unit (Mcal / THM). These graphs can be obtained using the standard operating conditions and the Rist model described in Non-Patent Document 2. The graph shown in FIG. 10 corresponds to the correlation information described in claim 4, and the graph shown in FIG. 11 corresponds to the correlation information described in claim 2.

図10を参照して、メタンガス吹込量の増大により、水素還元率が増加して、直接還元率が低下するため、炭素消費原単位が減少する。図11を参照して、メタンガス吹込量の増大により、炉頂ガスの水素濃度が増加するため、高炉ガス発熱量原単位(Mcal/THM)は増大する。   Referring to FIG. 10, the hydrogen reduction rate increases and the direct reduction rate decreases due to an increase in the amount of methane gas blown, and thus the carbon consumption basic unit decreases. Referring to FIG. 11, since the hydrogen concentration in the furnace top gas increases as the methane gas injection amount increases, the blast furnace gas calorific value basic unit (Mcal / THM) also increases.

図10に示すシャフト効率に応じた各ラインは線形であるため、炭素消費原単位は、上述の式(3)によって表すことができる。ただし、ηs:シャフト効率(%)、V: メタンガス吹込量(Nm3/THM) であり、ac=-0.0055, bc=0.351, cc=-3.20, dc=725である。 Since each line corresponding to the shaft efficiency shown in FIG. 10 is linear, the carbon consumption basic unit can be expressed by the above formula (3). However, ηs: shaft efficiency (%), V: methane gas injection amount (Nm 3 / THM), and a c = -0.0055, b c = 0.351, c c = -3.20, d c = 725.

図11に示すシャフト効率に応じた各ラインは線形であるため、高炉ガス発熱量原単位(Mcal/THM)は、上述の式(1)によって表すことができる。ただし、ηs:シャフト効率(%)、V: メタンガス吹込量(Nm3/THM) であり、ag=-0.0396, bg=6.19, cg=-25.9, dg=3657である。 Since each line according to the shaft efficiency shown in FIG. 11 is linear, the blast furnace gas calorific value basic unit (Mcal / THM) can be expressed by the above-mentioned formula (1). However, ηs: shaft efficiency (%), V: methane gas injection amount (Nm 3 / THM), and a g = -0.0396, b g = 6.19, c g = -25.9, d g = 3657.

従って、ある基準となる操業に対して、シャフト効率がΔηs(%)だけ増加したときに高炉ガス発熱量原単位(Mcal/THM)を維持するためには、メタンガス吹込量を上述の式(2)にしたがって、増加させる必要がある。   Therefore, in order to maintain the blast furnace gas calorific value basic unit (Mcal / THM) when the shaft efficiency is increased by Δηs (%) for a certain standard operation, the methane gas injection amount is set to the above formula (2). ).

ある基準となる操業に対して、シャフト効率が低下したときに炭素消費原単位(kg/THM)を維持するためには、メタンガス吹込量を上述の式(4)にしたがって、増加させる必要がある。   For a certain standard operation, in order to maintain the carbon consumption rate (kg / THM) when the shaft efficiency decreases, it is necessary to increase the methane gas injection rate according to the above equation (4). .

(第4実施形態)
本実施形態では、水素系還元材としてコークス炉ガス(以下、COGガスと称する)を使用する。COGガスは、コークス炉で石炭を乾留する際に発生するガスであり、水素、メタン、一酸化炭素等を含む。図12は、図5に対応しており、シャフト効率に応じて異なるCOGガス吹込量と炭素消費原単位との関係を示しており、横軸がCOGガス吹込量(Nm3/THM)であり、縦軸が炭素消費原単位(kg/THM)である。図13は、図4に対応しており、シャフト効率に応じて異なるCOGガス吹込量と高炉ガス発熱量原単位との関係を示しており、横軸がCOGガス吹込量(Nm3/THM)であり、縦軸が高炉ガス発熱量原単位(kg/THM)である。これらのグラフは、基準の操業条件及び非特許文献2に記載されたRistモデルを利用して求めることができる。また、図12に示すグラフが請求項4に記載の相関情報に相当し、図13に示すグラフが請求項2に記載の相関情報に相当する。
(Fourth embodiment)
In this embodiment, coke oven gas (hereinafter referred to as COG gas) is used as the hydrogen-based reducing material. COG gas is a gas generated when carbonizing carbon in a coke oven, and contains hydrogen, methane, carbon monoxide, and the like. FIG. 12 corresponds to FIG. 5, and shows the relationship between the COG gas injection amount and the carbon consumption intensity that differ depending on the shaft efficiency, and the horizontal axis is the COG gas injection amount (Nm 3 / THM). The vertical axis is carbon consumption intensity (kg / THM). FIG. 13 corresponds to FIG. 4, and shows the relationship between the COG gas injection amount and the blast furnace gas calorific value basic unit that differ depending on the shaft efficiency, and the horizontal axis indicates the COG gas injection amount (Nm 3 / THM). And the vertical axis is the basic unit of calorific value of blast furnace gas (kg / THM). These graphs can be obtained using the standard operating conditions and the Rist model described in Non-Patent Document 2. Further, the graph shown in FIG. 12 corresponds to the correlation information described in claim 4, and the graph shown in FIG. 13 corresponds to the correlation information described in claim 2.

図12を参照して、COGガス吹込量の増大により、水素還元率が増加して、直接還元率が低下するため、炭素消費原単位が減少する。図13を参照して、COGガス吹込量の増大により、炉頂ガスの水素濃度が増加するため、高炉ガス発熱量原単位(Mcal/THM)は増大する。   Referring to FIG. 12, the hydrogen reduction rate increases and the direct reduction rate decreases due to the increase in the COG gas injection amount, and thus the carbon consumption basic unit decreases. Referring to FIG. 13, since the hydrogen concentration in the furnace top gas increases as the COG gas injection amount increases, the blast furnace gas calorific value basic unit (Mcal / THM) also increases.

図12に示すシャフト効率に応じた各ラインは線形であるため、炭素消費原単位(kg/THM)は、上述の式(3)によって表すことができる。ただし、ηs:シャフト効率(%)、V: COGガス吹込量(Nm3/THM) であり、ac=-0.0032, bc=0.192, cc=-3.20, dc=725である。 Since each line corresponding to the shaft efficiency shown in FIG. 12 is linear, the carbon consumption basic unit (kg / THM) can be represented by the above-mentioned formula (3). However, ηs: shaft efficiency (%), V: COG gas injection amount (Nm 3 / THM), and a c = -0.0032, b c = 0.192, c c = -3.20, d c = 725.

図13に示すシャフト効率に応じた各ラインは線形であるため、高炉ガス発熱量原単位(Mcal/THM)は、上述の式(1)によって表すことができる。ただし、ηs:シャフト効率(%)、V: COGガス吹込量(Nm3/THM) であり、ag=-0.0227, bg=3.53, cg=-25.9, dg=3657である。 Since each line according to the shaft efficiency shown in FIG. 13 is linear, the blast furnace gas calorific value basic unit (Mcal / THM) can be expressed by the above-mentioned formula (1). However, ηs: shaft efficiency (%), V: COG gas injection amount (Nm 3 / THM), and a g = -0.0227, b g = 3.53, c g = -25.9, d g = 3657.

従って、ある基準となる操業に対して、シャフト効率が増加したときに高炉ガス発熱量原単位(Mcal/THM)を維持するためには、COGガス吹込量を上述の式(2)にしたがって、増加させる必要がある。   Therefore, in order to maintain the blast furnace gas calorific value basic unit (Mcal / THM) when the shaft efficiency is increased, with respect to a certain standard operation, the COG gas injection amount is calculated according to the above equation (2). Need to increase.

ある基準となる操業に対して、シャフト効率が低下したときに炭素消費原単位(kg/THM)を維持するためには、COGガス吹込量を上述の式(4)にしたがって、増加させる必要がある。   For a certain standard operation, in order to maintain the carbon consumption intensity (kg / THM) when the shaft efficiency decreases, it is necessary to increase the COG gas injection amount according to the above equation (4). is there.

(第5実施形態)
上述の実施形態では、還元効率を評価する評価値としてシャフト効率を用いたが、本発明はこれに限るものではなく、炉頂COガス利用率(以下、ηCOと称する)を用いることもできる。ηCOは、炉頂ガスに含まれるCOとCO2の合計量に対するCO2の比率であり、炉頂ガスを分析することにより算出することができる。
(Fifth embodiment)
In the above-described embodiment, the shaft efficiency is used as the evaluation value for evaluating the reduction efficiency, but the present invention is not limited to this, and the furnace top CO gas utilization rate (hereinafter, referred to as ηCO) can also be used. ηCO is the ratio of CO 2 to the total amount of CO and CO 2 contained in the top gas can be calculated by analyzing the top gas.

図14は、図4に対応しており、ηCOに応じて異なる水素ガス吹込量と高炉ガス発熱量原単位(Mcal/THM)との関係を示しており、横軸が水素ガス吹込量(Nm3/THM)であり、縦軸が高炉ガス発熱量原単位(Mcal/THM)である。図15は図5に対応しており、ηCOに応じて異なる水素ガス吹込量と炭素消費原単位との関係を示しており、横軸が水素ガス吹込量(Nm3/THM)であり、縦軸が炭素消費原単位(kg/THM)である。図16は、図14に対応しており、水素系還元材としてメタンガスが用いられる。図17は、図15に対応しており、水素系還元材としてメタンガスが用いられる。図18は、図14に対応しており、水素系還元材としてCOGガスが用いられる。図19は、図15に対応しており、水素系還元材としてCOGガスが用いられる。 FIG. 14 corresponds to FIG. 4, and shows the relationship between the hydrogen gas injection amount and the blast furnace gas heat generation amount basic unit (Mcal / THM), which differ depending on ηCO, and the horizontal axis represents the hydrogen gas injection amount (Nm 3 / THM), and the vertical axis is the blast furnace gas calorific value basic unit (Mcal / THM). Fig. 15 corresponds to Fig. 5 and shows the relationship between the hydrogen gas injection amount and the carbon consumption basic unit that differ depending on ηCO, the horizontal axis is the hydrogen gas injection amount (Nm 3 / THM), and the vertical axis is The axis is carbon consumption intensity (kg / THM). FIG. 16 corresponds to FIG. 14, and methane gas is used as the hydrogen-based reducing material. FIG. 17 corresponds to FIG. 15, and methane gas is used as the hydrogen-based reducing material. FIG. 18 corresponds to FIG. 14, and COG gas is used as the hydrogen-based reducing material. FIG. 19 corresponds to FIG. 15, and COG gas is used as the hydrogen-based reducing material.

図14,図16,図18に示すグラフが請求項2に記載の相関情報に相当し、図15,図17,図19に示すグラフが請求項4に記載の相関情報に相当する。上述の式(2)及び式(4)はそれぞれ、以下の式(2´)及び(4´)に読み替えて、本実施形態に適用することができる。
ΔV = -(ag*V + cg)*ΔηCO/(ag*ηCO + bg) ・・・・・(式2´)
ここで、Vは基準操業における水素系還元材の吹込量(Nm3/THM)、ηCOは基準操業における炉頂COガス利用率(%)、ΔηCOは基準操業からの炉頂COガス利用率の増加量(%)である。
ΔV = -(ac*V + cc)*Δηco/(ac*ηco + bc) ・・・・・(式4´)
ここで、Vは基準操業における水素系還元材の吹込量(Nm3/THM)、ηCOは基準操業における炉頂COガス利用率(%)、ΔηCOは基準操業からの炉頂COガス利用率の増加量(%)である。
The graphs shown in FIGS. 14, 16 and 18 correspond to the correlation information described in claim 2, and the graphs shown in FIGS. 15, 17 and 19 correspond to the correlation information described in claim 4. The above equations (2) and (4) can be read as the following equations (2 ′) and (4 ′), respectively, and applied to this embodiment.
ΔV =-(a g * V + c g ) * ΔηCO / (a g * ηCO + b g ) (Equation 2 ')
Here, V is the injection amount of the hydrogen-based reducing agent in the standard operation (Nm 3 / THM), ηCO is the furnace top CO gas utilization rate in the standard operation (%), ΔηCO is the furnace top CO gas utilization rate from the standard operation. The amount of increase (%).
ΔV =-(a c * V + c c ) * Δηco / (a c * ηco + b c ) (Equation 4 ')
Here, V is the injection amount of the hydrogen-based reducing agent in the standard operation (Nm 3 / THM), ηCO is the furnace top CO gas utilization rate in the standard operation (%), ΔηCO is the furnace top CO gas utilization rate from the standard operation. The amount of increase (%).

すなわち、高炉のηCOを監視し、予め定められた基準のηCOからの差(ΔηCO)が管理上限値を超えた場合に、水素系還元材の吹込量を、予め定められた基準の吹込量(V0(Nm3/THM))から、式(2´)で定めるΔV以上増加させることができる。また、高炉のηCOを監視し、予め定められた基準のηCOからの差が管理下限値を下回った場合に、水素ガスの吹込量を、予め定められた基準の吹込量(V0(Nm3/THM))から、式(4)で定めるΔV以上増加させることができる。 That is, ηCO of the blast furnace is monitored, and when the difference from the predetermined reference ηCO (ΔηCO) exceeds the control upper limit value, the injection amount of the hydrogen-based reducing material is changed to the predetermined reference injection amount ( From V 0 (Nm 3 / THM)), it is possible to increase by ΔV or more determined by the equation (2 ′). Further, ηCO of the blast furnace is monitored, and when the difference from the predetermined reference ηCO is below the control lower limit value, the hydrogen gas injection amount is set to the predetermined reference injection amount (V 0 (Nm 3 / THM)), it can be increased by ΔV or more determined by the equation (4).

なお、還元効率を評価する評価値としては、シャフト効率及び炉頂COガス利用率(ηCO)のほか、CO還元率、H2還元率及び直接還元率等が利用できる。 As the evaluation value for evaluating the reduction efficiency, in addition to the shaft efficiency and the furnace top CO gas utilization rate (ηCO), CO reduction rate, H 2 reduction rate, direct reduction rate and the like can be used.

(変形例1)
上述の第1〜第4実施形態では、水素ガス、メタンガス及びCOGガスのいずれかを水素系還元材として用いたが、本発明はこれに限るものではなく、これらの混合ガス、炭化水素の改質ガスを用いることもできる。上述の式(1)及び(3)における係数の値を以下の表2及び3に示す。炭化水素の改質ガスにはCOガスも含まれることから、COガスにおける係数の値もあわせて示す。
(Modification 1)
In the above-described first to fourth embodiments, any one of hydrogen gas, methane gas, and COG gas was used as the hydrogen-based reducing material, but the present invention is not limited to this, and a mixed gas of these and modified hydrocarbons. Quality gas can also be used. The values of the coefficients in the above equations (1) and (3) are shown in Tables 2 and 3 below. Since the reformed gas of hydrocarbons also contains CO gas, the coefficient value for CO gas is also shown.

水素系還元材として混合ガスを吹き込む場合には、混合ガスを構成する各ガスの混合割合(体積割合)に応じて、上述の各係数を荷重平均すればよい。図20及び図21は、メタンガス(50体積%)及び水素ガス(50体積%)の混合ガスを水素系還元材として吹き込んだ場合の結果であり、図20は図4に対応しており、図21は図5に対応している。   When the mixed gas is blown as the hydrogen-based reducing material, the above-mentioned coefficients may be weight-averaged according to the mixing ratio (volume ratio) of the respective gases forming the mixed gas. FIGS. 20 and 21 show the results when a mixed gas of methane gas (50% by volume) and hydrogen gas (50% by volume) were blown in as a hydrogen-based reducing material, and FIG. 20 corresponds to FIG. 4. 21 corresponds to FIG.

上述の通り、メタンガス及び水素ガスの各係数を体積割合で荷重平均することにより、図20及び図21を描画することができる。図20及び図21を用いた高炉操業方法は、上述の実施形態と同様であるから、詳細な説明を省略する。   As described above, FIG. 20 and FIG. 21 can be drawn by weighted averaging each coefficient of methane gas and hydrogen gas by volume ratio. The blast furnace operating method using FIGS. 20 and 21 is the same as that of the above-described embodiment, and thus detailed description thereof is omitted.

(変形例2)
上述の実施形態1では、高炉ガス発熱量原単位(Mcal/THM)が基準操業時又はそれ以上となるように、水素ガス吹込量を設定したが、本発明はこれに限るものではない。例えば、図22に図示するように、基準操業時の高炉ガス発熱量原単位よりも低い1200(Mcal/THM)を下限値として設定しておき、シャフト効率が94(%)から96(%)に上昇した時に、前記の下限値を満足するように水素ガスを吹き込んでもよい。この場合、炭素消費原単位(kg/THM)が基準操業時よりも減少することは、図7から明らかである。同様に、実施形態2の変形例として、基準操業時よりもやや高い炭素消費原単位を上限値として設定しておき、シャフト効率が低下した場合に、前記の上限値を満足するように水素ガスを吹き込んでも良い。
(Modification 2)
In the above-described first embodiment, the hydrogen gas injection amount is set so that the blast furnace gas calorific value basic unit (Mcal / THM) becomes equal to or higher than the standard operation, but the present invention is not limited to this. For example, as shown in FIG. 22, 1200 (Mcal / THM), which is lower than the basic unit of calorific value of blast furnace gas at the time of standard operation, is set as the lower limit value, and the shaft efficiency is 94 (%) to 96 (%). Hydrogen gas may be blown so as to satisfy the above lower limit when the temperature rises to. In this case, it is clear from Fig. 7 that the carbon consumption intensity (kg / THM) is lower than in the standard operation. Similarly, as a modified example of the second embodiment, a carbon consumption basic unit which is slightly higher than that in the standard operation is set as the upper limit value, and when the shaft efficiency is lowered, hydrogen gas is set so as to satisfy the upper limit value. You may blow in.

Claims (6)

羽口から水素系還元材を吹き込む高炉操業方法において、
高炉の還元効率を評価する評価値が変動した際に、前記羽口から吹き込まれる前記水素系還元材の吹込量を増大させるアクションを実行することを特徴とする高炉操業方法。
In the blast furnace operating method in which the hydrogen-based reducing material is blown from the tuyere,
A method for operating a blast furnace, which comprises performing an action of increasing an amount of the hydrogen-based reducing material blown from the tuyere when an evaluation value for evaluating the reduction efficiency of the blast furnace changes.
予め、前記水素系還元材の吹込量が増大するに従って高炉ガス発熱量原単位がリニアに増加する相関情報を前記評価値の値に対応づけて取得しておき、
前記還元効率が向上する方向に前記評価値が変動した際に、前記相関情報を用いて前記水素系還元材の吹込量を決定し、前記アクションを実行することを特徴とする請求項1に記載の高炉操業方法。
In advance, the correlation information in which the blast furnace gas calorific value basic unit increases linearly as the blowing amount of the hydrogen-based reducing material increases is obtained in association with the value of the evaluation value,
When the evaluation value is changed in a direction in which the reduction efficiency is improved, the injection amount of the hydrogen-based reducing material is determined by using the correlation information, and the action is executed. Blast furnace operation method.
前記アクションを実行した後の高炉ガス発熱量原単位が、前記アクションを実行する前の高炉ガス発熱量原単位以上となるように、前記水素系還元材の吹込量を決定することを特徴とする請求項2に記載の高炉操業方法。   It is characterized in that the blowing amount of the hydrogen-based reducing material is determined so that the basic unit of calorific value of blast furnace gas after performing the action is equal to or higher than the basic unit of calorific value of blast furnace gas before performing the action. The blast furnace operating method according to claim 2. 予め、前記水素系還元材の吹込量が増大するにしたがって炭素消費原単位がリニアに減少する相関情報を前記評価値の値に対応づけて取得しておき、
前記還元効率が低下する方向に前記評価値が変動した際に、前記相関情報を用いて前記水素系還元材の吹込量を決定し、前記アクションを実行することを特徴とする請求項1に記載の高炉操業方法。
In advance, the correlation information in which the carbon consumption basic unit linearly decreases as the blowing amount of the hydrogen-based reducing material increases is acquired in association with the value of the evaluation value,
When the evaluation value changes in a direction in which the reduction efficiency decreases, the injection amount of the hydrogen-based reducing material is determined using the correlation information, and the action is executed. Blast furnace operation method.
前記アクションを実行した後の炭素消費原単位が、前記アクションを実行する前の炭素消費原単位以下となるように、前記水素系還元材の吹込量を決定することを特徴とする請求項4に記載の高炉操業方法。   5. The blowing amount of the hydrogen-based reducing material is determined so that the carbon consumption intensity after performing the action is equal to or less than the carbon consumption intensity before performing the action. Blast furnace operation method described. 前記評価値は、シャフト効率又は炉頂COガス利用率であることを特徴とする請求項1乃至5のうちいずれか一つに記載の高炉操業方法。

6. The blast furnace operating method according to claim 1, wherein the evaluation value is a shaft efficiency or a furnace top CO gas utilization rate.

JP2018198466A 2018-10-22 2018-10-22 Blast furnace operation method Active JP7103155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018198466A JP7103155B2 (en) 2018-10-22 2018-10-22 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018198466A JP7103155B2 (en) 2018-10-22 2018-10-22 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2020066753A true JP2020066753A (en) 2020-04-30
JP7103155B2 JP7103155B2 (en) 2022-07-20

Family

ID=70389668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018198466A Active JP7103155B2 (en) 2018-10-22 2018-10-22 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP7103155B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020085324A1 (en) * 2018-10-23 2021-10-07 つばめBhb株式会社 Ammonia synthesis system and method of producing ammonia
WO2022009621A1 (en) * 2020-07-06 2022-01-13 Jfeスチール株式会社 Operation guidance method, method for operating blast furnace, method for manufacturing molten iron, operation guidance device
WO2023032650A1 (en) 2021-08-31 2023-03-09 株式会社クリーンプラネット Hydrogen heating apparatus for blast furnaces, hydrogen heating method for blast furnaces, and blast furnace operation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246110A (en) * 1991-01-29 1992-09-02 Sumitomo Metal Ind Ltd Method for operating blast furnace
JP2006207009A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Method for operating blast furnace
JP2007186759A (en) * 2006-01-13 2007-07-26 Jfe Steel Kk Method for operating blast furnace
JP2011252200A (en) * 2010-06-02 2011-12-15 Jfe Steel Corp Method for operating blast furnace
JP2015199984A (en) * 2014-04-08 2015-11-12 新日鐵住金株式会社 Blast furnace operation method
JP2016113677A (en) * 2014-12-16 2016-06-23 新日鐵住金株式会社 Blast furnace operation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246110A (en) * 1991-01-29 1992-09-02 Sumitomo Metal Ind Ltd Method for operating blast furnace
JP2006207009A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Method for operating blast furnace
JP2007186759A (en) * 2006-01-13 2007-07-26 Jfe Steel Kk Method for operating blast furnace
JP2011252200A (en) * 2010-06-02 2011-12-15 Jfe Steel Corp Method for operating blast furnace
JP2015199984A (en) * 2014-04-08 2015-11-12 新日鐵住金株式会社 Blast furnace operation method
JP2016113677A (en) * 2014-12-16 2016-06-23 新日鐵住金株式会社 Blast furnace operation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020085324A1 (en) * 2018-10-23 2021-10-07 つばめBhb株式会社 Ammonia synthesis system and method of producing ammonia
JP7374920B2 (en) 2018-10-23 2023-11-07 つばめBhb株式会社 Ammonia synthesis system and ammonia production method
WO2022009621A1 (en) * 2020-07-06 2022-01-13 Jfeスチール株式会社 Operation guidance method, method for operating blast furnace, method for manufacturing molten iron, operation guidance device
JP2022014169A (en) * 2020-07-06 2022-01-19 Jfeスチール株式会社 Operation guidance method, blast furnace operation method, production method of hot metal, and operation guidance device
JP7272326B2 (en) 2020-07-06 2023-05-12 Jfeスチール株式会社 Operation Guidance Method, Blast Furnace Operation Method, Hot Metal Production Method, Operation Guidance Device
WO2023032650A1 (en) 2021-08-31 2023-03-09 株式会社クリーンプラネット Hydrogen heating apparatus for blast furnaces, hydrogen heating method for blast furnaces, and blast furnace operation method

Also Published As

Publication number Publication date
JP7103155B2 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
RU2679817C2 (en) Method for operating blast furnace
CA2835386C (en) System and method for reducing iron oxide to metallic iron using coke oven gas and oxygen steelmaking furnace gas
JP2020066753A (en) Method for operating blast furnace
US9816151B2 (en) Method for operating blast furnace and method for producing molten pig iron
EP4067510A1 (en) Blast furnace operation method
MX2022013918A (en) Method for producing reduced iron.
JP2016113677A (en) Blast furnace operation method
KR102585689B1 (en) Blast furnace operation method
CN113667781B (en) Method for reducing fuel ratio of blast furnace
KR101848181B1 (en) Evaluation method of cokes quality in the blast furnace based on hygrogen injection
CN113569381B (en) Indirect reduction rate of large blast furnace burden and calculation method for determining coal injection quantity
JP2007186759A (en) Method for operating blast furnace
JP6627469B2 (en) Reduction method of iron oxide raw material using shaft furnace
JP7055082B2 (en) How to operate the blast furnace
JP5549056B2 (en) Blast furnace operation method
WO2023199550A1 (en) Operation method for blast furnace
JP5855536B2 (en) Blast furnace operation method
KR20130013653A (en) Method for controlling blow energy of blast furnace
US20240018615A1 (en) Method for producing pig iron in a shaft furnace
Azadi et al. Efficient Utilization of Active Carbon in a Blast Furnace through a Black-Box Model-Based Optimizing Control Scheme
JP2023067695A (en) Blast furnace operation method
JP2023131283A (en) Reduced pellet production method
Korshikov et al. Energy expenditures and carbon-dioxide emissions at blast furnaces
KR20240011169A (en) Method for producing reduced iron
JP2022149214A (en) Blast furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R151 Written notification of patent or utility model registration

Ref document number: 7103155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151