JP2007186759A - Method for operating blast furnace - Google Patents

Method for operating blast furnace Download PDF

Info

Publication number
JP2007186759A
JP2007186759A JP2006006158A JP2006006158A JP2007186759A JP 2007186759 A JP2007186759 A JP 2007186759A JP 2006006158 A JP2006006158 A JP 2006006158A JP 2006006158 A JP2006006158 A JP 2006006158A JP 2007186759 A JP2007186759 A JP 2007186759A
Authority
JP
Japan
Prior art keywords
furnace
blast furnace
hydrogen concentration
radial position
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006006158A
Other languages
Japanese (ja)
Inventor
Takeshi Sato
健 佐藤
Yusuke Kashiwabara
佑介 柏原
Michitaka Sato
道貴 佐藤
Shinji Hasegawa
伸二 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006006158A priority Critical patent/JP2007186759A/en
Publication of JP2007186759A publication Critical patent/JP2007186759A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a blast furnace with which, when performing the blast furnace operation using reduction material having high hydrogen content, the optimum management index can be set and a stable operation can be continued by using the index. <P>SOLUTION: In the blast furnace operation injecting the reduction material containing 20 mass% or more of H, the method for operating the blast furnace is used, in which the distribution of hydrogen concentration (vol%) in the radius direction of the furnace is measured at the upper part of a shaft part in the blast furnace, and the operational control is performed by using [each radius position in H<SB>2</SB>/furnace top H<SB>2</SB>] as an index dividing the hydrogen concentration in each radius position with the average hydrogen concentration (vol%) in the gas at the furnace top part. Then, it is desirable that the operational control is performed so that a value of [each radius position H<SB>2</SB>/furnace top H<SB>2</SB>] at the position having 0.95-1 non-dimensional radius does not exceeded 1.2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、羽口から水素含有率の高い還元材を吹き込む高炉の操業方法に関する。   The present invention relates to a method of operating a blast furnace in which a reducing material having a high hydrogen content is blown from a tuyere.

近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出CO2の抑制は重要な課題である。高炉は主にコークスおよび微粉炭を還元材として使用しており、炭酸ガス排出抑制を達成するためにはコークス等を水素含有率の高い還元材で置換する方策が有効である。水素含有率の高い還元材を高炉で用いる技術として、高炉にLNG(Liquefied Natural Gas:液化天然ガス)を羽口より吹き込み製銑工程で排出される炭酸ガスを低減させる低炭酸ガス排出製鉄法が知られている(例えば、特許文献1参照。)。 In recent years, global warming due to an increase in carbon dioxide emissions has become a problem, and the suppression of emitted CO 2 is an important issue even in the steel industry. Blast furnaces mainly use coke and pulverized coal as reducing materials, and in order to achieve carbon dioxide emission suppression, measures to replace coke with reducing materials with a high hydrogen content are effective. As a technology to use reducing materials with high hydrogen content in the blast furnace, there is a low carbon dioxide emission steelmaking method that reduces the carbon dioxide emitted in the ironmaking process by blowing LNG (Liquefied Natural Gas) into the blast furnace from the tuyere. It is known (for example, refer to Patent Document 1).

一方、水素による酸化鉄の還元反応は比較的大きな吸熱反応であることが知られている。COガスおよびH2ガスによる酸化鉄還元時の反応および反応熱を以下の(a)〜(f)に示す(例えば、非特許文献1参照。)。
3Fe23+CO→2Fe34+CO2(反応熱:+38kcal/kgFe)・・・(a)
Fe34+CO→3FeO+CO2(反応熱:−38kcal/kgFe)・・・(b)
FeO+CO→Fe+CO2(反応熱:+60 kcal/kgFe)・・・(c)
3Fe23+H2→2Fe34+H2O(反応熱:+5kcal/kgFe)・・・(d)
Fe34+H2→3FeO+H2O(反応熱:−96kcal/kgFe)・・・(e)
FeO+H2→Fe+H2O(反応熱:−116kcal/kgFe)・・・(f)
上記の反応式は、羽口からの投入水素量が増え、酸化鉄の還元のうち、水素還元の比率が大きくなっていくとシャフト部の温度が低下し、低温領域が拡大する可能性があることを示唆している。シャフト部の低温領域の拡大は焼結鉱の還元粉化領域の拡大を介して、通気性および装入物降下挙動を悪化させることが指摘されている。
On the other hand, it is known that the reduction reaction of iron oxide with hydrogen is a relatively large endothermic reaction. The reaction and heat of reaction during iron oxide reduction with CO gas and H 2 gas are shown in the following (a) to (f) (for example, see Non-Patent Document 1).
3Fe 2 O 3 + CO → 2Fe 3 O 4 + CO 2 (Reaction heat: +38 kcal / kgFe) (a)
Fe 3 O 4 + CO → 3FeO + CO 2 (heat of reaction: −38 kcal / kg Fe) (b)
FeO + CO → Fe + CO 2 (Reaction heat: +60 kcal / kgFe) (c)
3Fe 2 O 3 + H 2 → 2Fe 3 O 4 + H 2 O (heat of reaction: +5 kcal / kg Fe) (d)
Fe 3 O 4 + H 2 → 3FeO + H 2 O (heat of reaction: −96 kcal / kg Fe) (e)
FeO + H 2 → Fe + H 2 O (reaction heat: −116 kcal / kg Fe) (f)
In the above reaction formula, the amount of hydrogen input from the tuyere increases, and if the ratio of hydrogen reduction in the reduction of iron oxide increases, the temperature of the shaft portion may decrease and the low temperature region may expand. Suggests that. It has been pointed out that the expansion of the low temperature region of the shaft part deteriorates the air permeability and the charge lowering behavior through the expansion of the reduced powdered region of the sintered ore.

低温領域が形成されたことを検知できれば、これに対処することも可能である。低温領域(低温熱保存帯)が拡大すると下記(g)に示す水性ガスシフト反応
2O+CO→H2+CO2・・・(g)
が進行し、水素利用率が低下することから、炉頂部あるいはシャフト上部において炉半径方向のガス成分(CO、CO2、H2、H2O、N2)を測定し、水素利用率を求めることにより各半径位置における炉高方向の温度分布を検知し、低温熱保存帯の生成状況を推定する技術が知られている(例えば、特許文献2参照。)。
If it can be detected that a low temperature region has been formed, it is possible to cope with this. When the low-temperature region (low-temperature heat preservation zone) is expanded, the water gas shift reaction H 2 O + CO → H 2 + CO 2 (g) shown in (g) below.
As the hydrogen utilization rate decreases, the gas component (CO, CO 2 , H 2 , H 2 O, N 2 ) in the radial direction of the furnace is measured at the top of the furnace or at the top of the shaft to obtain the hydrogen utilization rate. Thus, there is known a technique for detecting the temperature distribution in the furnace height direction at each radial position and estimating the generation state of the low-temperature heat storage zone (see, for example, Patent Document 2).

しかし、通常のガス分析でH2Oは測定しておらず、水素利用率は直接算出できない。特許文献2においては、H2Oを測定できない場合には、計算で求めたボッシュガス成分と炉上部ガス成分測定結果からH2O濃度を計算するとされているが、その過程で幾つかの仮定が存在すると考えられ、低温領域の形成を確実に検知することは困難である。 However, H 2 O is not measured by ordinary gas analysis, and the hydrogen utilization rate cannot be calculated directly. In Patent Document 2, when H 2 O cannot be measured, the H 2 O concentration is calculated from the Bosch gas component and furnace gas component measurement results obtained by calculation. Therefore, it is difficult to reliably detect the formation of the low temperature region.

そもそも、従来の通常の高炉操業では、低温領域はほとんど形成されることはなかった。高微粉炭比操業によって高炉へのインプット水素量が増加するケースはあるが、一般的に微粉炭のコークス置換率は通常で0.9程度であり、吹き込み原単位150kg/tを超えるような高微粉炭比の場合、置換率はさらに低下する。ゆえに、微粉炭比を増やす操業の場合はインプット水素量の増加とともに還元材比が増加し、炉上部温度はむしろ上昇するのが一般的であり、低温領域はほとんど形成されないためである。一方で、特許文献1に記載の方法のように、LNGを羽口より吹き込む方法では、天然ガスのコークス置換率は1.1〜1.2程度であり(例えば、非特許文献2参照。)、天然ガス吹き込み量増加に従って還元材比は低下するため、低温領域の形成が実際に問題となる。
特開平3−240906号公報 特開昭59−226109号公報 「製銑ハンドブック」地人書館 1979年、p.78 「材料とプロセス18」日本鉄鋼協会 2005年、p.984
In the first place, in the conventional normal blast furnace operation, the low temperature region was hardly formed. Although there are cases where the amount of hydrogen input to the blast furnace increases due to high pulverized coal ratio operation, generally the coke replacement rate of pulverized coal is normally around 0.9, which is high enough to exceed the injection basic unit of 150 kg / t. In the case of the pulverized coal ratio, the substitution rate further decreases. Therefore, in the case of operation that increases the pulverized coal ratio, the ratio of reducing material increases with the increase in the amount of input hydrogen, and the furnace top temperature generally rises, and the low temperature region is hardly formed. On the other hand, in the method in which LNG is blown from the tuyere as in the method described in Patent Document 1, the coke replacement ratio of natural gas is about 1.1 to 1.2 (see, for example, Non-Patent Document 2). As the natural gas blowing rate increases, the reducing material ratio decreases, so the formation of a low temperature region is actually a problem.
JP-A-3-240906 JP 59-226109 A “Seikan Handbook” Jinjinshokan 1979, p. 78 “Materials and Process 18” Japan Steel Association 2005, p. 984

上記のように、高炉にインプットされる水素増により炉上部温度低下が懸念されるのは、天然ガス等の、水素含有率の高い還元材を使用して、かつ還元材比低下を指向する操業を行なう場合であり、これまで多数報告され、実施されている微粉炭吹き込み操業における操業管理では対応できないという問題がある。   As mentioned above, there is a concern that the temperature at the top of the furnace may decrease due to the increase in hydrogen input to the blast furnace. Operation using a reducing material with a high hydrogen content, such as natural gas, and directing a reduction in the reducing material ratio. There is a problem that the operation management in the pulverized coal blowing operation that has been reported and implemented so far cannot be handled.

従って、水素含有率の高い還元材を使用して、かつ還元材比低下を指向する操業を行なう場合には従来とは異なる視点で操業管理を行う必要がある。本発明の目的は、このような従来技術の課題を解決し、水素含有率の高い還元材を使用する高炉操業を行なう際に最適な管理指標を設定し、これを用いて安定操業を継続できる高炉操業方法を提供することにある。   Therefore, when using a reducing material having a high hydrogen content and performing an operation aimed at reducing the reducing material ratio, it is necessary to perform operation management from a viewpoint different from the conventional one. The object of the present invention is to solve such problems of the prior art, set an optimum management index when performing blast furnace operation using a reducing material having a high hydrogen content, and use this to maintain stable operation. It is to provide a blast furnace operation method.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)羽口から、Hを20質量%以上含有する還元材を吹き込む高炉操業において、高炉のシャフト部上部において炉の半径方向における水素濃度(体積%)の分布を測定し、各半径位置での水素濃度を炉頂部のガス中の平均水素濃度(体積%)で除した指標である「各半径位置H2/炉頂H2」を用いて操業管理を行なうことを特徴とする高炉操業方法。
(2)無次元半径0.95〜1の位置での「各半径位置H2/炉頂H2」の値が1.2を超えないように操業管理を行なうことを特徴とする(1)に記載の高炉操業方法。
The features of the present invention for solving such problems are as follows.
(1) In a blast furnace operation in which a reducing material containing 20% by mass or more of H is blown from the tuyere, the hydrogen concentration (volume%) distribution in the radial direction of the furnace is measured at the upper part of the shaft of the blast furnace, and at each radial position. Blast furnace operation method, characterized in that operation management is performed using "each radial position H 2 / furnace top H 2 ", which is an index obtained by dividing the hydrogen concentration of the gas by the average hydrogen concentration (volume%) in the gas at the top of the furnace .
(2) Operation management is performed so that the value of “each radial position H 2 / furnace top H 2 ” at the position of dimensionless radius 0.95 to 1 does not exceed 1.2 (1) The blast furnace operating method described in 1.

本発明によれば、水素含有率の高い還元材を吹き込む高炉操業においても、適切な操業管理を行なうことができ、安定操業が可能となる。   According to the present invention, appropriate operation management can be performed even in a blast furnace operation in which a reducing material having a high hydrogen content is blown, and a stable operation is possible.

本発明では、水素含有率の高い還元材を吹き込んだ際に懸念される炉上部の低温領域の拡大を簡便に推定し、安定操業を達成する技術を提供する。本発明は、水素含有率の高い還元材を高炉の羽口より吹き込む操業を行い、その実績から検討を重ねて以下に説明するように導かれたものである。本発明において水素含有率の高い還元材とは、Hを質量割合として20%以上含有する、高炉内において鉄の還元材として作用する物質であり、具体的にはLNG(H含有率約23質量%)、COG(コークスを製造する際に発生するコークス炉ガス:H含有率約25質量%)等を用いることができる。なお、本発明においては、水素含有率の高い還元材を吹き込んだ場合にその効果が発揮されるものであるが、該還元材を10kg/t−pig以上高炉に吹き込む場合に特に有効である。   The present invention provides a technique for simply estimating the expansion of the low temperature region in the upper part of the furnace, which is a concern when a reducing material having a high hydrogen content is blown, and achieving stable operation. The present invention is an operation in which a reducing material having a high hydrogen content is blown from the tuyere of the blast furnace, and the results of the investigation are led to be described as follows. In the present invention, the reducing material having a high hydrogen content is a substance containing 20% or more of H as a mass ratio and acting as an iron reducing material in a blast furnace, and specifically, LNG (H content of about 23 mass). %), COG (coke oven gas generated when coke is produced: H content: about 25% by mass), and the like. In the present invention, the effect is exhibited when a reducing material having a high hydrogen content is blown, but it is particularly effective when the reducing material is blown into a blast furnace at 10 kg / t-pig or more.

水素含有率の高い還元材を高炉の羽口より吹き込み、ある半径方向位置で低温領域が拡大して上記(g)式の反応が進行すると、H2、CO2の発生により、その部位のH2濃度が増大する。本発明はこの現象を利用し、炉の半径方向における水素濃度の分布をシャフト部上部の半径方向のガス分析により測定して、低温領域の拡大を検出する。その際に、水素濃度の過多の度合いを、各半径位置での水素濃度(体積%)を炉頂部のガス中の平均水素濃度(体積%)で除した指標を用いて判定し、操業アクションを講ずることにより、半径方向特定個所での低温領域の拡大を防止するものである。 When a reducing material with a high hydrogen content is blown from the tuyere of the blast furnace and the low temperature region expands at a certain radial position and the reaction of the above formula (g) proceeds, the generation of H 2 and CO 2 causes the H 2 Concentration increases. The present invention utilizes this phenomenon and detects the expansion of the low temperature region by measuring the hydrogen concentration distribution in the radial direction of the furnace by gas analysis in the radial direction of the upper portion of the shaft portion. At that time, the degree of excess hydrogen concentration is determined using an index obtained by dividing the hydrogen concentration (volume%) at each radial position by the average hydrogen concentration (volume%) in the gas at the top of the furnace, and the operation action is determined. By taking this measure, the expansion of the low temperature region at a specific location in the radial direction is prevented.

安定操業のためには、高炉のシャフト部上部における各半径方向位置での水素濃度を測定し、「シャフト部上部における水素濃度/炉頂部のガス中の平均水素濃度」の値が局所的に高くならないように操業を行なうことが重要である。尚、シャフト部上部とは、高炉の炉体の上側に位置し、上部から下方にかけて下広がりになった部分のうちの半分より上の部分を指すものとする。シャフト部上部における各半径位置での水素濃度の分析は、炉内に水平ゾンデを固定または挿入して行なうことができる。また、炉頂部のガスとは、高炉の炉頂から排出される高炉ガス(BFG)である。以下、上記「各半径方向位置でのシャフト部上部における水素濃度/炉頂部のガス中の平均水素濃度」を「各半径位置H2/炉頂H2」と記載する。 For stable operation, measure the hydrogen concentration at each radial position in the upper part of the shaft of the blast furnace, and the value of “hydrogen concentration at the upper part of the shaft / average hydrogen concentration in the gas at the top of the furnace” is locally high. It is important to operate so that it does not become. The upper portion of the shaft portion is located above the furnace body of the blast furnace and indicates a portion above half of the portion that spreads downward from the upper portion to the lower portion. The analysis of the hydrogen concentration at each radial position in the upper portion of the shaft portion can be performed by fixing or inserting a horizontal sonde in the furnace. The gas at the top of the furnace is blast furnace gas (BFG) discharged from the top of the blast furnace. Hereinafter, “the hydrogen concentration at the upper portion of the shaft at each radial position / the average hydrogen concentration in the gas at the top of the furnace” is referred to as “each radial position H 2 / furnace top H 2 ”.

下記に示す操業試験の検討結果より、上記「各半径位置H2/炉頂H2」指標の値は、炉中心部以外の各半径方向位置において1.2を超えないことが好ましいことが分かった。特に、高炉の無次元半径位置0.95〜1において、上記「各半径位置H2/炉頂H2」指標が1.2以下となるように操業管理を行なうことが安定操業を行なう上で重要であることが見出された。上記指標の値を1.2以下とするためには、炉内装入物の分布を制御したり、送風条件を変更して調整することができる。 From the examination results of the operation test shown below, it is understood that the value of the “each radial position H 2 / top H 2 ” index preferably does not exceed 1.2 at each radial position other than the furnace center. It was. In particular, at the dimensionless radius position 0.95-1 of the blast furnace, the operation management is performed so that the above-mentioned “each radial position H 2 / furnace top H 2 ” index is 1.2 or less for stable operation. It was found to be important. In order to set the value of the above index to 1.2 or less, it is possible to control the distribution of furnace interior inclusions or to change the air blowing conditions.

以下、本発明のために行なった操業試験について詳しく説明する。炉容積が5000m3のベルレス式装入装置を有する高炉において、操業試験を行なった。基準としての操業条件(ベース)は微粉炭吹き込みを実施するものであり、試験操業として微粉炭に加えてLNGの羽口吹込みを行なう試験操業1、試験操業2を実施した。操業試験条件を表1に示す。 Hereinafter, the operation test conducted for the present invention will be described in detail. An operation test was conducted in a blast furnace having a bell-less charging device having a furnace volume of 5000 m 3 . The operation condition (base) as a standard is to carry out pulverized coal injection, and test operation 1 and test operation 2 in which LNG tuyere is injected in addition to pulverized coal were conducted as test operations. Table 1 shows the operation test conditions.

Figure 2007186759
Figure 2007186759

図1に示すように高炉1のシャフト部上部における半径方向のガス組成を水平ゾンデ2を用いて分析し、半径方向のガス分析結果と炉頂ガス分析値から、半径方向位置における水素濃度の過多を判定した。図2にベースおよび試験操業1、2の際の各半径位置(無次元半径:r/R)における、「各半径位置H2/炉頂H2」を示す。ベースに対し、LNGを吹き込んだ「試験操業1」の時期は、シャフト部で通気変動が顕著で、操業が安定しなかった。これに対し、高炉に焼結鉱や鉄鉱石等の主原料を装入する際のベルレスシュートの傾動パターンを、炉周辺部により多くの前記主原料が堆積するように調整するような装入物分布制御を実施して「試験操業2」に示すガス分布へ変更したところ、通気性が安定した。「試験操業2」では、「中心部(無次元半径0)の水素濃度/炉頂H2」は「試験操業1」とほぼ同等であるが、「周辺部(無次元半径1.0の近傍)における水素濃度/炉頂H2」が「試験操業1」よりも低位となっている。これは、通気変動に影響を及ぼす領域は断面積の大きい周辺部であるためと考えられる。このような操業実績を重ね、特に炉周辺部の「各半径位置H2/炉頂H2」の制御を行なった結果、「各半径位置H2/炉頂H2」は炉周辺部のみの制御で十分であり、LNGのように水素含有率の高い還元材を吹き込む際の半径方向水素濃度の管理基準は、無次元半径位置0.95〜1において、「各半径位置H2/炉頂H2」の値を1.2以下とすることが、安定操業のために望ましいことが判明した。 As shown in FIG. 1, the gas composition in the radial direction at the upper part of the shaft portion of the blast furnace 1 is analyzed using the horizontal sonde 2, and the excessive hydrogen concentration at the radial position is determined from the gas analysis result in the radial direction and the top gas analysis value. Was judged. FIG. 2 shows “each radial position H 2 / furnace top H 2 ” at each radial position (dimensionless radius: r / R) in the base and test operations 1 and 2. In the period of “Test Operation 1” in which LNG was blown against the base, the air flow fluctuation was remarkable in the shaft portion, and the operation was not stable. On the other hand, the charge that adjusts the tilt pattern of the bellless chute when charging the main raw material such as sintered ore or iron ore into the blast furnace so that more main raw material is deposited in the periphery of the furnace. When distribution control was performed and the gas distribution was changed to the “test operation 2”, the gas permeability was stable. In “Test operation 2”, “Hydrogen concentration in the center (dimensionless radius 0) / top H 2 ” is almost the same as “Test operation 1”, but “peripheral (near dimensionless radius 1.0)” ) In “Hydrogen concentration / top H 2 ” is lower than “Test operation 1”. This is presumably because the region that affects the air flow fluctuation is the peripheral portion having a large cross-sectional area. Repeatedly such operational performance, especially in the furnace peripheral portion "each radial position H 2 / furnace top H 2" result of performing control of, "the radial position H 2 / furnace top H 2" furnace peripheral portion only of the Control is sufficient, and the control standard for the radial hydrogen concentration when reducing material having a high hydrogen content such as LNG is blown is defined as “each radial position H 2 / furnace top” in dimensionless radial positions 0.95 to 1. It has been found that a value of “H 2 ” of 1.2 or less is desirable for stable operation.

本発明を内容積5000m3の高炉における各種水素含有還元材吹き込み操業に適用した。水素含有還元材としてLNGとCOGを用い、操業条件を変更して、操業a〜cを行なった。各操業の操業条件を表2に示す。 The present invention was applied to various hydrogen-containing reducing material blowing operations in a blast furnace having an internal volume of 5000 m 3 . Using LNG and COG as the hydrogen-containing reducing material, the operation conditions were changed, and operations a to c were performed. Table 2 shows the operation conditions for each operation.

Figure 2007186759
Figure 2007186759

各操業条件において、シャフト部上部において水平ゾンデを用いて水素濃度を測定し、「各半径位置H2/炉頂H2」指標をモニターしながら操業を行なった。無次元半径位置(r/R)0.95〜1の領域で「各半径位置H2/炉頂H2」が1.2を超える場合があり、通気変動が認められたが、高炉に装入する主原料である焼結鉱や鉄鉱石が炉周辺部により多く堆積するようにベルレスシュートの傾動パターンを調整して、図3に示すように上記の指標が無次元半径位置(r/R)0.95〜1の領域で1.2以下になるように調整したところ、いずれの操業においても、通気性が安定した。 Under each operating condition, the hydrogen concentration was measured using a horizontal sonde at the upper part of the shaft portion, and the operation was performed while monitoring the “each radial position H 2 / furnace top H 2 ” index. In each region of dimensionless radial position (r / R) 0.95-1, “each radial position H 2 / furnace top H 2 ” may exceed 1.2 and fluctuations in ventilation were observed. The tilt pattern of the bellless chute is adjusted so that more sintered ore or iron ore, which is the main raw material, is deposited in the periphery of the furnace, and the above index becomes the dimensionless radius position (r / R) as shown in FIG. ) When adjusted to 1.2 or less in the range of 0.95 to 1, the air permeability was stable in any operation.

高炉半径方向のガス採取方法を示す概略図。Schematic which shows the gas sampling method of a blast furnace radial direction. 操業試験における「各半径位置H2/炉頂H2」の炉半径方向分布を示すグラフ。Graph showing the furnace radial distribution of "each radial position H 2 / furnace top H 2" in operation test. 安定操業時の「各半径位置H2/炉頂H2」の炉半径方向分布を示すグラフ。Graph showing the furnace radial distribution of "each radial position H 2 / furnace top H 2" at the time of stable operation.

符号の説明Explanation of symbols

1 高炉
2 水平ゾンデ
1 Blast furnace 2 Horizontal sonde

Claims (2)

羽口から、Hを20質量%以上含有する還元材を吹き込む高炉操業において、高炉のシャフト部上部において炉の半径方向における水素濃度(体積%)の分布を測定し、各半径位置での水素濃度を炉頂部のガス中の平均水素濃度(体積%)で除した指標である「各半径位置H2/炉頂H2」を用いて操業管理を行なうことを特徴とする高炉操業方法。 In the blast furnace operation in which a reducing material containing 20% by mass or more of H is blown from the tuyere, the hydrogen concentration (volume%) distribution in the radial direction of the furnace is measured at the upper part of the shaft portion of the blast furnace, and the hydrogen concentration at each radial position A blast furnace operation method characterized in that operation management is performed using “each radial position H 2 / furnace top H 2 ” which is an index obtained by dividing the above by the average hydrogen concentration (volume%) in the gas at the top of the furnace. 無次元半径0.95〜1の位置での「各半径位置H2/炉頂H2」の値が1.2を超えないように操業管理を行なうことを特徴とする請求項1に記載の高炉操業方法。 The operation management is performed so that the value of “each radial position H 2 / furnace top H 2 ” at a position of dimensionless radius 0.95 to 1 does not exceed 1.2. Blast furnace operation method.
JP2006006158A 2006-01-13 2006-01-13 Method for operating blast furnace Pending JP2007186759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006006158A JP2007186759A (en) 2006-01-13 2006-01-13 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006006158A JP2007186759A (en) 2006-01-13 2006-01-13 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JP2007186759A true JP2007186759A (en) 2007-07-26

Family

ID=38342123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006006158A Pending JP2007186759A (en) 2006-01-13 2006-01-13 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JP2007186759A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221549A (en) * 2008-03-17 2009-10-01 Jfe Steel Corp Method for operating blast furnace
JP2009221548A (en) * 2008-03-17 2009-10-01 Jfe Steel Corp Method for operating blast furnace
JP2009221547A (en) * 2008-03-17 2009-10-01 Jfe Steel Corp Method for operating blast furnace
JP2020066753A (en) * 2018-10-22 2020-04-30 日本製鉄株式会社 Method for operating blast furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221549A (en) * 2008-03-17 2009-10-01 Jfe Steel Corp Method for operating blast furnace
JP2009221548A (en) * 2008-03-17 2009-10-01 Jfe Steel Corp Method for operating blast furnace
JP2009221547A (en) * 2008-03-17 2009-10-01 Jfe Steel Corp Method for operating blast furnace
JP4661890B2 (en) * 2008-03-17 2011-03-30 Jfeスチール株式会社 Blast furnace operation method
JP2020066753A (en) * 2018-10-22 2020-04-30 日本製鉄株式会社 Method for operating blast furnace
JP7103155B2 (en) 2018-10-22 2022-07-20 日本製鉄株式会社 Blast furnace operation method

Similar Documents

Publication Publication Date Title
JP4661890B2 (en) Blast furnace operation method
RU2613007C2 (en) Method of blast furnace operation and method of molten cast iron production
EP4067510A1 (en) Blast furnace operation method
JP2008214735A (en) Method for operating blast furnace
JP5971165B2 (en) Blast furnace operation method
JP2007186759A (en) Method for operating blast furnace
JP5315732B2 (en) Blast furnace operation method
JP2020066753A (en) Method for operating blast furnace
EP2410065B1 (en) Blast furnace operation method
JP7105708B2 (en) Method for determining injection amount of reducing gas and method for operating blast furnace
JP5549056B2 (en) Blast furnace operation method
JP2015199984A (en) Blast furnace operation method
JP2012087375A (en) Method for operating blast furnace
JP7513200B2 (en) Blast furnace operation method
JP5707858B2 (en) Blast furnace operation method using ferro-coke
JP3589016B2 (en) Blast furnace operation method
JP2020045508A (en) Operation method of blast furnace
JP2004263258A (en) Method for operating blast furnace
WO2023199550A1 (en) Operation method for blast furnace
JP4093198B2 (en) Blast furnace operation method
JP2022182422A (en) Operation method for blast furnace
JP7167652B2 (en) Blast furnace operation method
JP2019019347A (en) Method of operating blast furnace
JP2013095923A (en) Blast furnace operation method
JP5400600B2 (en) Blast furnace operation method