JP2009221547A - Method for operating blast furnace - Google Patents

Method for operating blast furnace Download PDF

Info

Publication number
JP2009221547A
JP2009221547A JP2008067828A JP2008067828A JP2009221547A JP 2009221547 A JP2009221547 A JP 2009221547A JP 2008067828 A JP2008067828 A JP 2008067828A JP 2008067828 A JP2008067828 A JP 2008067828A JP 2009221547 A JP2009221547 A JP 2009221547A
Authority
JP
Japan
Prior art keywords
gas
blast furnace
furnace
reducing
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008067828A
Other languages
Japanese (ja)
Other versions
JP2009221547A5 (en
JP4661890B2 (en
Inventor
Minoru Asanuma
稔 浅沼
Yusuke Kashiwabara
佑介 柏原
Kanji Takeda
幹治 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008067828A priority Critical patent/JP4661890B2/en
Publication of JP2009221547A publication Critical patent/JP2009221547A/en
Publication of JP2009221547A5 publication Critical patent/JP2009221547A5/ja
Application granted granted Critical
Publication of JP4661890B2 publication Critical patent/JP4661890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a blast furnace, wherein in the case of performing the blast furnace operation for blowing reducing material having high hydrogen content, the enlargement of a low temperature zone in the furnace and the lowering of the furnace top gas temperature are prevented. <P>SOLUTION: The blast furnace operating method, in which preheating gas 4 is blown into the blast furnace 1 from a shaft part in the blast furnace operation for blowing the reducing material containing ≥10 mass% H from a tuyere 2, is used. As the preheating gas, it is desirable that combustion gas obtained by burning the blast furnace gas 8 beforehand removing CO<SB>2</SB>with a de-CO<SB>2</SB>device 11, is used and COG reformed gas as the reducing material containing ≥10 mass% H, is used. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、羽口から水素含有率の高い還元材を吹き込む高炉の操業方法に関する。   The present invention relates to a method for operating a blast furnace in which a reducing material having a high hydrogen content is blown from a tuyere.

近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出CO2の抑制は重要な課題である。高炉は主にコークスおよび微粉炭を還元材として使用しており、炭酸ガス排出抑制を達成するためにはコークス等を水素含有率の高い還元材で置換する方策が有効である。水素含有率の高い還元材を高炉で用いる技術として、高炉にLNG(Liquefied Natural Gas:液化天然ガス)を羽口より吹き込み製銑工程で排出される炭酸ガスを低減させる低炭酸ガス排出製鉄法が知られている(例えば、特許文献1参照。)。 In recent years, global warming due to an increase in carbon dioxide emissions has become a problem, and the suppression of emitted CO 2 is an important issue even in the steel industry. Blast furnaces mainly use coke and pulverized coal as reducing materials, and in order to achieve carbon dioxide emission suppression, measures to replace coke with reducing materials with a high hydrogen content are effective. As a technology to use reducing materials with high hydrogen content in the blast furnace, there is a low carbon dioxide emission steelmaking method that reduces the carbon dioxide emitted in the ironmaking process by blowing LNG (Liquefied Natural Gas) into the blast furnace from the tuyere. It is known (for example, refer to Patent Document 1).

一方、水素による酸化鉄の還元反応は比較的大きな吸熱反応であることが知られている。COガスおよびH2ガスによる酸化鉄還元時の反応および反応熱を以下の(a)〜(f)に示す(例えば、非特許文献1参照。)。
3Fe23+CO→2Fe34+CO2(反応熱:+38kcal/kgFe)・・・(a)
Fe34+CO→3FeO+CO2(反応熱:−38kcal/kgFe)・・・(b)
FeO+CO→Fe+CO2(反応熱:+60 kcal/kgFe)・・・(c)
3Fe23+H2→2Fe34+H2O(反応熱:+5kcal/kgFe)・・・(d)
Fe34+H2→3FeO+H2O(反応熱:−96kcal/kgFe)・・・(e)
FeO+H2→Fe+H2O(反応熱:−116kcal/kgFe)・・・(f)
上記の反応式は、羽口からの投入水素量が増え、酸化鉄の還元のうち、水素還元の比率が大きくなっていくとシャフト部の温度が低下し、鉄鉱石、焼結鉱等装入物の低温領域での滞留時間が拡大する可能性があることを示唆している。シャフト部の低温領域の拡大は焼結鉱の還元粉化領域の拡大を意味し、還元による鉄鉱石等の粉化により、通気性および装入物降下挙動を悪化させる。また、炉頂ガスの温度も低下させることが指摘されている。炉頂ガス温度は高炉操業上110℃以上であることが望ましく、炉頂ガスの温度が低下すると、高炉ガス中の水分が凝結し、設備腐食をきたす等の問題が発生する。
On the other hand, it is known that the reduction reaction of iron oxide with hydrogen is a relatively large endothermic reaction. The reaction and heat of reaction during iron oxide reduction with CO gas and H 2 gas are shown in the following (a) to (f) (for example, see Non-Patent Document 1).
3Fe 2 O 3 + CO → 2Fe 3 O 4 + CO 2 (Reaction heat: +38 kcal / kgFe) (a)
Fe 3 O 4 + CO → 3FeO + CO 2 (heat of reaction: −38 kcal / kg Fe) (b)
FeO + CO → Fe + CO 2 (Reaction heat: +60 kcal / kgFe) (c)
3Fe 2 O 3 + H 2 → 2Fe 3 O 4 + H 2 O (heat of reaction: +5 kcal / kg Fe) (d)
Fe 3 O 4 + H 2 → 3FeO + H 2 O (heat of reaction: −96 kcal / kg Fe) (e)
FeO + H 2 → Fe + H 2 O (reaction heat: −116 kcal / kg Fe) (f)
In the above reaction formula, the amount of hydrogen input from the tuyere increases, and the ratio of hydrogen reduction in the reduction of iron oxide increases, so the temperature of the shaft portion decreases, and iron ore and sintered ore are charged. This suggests that the residence time of the object in the low temperature region may be extended. The expansion of the low temperature region of the shaft portion means the expansion of the reduced pulverization region of the sintered ore, and the air permeability and the charge lowering behavior are deteriorated by the pulverization of iron ore and the like by the reduction. It has also been pointed out that the temperature of the furnace top gas is also lowered. The furnace top gas temperature is desirably 110 ° C. or higher in terms of blast furnace operation, and when the temperature of the furnace top gas is lowered, moisture in the blast furnace gas condenses, causing problems such as equipment corrosion.

そもそも、従来の通常の高炉操業では、低温領域はほとんど形成されることはなかった。高微粉炭比操業によって高炉へのインプット水素量が増加するケースはあるが、一般的に微粉炭のコークス置換率は通常で0.9程度であり、吹き込み原単位150kg/tを超えるような高微粉炭比の場合、置換率はさらに低下する。ゆえに、微粉炭比を増やす操業の場合はインプット水素量の増加とともに還元材比が増加し、炉上部温度はむしろ上昇するのが一般的であり、低温領域はほとんど形成されないためである。一方で、特許文献1に記載の方法のように、LNGを羽口より吹き込む方法では、天然ガスのコークス置換率は1.1〜1.2程度であり(例えば、非特許文献2参照。)、天然ガス吹き込み量増加に従って還元材比は低下するため、低温領域の形成が実際に問題となる。
特開平3−240906号公報 「製銑ハンドブック」地人書館 1979年、p.78 「材料とプロセス18」日本鉄鋼協会 2005年、p.984
In the first place, in the conventional normal blast furnace operation, the low temperature region was hardly formed. Although there are cases where the amount of hydrogen input to the blast furnace increases due to high pulverized coal ratio operation, generally the coke replacement rate of pulverized coal is normally around 0.9, which is high enough to exceed the injection basic unit of 150 kg / t. In the case of the pulverized coal ratio, the substitution rate further decreases. Therefore, in the case of operation to increase the pulverized coal ratio, the ratio of reducing material increases with the increase in the amount of input hydrogen, and the furnace top temperature generally rises, and the low temperature region is hardly formed. On the other hand, in the method in which LNG is blown from the tuyere as in the method described in Patent Document 1, the coke replacement ratio of natural gas is about 1.1 to 1.2 (see, for example, Non-Patent Document 2). As the natural gas blowing rate increases, the reducing material ratio decreases, so the formation of a low temperature region is actually a problem.
JP-A-3-240906 “Seikan Handbook” Jinjinshokan 1979, p. 78 “Materials and Process 18” Japan Steel Association 2005, p. 984

上記のように、天然ガス等の、水素含有率の高い還元材を使用して、かつ還元材比低下を指向する操業を行なう場合、高炉にインプットされる水素増により炉頂ガス温度が低下するという問題がある。   As described above, when using a reducing material having a high hydrogen content, such as natural gas, and performing an operation directed to reducing the reducing material ratio, the temperature at the top of the furnace decreases due to the increase in hydrogen input to the blast furnace. There is a problem.

従って本発明の目的は、このような従来技術の課題を解決し、水素含有率の高い還元材を吹き込む高炉操業を行なう際に、炉内の低温領域の拡大と、炉頂ガス温度の低下を防止可能な高炉操業方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art and to expand the low temperature region in the furnace and lower the furnace top gas temperature when performing a blast furnace operation in which a reducing material having a high hydrogen content is blown. It is to provide a blast furnace operation method that can be prevented.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)羽口から、Hを10質量%以上含有する還元材を吹き込む高炉操業において、予熱ガスをシャフト部から高炉の炉内に吹き込むことを特徴とする高炉操業方法。
(2)予熱ガスとして、予めCO2を除去した高炉ガスを燃焼させて得られた燃焼ガスを用いることを特徴とする(1)に記載の高炉操業方法。
(3)Hを10質量%以上含有する還元材として、COG改質ガスを用いることを特徴とする(1)または(2)に記載の高炉操業方法。
The features of the present invention for solving such problems are as follows.
(1) A blast furnace operation method in which preheated gas is blown from a shaft portion into a blast furnace furnace in a blast furnace operation in which a reducing material containing 10% by mass or more of H is blown from a tuyere.
(2) The blast furnace operating method according to (1), wherein a combustion gas obtained by burning blast furnace gas from which CO 2 has been previously removed is used as the preheating gas.
(3) The blast furnace operating method according to (1) or (2), wherein a COG reformed gas is used as a reducing material containing 10% by mass or more of H.

本発明によれば、水素含有率の高い還元材を吹き込む高炉操業において、炉内の低温領域の拡大と、炉頂ガスの温度低下を防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, the expansion of the low temperature area | region in a furnace and the temperature fall of furnace top gas can be prevented in the blast furnace operation which blows in a reducing material with a high hydrogen content rate.

本発明では、予熱ガスをシャフト部から高炉の炉内に吹き込むことで、水素含有率の高い還元材を吹き込んだ際に問題となる低温領域の拡大と炉頂温度の低下を防止する。   In the present invention, the preheating gas is blown into the furnace of the blast furnace from the shaft portion, thereby preventing the expansion of the low temperature region and the lowering of the furnace top temperature, which are problems when the reducing material having a high hydrogen content is blown.

本発明において水素含有率の高い還元材とは、水素(H)を質量割合として10%以上含有する、高炉内において鉄の還元材として作用する物質であり、具体的にはLNG(H含有率約23質量%)、COG(コークスを製造する際に発生するコークス炉ガス:H含
有率約25質量%)、BFG(高炉ガス:H含有率0.2〜0.5質量%)の水素含有量を10質量%以上に高めたBFG改質ガス、都市ガス(H含有率約23質量%)、液化石油ガス(LPG:H含有率約23質量%)、メタンを改質して得られた合成ガス(COとH2ガスとからなる還元性ガス、H含有率約17質量%)等を用いることができる。BFG改質ガスとは、BFGを水性ガスシフト反応(CO+H2O=CO2+H2)により改質し、水素含有率が10質量%以上になるようにCO2、N2を分離したガスである。ただし、水(H2O)の状態の水素は、本発明で用いる水素含有率の高い還元剤から除くものとする。水素ガスを用いることも可能であるが、純粋な水素ガスは、工業的に入手が困難である。入手が容易なガスとして、たとえば液化天然ガスや、都市ガスが望ましく、これらはメタンを主成分(概ねメタン80体積%以上)とすることが多い。従って、メタンを約44質量%含むCOGを改質して水素含有量を高めたCOG改質ガス(H含有率約65体積%)は特に水素含有率が高いので、COG改質ガスを羽口から吹き込む高炉操業に本発明を用いることは特に効果的である。上記水素含有率の高い還元材を、水素含有率の高い還元材吹き込み由来の水素分として3kg/t−pig以上、さらに好ましくは7kg/t−pig以上高炉に吹き込むことによって、本発明の効果をより良く発揮することができる。
In the present invention, the reducing material having a high hydrogen content is a substance containing 10% or more of hydrogen (H) as a mass ratio and acting as a reducing material for iron in a blast furnace. Specifically, LNG (H content) About 23% by mass), COG (coke oven gas generated when producing coke: H content: about 25% by mass), BFG (blast furnace gas: H content: 0.2 to 0.5% by mass) containing hydrogen It was obtained by reforming BFG reformed gas, city gas (H content: about 23% by mass), liquefied petroleum gas (LPG: H content: about 23% by mass), and methane, whose amount was increased to 10% by mass or more. Synthesis gas (reducing gas composed of CO and H 2 gas, H content of about 17% by mass) or the like can be used. The BFG reformed gas is a gas obtained by reforming BFG by a water gas shift reaction (CO + H 2 O = CO 2 + H 2 ) and separating CO 2 and N 2 so that the hydrogen content becomes 10% by mass or more. . However, hydrogen in the state of water (H 2 O) is excluded from the reducing agent having a high hydrogen content used in the present invention. Although hydrogen gas can be used, pure hydrogen gas is difficult to obtain industrially. As the readily available gas, for example, liquefied natural gas or city gas is desirable, and these are often composed mainly of methane (approximately 80% by volume or more of methane). Therefore, the COG reformed gas (H content of about 65% by volume), which has been improved by reforming COG containing about 44% by mass of methane, has a particularly high hydrogen content. It is particularly effective to use the present invention for blast furnace operation that is blown from the outside. By blowing the reducing material having a high hydrogen content into the blast furnace at 3 kg / t-pig or more, more preferably 7 kg / t-pig or more as a hydrogen content derived from blowing the reducing material having a high hydrogen content, the effect of the present invention can be obtained. It can be demonstrated better.

図1は本発明の一実施形態を示す概略図である。図1を用いて本発明の一実施形態を具体的に説明する。水素含有率の高い還元材を高炉1の羽口2より吹き込む操業を行なう際に、高炉のシャフト部に設置した予熱ガス吹き込み配管3を用いて予熱ガス4を炉内に吹き込む。羽口からは送風5を行い、水素含有率の高い還元材6の他に、通常の高炉操業で吹き込みを行なう微粉炭7等も吹き込むことが好ましい。   FIG. 1 is a schematic view showing an embodiment of the present invention. An embodiment of the present invention will be specifically described with reference to FIG. When the operation of blowing a reducing material having a high hydrogen content from the tuyere 2 of the blast furnace 1 is performed, the preheating gas 4 is blown into the furnace using the preheating gas blowing pipe 3 installed in the shaft portion of the blast furnace. It is preferable to blow air from the tuyere and blow pulverized coal 7 or the like which is blown in a normal blast furnace operation in addition to the reducing material 6 having a high hydrogen content.

予熱ガス4としては、BFG、COG、COG改質ガス、LNG、H2ガス、LDG等を酸素あるいは空気により燃焼させた燃焼ガス(非還元性ガス)を使用することができる。COおよびH2を含有する還元性ガスを間接加熱し所定温度に昇温したガスを用いることもできる。予熱ガス4の吹き込み位置は高炉シャフト部であればいずれの位置でもよい。 As the preheating gas 4, a combustion gas (non-reducing gas) obtained by burning BFG, COG, COG reformed gas, LNG, H 2 gas, LDG or the like with oxygen or air can be used. A gas obtained by indirectly heating a reducing gas containing CO and H 2 and raising the temperature to a predetermined temperature can also be used. The blowing position of the preheating gas 4 may be any position as long as it is a blast furnace shaft portion.

予熱ガス4をシャフト部から高炉1の炉内に吹き込む際には、例えば図1に示すように、予熱ガスとして高炉1から排出される炉頂ガスであるBFG8の一部を分岐させ、酸素9により燃焼炉10で燃焼させて、800〜1000℃程度の燃焼ガス(非還元性ガス)として高炉シャフト部に吹き込むことができる。BFG8からCO2を除去する脱CO2装置11を用いて、CO2を除去したBFGを燃焼炉10で燃焼させて、燃焼ガスとして高炉シャフト部に吹き込むことが好ましい。CO2を除去することで、予熱ガスの燃焼に必要な酸素あるいは空気量を軽減できる効果がある。CO2およびN2を除去すると更に好ましい。CO2の除去方法としてはアルキルアミンによる化学吸収法でもよく、物理吸着、物理吸収、膜分離法による方法でも良い。N2の除去方法としては物理吸着、物理吸収、膜分離法による方法が使用できる。 When the preheating gas 4 is blown into the furnace of the blast furnace 1 from the shaft portion, for example, as shown in FIG. 1, a part of BFG 8 that is the top gas discharged from the blast furnace 1 as a preheating gas is branched, and oxygen 9 Can be burned in the combustion furnace 10 and blown into the blast furnace shaft portion as a combustion gas (non-reducing gas) of about 800 to 1000 ° C. BFG8 with de CO 2 apparatus 11 for removing CO 2 from the BFG was removed CO 2 is burned in the combustion furnace 10, it is preferable to blow the blast furnace shaft portion as a combustion gas. By removing CO 2 , there is an effect that the amount of oxygen or air necessary for combustion of the preheated gas can be reduced. More preferably, CO 2 and N 2 are removed. The CO 2 removal method may be a chemical absorption method using an alkylamine, or a physical adsorption, physical absorption, or membrane separation method. As a method for removing N 2 , methods by physical adsorption, physical absorption, and membrane separation can be used.

予熱ガス4として還元性ガスを吹き込む場合の例として、例えば、CO:35vol%、H2:65vol%の還元性ガスを炉内に吹き込む場合には、他の燃焼ガスを燃焼させ、炉内に吹き込む還元性ガスと熱交換させて吹き込むことも可能である。その場合に、BFGの一部を分岐し、前記他の燃焼ガスとして使用することも好都合である。例えば、図2に示すように還元性ガス12を、BFG8を燃焼炉10で燃焼させた排ガス13と、14で熱交換させることで予熱し、予熱ガス15として炉内に吹き込むこともできる。この場合でも、BFG中のCO2、またはCO2とN2とを除去することが好ましい。予熱された還元性ガスを吹き込むことにより、シャフト部の低温領域の拡大を軽減しながら、具体的には、装入物の粉化を抑制しながら、鉄鉱石・焼結鉱を予備還元でき、高炉の還元材比(コークス等)の低減に寄与することができる。また、LNG等のガスに酸素を加え、部分酸化し、予熱ガスとすることもできる。また、BFG中のCO、H2を還元ガスとして考え、予熱し炉内に吹き込むこともできる。この場合でも、BFG中のCO2、またはCO2とN2を除去することが好ましい。 As an example of injecting reducing gas as the preheating gas 4, for example, when reducing gas of CO: 35 vol% and H 2 : 65 vol% is blown into the furnace, other combustion gases are burned to enter the furnace It is also possible to inject by heat exchange with the reducing gas to be injected. In that case, it is also convenient to branch a part of the BFG and use it as the other combustion gas. For example, as shown in FIG. 2, the reducing gas 12 can be preheated by exchanging heat with the exhaust gas 13 in which the BFG 8 is burned in the combustion furnace 10 and 14, and can be blown into the furnace as the preheating gas 15. In this case, it is preferable to remove the CO 2 or CO 2 and N 2, in the BFG. By blowing preheated reducing gas, iron ore and sintered ore can be pre-reduced while reducing the expansion of the low temperature region of the shaft, specifically, while suppressing pulverization of the charge, It can contribute to the reduction of the reducing material ratio (coke etc.) of the blast furnace. Moreover, oxygen can be added to gas, such as LNG, and it can also be partially oxidized, and can be used as a preheating gas. Further, CO and H 2 in BFG can be considered as a reducing gas, and preheated and blown into the furnace. In this case, it is preferable to remove the CO 2 or CO 2 and N 2, in the BFG.

予熱ガスとして非還元性ガスを用いる場合、特に燃焼排ガスを用いる場合、吹き込み位置は高炉シャフト部であればいずれの位置でもよく、高炉に装入したコークスと燃焼排ガス中のCO2、H2Oとのガス化反応が進行しない温度範囲として吹き込むことが好ましい。具体的には、操業条件にもよるが、高炉シャフト部のPCO/(PCO+PCO2)比は0.3〜0.7の範囲であり、予熱ガス温度は900℃以下が好ましい。また、予熱ガスはシャフト部から炉内に吹き込まれるため、予熱ガスの吹き込みは炉内の装入物降下を阻害しないように、鉄鉱石およびコークスの流動化条件以下のガス速度で吹き込むことが好ましい。予熱ガスは円周方向均等に吹き込むことが好ましく、予熱ガス吹き込み配管は、1段あるいは複数段に配置しても良い。 When a non-reducing gas is used as the preheating gas, particularly when combustion exhaust gas is used, the blowing position may be any position as long as it is a blast furnace shaft portion, and coke charged into the blast furnace and CO 2 and H 2 O in the combustion exhaust gas. It is preferable to blow in as a temperature range in which the gasification reaction does not proceed. Specifically, although depending on operating conditions, the P CO / (P CO + P CO2 ) ratio of the blast furnace shaft portion is in the range of 0.3 to 0.7, and the preheating gas temperature is preferably 900 ° C. or lower. Further, since the preheating gas is blown into the furnace from the shaft portion, it is preferable that the preheating gas is blown at a gas velocity equal to or less than the fluidization condition of iron ore and coke so as not to disturb the charge drop in the furnace. . The preheating gas is preferably blown evenly in the circumferential direction, and the preheating gas blowing pipes may be arranged in one or more stages.

予熱ガスとして非還元性ガスを用いる際には、予熱ガスの吹込みにより炉周辺部の熱流比(降下する装入物の熱容量/炉頂ガスの熱容量)が低下し、還元粉化温度域が狭くなることから、粉化を抑制される。そのため、通常操業に比べ、高炉に原料を装入する際に、周辺部に高還元粉化性(RDI)焼結鉱を装入することが可能となる。例えば、高RDI焼結鉱を先頭排出させて、回転シュートを外側から内側向きに回転移動(順傾動)させながら装入することで、周辺部へ高RDI焼結鉱を装入することができる。非還元性ガスとしては、CO2、H2O、N2等を用いることが好ましい。 When a non-reducing gas is used as the preheating gas, the heat flow ratio around the furnace (heat capacity of falling charge / heat capacity of the furnace top gas) decreases due to the injection of the preheating gas, and the reduction powder temperature range is Since it becomes narrow, powdering is suppressed. Therefore, it is possible to charge highly reduced powder (RDI) sintered ore into the peripheral portion when charging raw materials into the blast furnace as compared with normal operation. For example, the high RDI sintered ore can be charged to the peripheral part by discharging the high RDI sintered ore and charging the rotary chute while rotating (forward tilting) from the outside to the inside. . As the non-reducing gas, it is preferable to use CO 2 , H 2 O, N 2 or the like.

予熱ガスとして還元性ガスを用いる際には、高炉に原料を装入する際に、周辺部に低還元粉化性(RDI)焼結鉱、塊鉱石等の低反応性鉱を装入することが好ましい。予熱ガスの吹込みにより炉周辺部のガス還元が促進されるためである。還元性ガスとしては、CO、H2等を用いることが好ましい。 When using reducing gas as the preheating gas, when charging raw materials into the blast furnace, charge low reactive ore such as low reduced powder (RDI) sintered ore or lump ore to the periphery. Is preferred. This is because the gas reduction around the furnace is promoted by blowing the preheating gas. As the reducing gas, CO, H 2 or the like is preferably used.

予熱ガスとして還元性ガスを用いる際には、さらに、高炉に原料を装入する際に、周辺部の鉱石層厚比を増加させることが好ましい。予熱ガスの吹込みにより炉周辺部のガス還元が促進されることから、還元性を補填する効果を得るためである。   When a reducing gas is used as the preheating gas, it is preferable to further increase the ore layer thickness ratio in the periphery when the raw material is charged into the blast furnace. This is because the reduction of gas in the periphery of the furnace is promoted by blowing the preheating gas, so that the effect of supplementing the reducing property can be obtained.

予熱ガスとして還元性ガスを用いる際には、還元促進と炉上部温度確保のために、炉内温度700〜1000℃域に吹き込むことが好ましい。   When a reducing gas is used as the preheating gas, it is preferable to blow into the furnace temperature range of 700 to 1000 ° C. in order to promote reduction and ensure the furnace upper temperature.

本発明を内容積5000m3の高炉における各種水素含有還元材吹き込み操業に適用した。出銑比2.3t/m3/d、羽口先温度を2200℃、微粉炭吹込み量が160kg/tの操業において、水素含有還元材としてLNG(CH4:88.5vol%、C26:4.6vol%、C38:5.4vol%、その他:1.5vol%)とCOG(H2:58.45vol%、CO:6.35vol%、CH4:27.35vol%、CO2:1.92vol%、N2:2.31vol%、その他炭化水素:3.62vol%)、COG改質ガス(H含有率約65vol%、CO含有量35vol%:H2含有率約11.7質量%)、H2を用い、操業条件を適宜変更して操業試験を行なった。予熱ガスとして高炉ガス(BFG)の燃焼ガス、CO2を除去したBFG燃焼ガス(BFG燃焼ガス脱CO2)、CO、H2ガスを用い、予熱ガスの吹き込み配管は円周方向38本とし、吹き込み配管径20cmのものを用いた。なお、焼結鉱のRDIは35%である。 The present invention was applied to various hydrogen-containing reducing material blowing operations in a blast furnace having an internal volume of 5000 m 3 . LNG (CH 4 : 88.5 vol%, C 2 H) as a hydrogen-containing reducing material in an operation with a tapping ratio of 2.3 t / m 3 / d, a tuyere tip temperature of 2200 ° C., and a pulverized coal injection amount of 160 kg / t 6: 4.6vol%, C 3 H 8: 5.4vol%, others: 1.5 vol%) and COG (H 2: 58.45vol%, CO: 6.35vol%, CH 4: 27.35vol%, CO 2 : 1.92 vol%, N 2 : 2.31 vol%, other hydrocarbons: 3.62 vol%), COG reformed gas (H content: about 65 vol%, CO content: 35 vol%: H 2 content: about 11 .7 mass%) and H 2 , the operation conditions were changed as appropriate, and an operation test was conducted. Blast furnace gas (BFG) combustion gas, BFG combustion gas from which CO 2 has been removed (BFG combustion gas de-CO 2 ), CO, H 2 gas are used as the preheating gas, and the preheating gas is blown into 38 pipes in the circumferential direction. A blown pipe having a diameter of 20 cm was used. The RDI of sintered ore is 35%.

本発明例1〜本発明例4は予熱ガスとしてシャフト部に800℃のBFG燃焼ガスを吹き込んだ例、本発明例5は1000℃のBFG燃焼ガス、本発明例6は予熱ガスにBFGを用いる際にCO2を除去して1000℃としたBFG燃焼ガスを吹き込んだ例、本発明例7は800℃のCO:35vol%、H2:65vol%の還元ガスを吹き込んだ例である。各操業の操業条件を表1に示す。また、通常操業(意図的に水素系の原料を高炉に装入しない従来の操業)の場合、予熱ガスを吹き込まない操業の場合も、比較例1〜4として表1に示す。 Examples 1 to 4 of the present invention are examples in which 800 ° C. BFG combustion gas is blown into the shaft portion as a preheating gas, Example 5 of the present invention uses BFG combustion gas of 1000 ° C., and Example 6 of the present invention uses BFG as the preheating gas. In this example, BFG combustion gas was blown to 1000 ° C. by removing CO 2. Example 7 of the present invention was an example in which reducing gas at 800 ° C. of CO: 35 vol% and H 2 : 65 vol% was blown. Table 1 shows the operation conditions for each operation. Moreover, in the case of normal operation (conventional operation in which no hydrogen-based raw material is intentionally charged into the blast furnace), and in the case of operation in which no preheating gas is injected, Table 1 is shown as Comparative Examples 1 to 4.

Figure 2009221547
Figure 2009221547

各操業条件における、高炉の炉頂ガスの量、発熱量、組成、温度、通気抵抗指数(対応する比較例を1とした場合の相対値)を表1に併せて示す。比較例1〜4においては、水素含有還元材吹き込み操業により、コークス比は低減できるが、通期抵抗指数は高くなり、炉頂ガス温度(TGT)は110℃未満に低下してしまう。しかしながら、本発明例1〜5に示したようにシャフト部から予熱ガスを吹き込むことにより、コークス比を低減しつつ、炉頂ガス温度(TGT)110℃以上を確保することが可能となることが分かる。また、本発明例6の結果に示したように、シャフトに吹き込むBFGよりCO2を除去することにより、BFGをそのまま使用するより燃焼に必要な酸素量を低減でき、さらに高炉の炉頂ガスのカロリーを高めることが可能となることが分かった。予熱ガスとして還元性ガスを吹き込んだ場合(本発明例7)は、さらに還元材比が低減でき、通期抵抗指数相対値を通常操業より低く抑えて高炉の操業が可能であることがわかった。 Table 1 also shows the amount of top gas of the blast furnace, the calorific value, the composition, the temperature, and the ventilation resistance index (relative values when the corresponding comparative example is 1) under each operating condition. In Comparative Examples 1 to 4, the coke ratio can be reduced by the operation of injecting the hydrogen-containing reducing material, but the full-year resistance index increases and the furnace top gas temperature (TGT) decreases to less than 110 ° C. However, as shown in Examples 1 to 5 of the present invention, it is possible to ensure a furnace top gas temperature (TGT) of 110 ° C. or higher while reducing the coke ratio by blowing the preheating gas from the shaft portion. I understand. Further, as shown in the result of Example 6 of the present invention, by removing CO 2 from BFG blown into the shaft, the amount of oxygen necessary for combustion can be reduced as compared with using BFG as it is, and the top gas of the blast furnace is further reduced. It was found that calories can be increased. It was found that when reducing gas was blown as the preheating gas (Example 7 of the present invention), the ratio of reducing material could be further reduced, and the operation of the blast furnace was possible with the relative resistance index relative value kept lower than the normal operation.

本発明例8として、上記実施例1の本発明例1の条件において、高炉半径方向周辺から無次元半径位置で1/4の範囲にRDI=38%の焼結鉱を、無次元半径位置で1/4から中心にかけて、RDI=35%の焼結鉱を装入した。通気抵抗指数の通常操業との相対値は通常操業と同等となった(1.0)。   As Inventive Example 8, in the condition of Inventive Example 1 of Example 1 above, RDI = 38% sintered ore in a dimensionless radial position in the range of 1/4 from the periphery in the blast furnace radial direction at the dimensionless radial position. From 1/4 to the center, RDI = 35% sintered ore was charged. The relative value of the airflow resistance index with the normal operation was equivalent to that of the normal operation (1.0).

本発明例9として、上記実施例1の本発明例7の条件において、高炉半径方向周辺から無次元半径位置で1/4の範囲にRDI=31%の焼結鉱を、無次元半径位置で1/4から中心にかけて、RDI=35%の焼結鉱を装入した。通気抵抗指数の通常操業との相対値は本発明例7で0.99であったものが、0.97となった。   As Invention Example 9, in the condition of Invention Example 7 of Example 1 above, a sintered ore with RDI = 31% in the range of 1/4 in the dimensionless radial position from the periphery in the blast furnace radial direction, in the dimensionless radial position. From 1/4 to the center, RDI = 35% sintered ore was charged. The relative value of the ventilation resistance index with the normal operation was 0.99 in Invention Example 7 and was 0.97.

本発明の一実施形態を示す概略図。Schematic which shows one Embodiment of this invention. 本発明の一実施形態を示す概略図。Schematic which shows one Embodiment of this invention.

符号の説明Explanation of symbols

1 高炉
2 羽口
3 予熱ガス吹き込み配管
4 予熱ガス
5 送風
6 水素含有率の高い還元材
7 微粉炭
8 BFG
9 酸素
10 燃焼炉
11 脱CO2装置
12 還元性ガス
13 排ガス
14 熱交換
15 予熱ガス
1 Blast Furnace 2 Tuyere 3 Preheating Gas Blowing Pipe 4 Preheating Gas 5 Blowing 6 Reducing Material with High Hydrogen Content 7 Pulverized Coal 8 BFG
9 Oxygen 10 Combustion furnace 11 De-CO 2 equipment 12 Reducing gas 13 Exhaust gas 14 Heat exchange 15 Preheating gas

Claims (3)

羽口から、Hを10質量%以上含有する還元材を吹き込む高炉操業において、予熱ガスをシャフト部から高炉の炉内に吹き込むことを特徴とする高炉操業方法。   A blast furnace operation method in which preheating gas is blown into a blast furnace furnace from a shaft portion in a blast furnace operation in which a reducing material containing 10 mass% or more of H is blown from a tuyere. 予熱ガスとして、予めCO2を除去した高炉ガスを燃焼させて得られた燃焼ガスを用いることを特徴とする請求項1に記載の高炉操業方法。 The blast furnace operating method according to claim 1, wherein combustion gas obtained by burning blast furnace gas from which CO 2 has been removed in advance is used as the preheating gas. Hを10質量%以上含有する還元材として、COG改質ガスを用いることを特徴とする請求項1または請求項2に記載の高炉操業方法。   The blast furnace operating method according to claim 1 or 2, wherein COG reformed gas is used as a reducing material containing 10 mass% or more of H.
JP2008067828A 2008-03-17 2008-03-17 Blast furnace operation method Active JP4661890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067828A JP4661890B2 (en) 2008-03-17 2008-03-17 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067828A JP4661890B2 (en) 2008-03-17 2008-03-17 Blast furnace operation method

Publications (3)

Publication Number Publication Date
JP2009221547A true JP2009221547A (en) 2009-10-01
JP2009221547A5 JP2009221547A5 (en) 2010-08-05
JP4661890B2 JP4661890B2 (en) 2011-03-30

Family

ID=41238621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067828A Active JP4661890B2 (en) 2008-03-17 2008-03-17 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP4661890B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106802A (en) * 2009-10-22 2011-06-02 Jfe Steel Corp Method of burning gas of low calorific value by combustion burner and method of operating blast furnace
JP2011106803A (en) * 2009-10-22 2011-06-02 Jfe Steel Corp Method of burning blast furnace gas by combustion burner, and method of operating blast furnace
JP2011214022A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Method for operating blast furnace
JP2012092411A (en) * 2010-10-28 2012-05-17 Jfe Steel Corp Method for operating blast furnace
JP2012102372A (en) * 2010-11-10 2012-05-31 Nippon Steel Corp Method for operating direct reducing furnace with circulated top gas
JP2012177141A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method for operating blast furnace
JP2013147692A (en) * 2012-01-18 2013-08-01 Jfe Steel Corp Method of operating blast furnace at high tapping ratio of pig iron
JP2013185181A (en) * 2012-03-06 2013-09-19 Nippon Steel & Sumitomo Metal Corp Blast furnace operating method
WO2015105107A1 (en) * 2014-01-07 2015-07-16 新日鐵住金株式会社 Method for operating blast furnace
KR20180109064A (en) 2016-02-05 2018-10-05 신닛테츠스미킨 카부시키카이샤 Method for supplying hydrogen-containing reducing gas to the blast furnace shaft
CN114787391A (en) * 2019-11-29 2022-07-22 日本制铁株式会社 Method for operating blast furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033305A (en) * 1983-08-04 1985-02-20 Nippon Steel Corp Operation of blast furnace
JP2007186759A (en) * 2006-01-13 2007-07-26 Jfe Steel Kk Method for operating blast furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033305A (en) * 1983-08-04 1985-02-20 Nippon Steel Corp Operation of blast furnace
JP2007186759A (en) * 2006-01-13 2007-07-26 Jfe Steel Kk Method for operating blast furnace

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106802A (en) * 2009-10-22 2011-06-02 Jfe Steel Corp Method of burning gas of low calorific value by combustion burner and method of operating blast furnace
JP2011106803A (en) * 2009-10-22 2011-06-02 Jfe Steel Corp Method of burning blast furnace gas by combustion burner, and method of operating blast furnace
JP2011214022A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Method for operating blast furnace
JP2012092411A (en) * 2010-10-28 2012-05-17 Jfe Steel Corp Method for operating blast furnace
JP2012102372A (en) * 2010-11-10 2012-05-31 Nippon Steel Corp Method for operating direct reducing furnace with circulated top gas
JP2012177141A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method for operating blast furnace
JP2013147692A (en) * 2012-01-18 2013-08-01 Jfe Steel Corp Method of operating blast furnace at high tapping ratio of pig iron
JP2013185181A (en) * 2012-03-06 2013-09-19 Nippon Steel & Sumitomo Metal Corp Blast furnace operating method
AU2015205241B2 (en) * 2014-01-07 2017-08-17 Jfe Steel Corporation Method for operating blast furnace
US10106863B2 (en) 2014-01-07 2018-10-23 Nippon Steel & Sumitomo Metal Corporation Method for operation of blast furnace
WO2015105107A1 (en) * 2014-01-07 2015-07-16 新日鐵住金株式会社 Method for operating blast furnace
EP3093352A4 (en) * 2014-01-07 2017-10-18 Nippon Steel & Sumitomo Metal Corporation Method for operating blast furnace
KR101800141B1 (en) 2014-01-07 2017-11-21 신닛테츠스미킨 카부시키카이샤 Method for operating blast furnace
TWI609084B (en) * 2014-01-07 2017-12-21 新日鐵住金股份有限公司 Blast furnace operation method
CN113999945A (en) * 2014-01-07 2022-02-01 日本制铁株式会社 Method for operating blast furnace
CN105899686A (en) * 2014-01-07 2016-08-24 新日铁住金株式会社 Method for operating blast furnace
RU2679817C2 (en) * 2014-01-07 2019-02-13 Ниппон Стил Энд Сумитомо Метал Корпорейшн Method for operating blast furnace
CN108699612A (en) * 2016-02-05 2018-10-23 新日铁住金株式会社 The method that the reducing gas of hydrogen is supplied to blast-furnace shaft portion
CN108699612B (en) * 2016-02-05 2020-08-18 日本制铁株式会社 Method for supplying reducing gas containing hydrogen to shaft of blast furnace
US10961596B2 (en) 2016-02-05 2021-03-30 Nippon Steel Corporation Method for supplying hydrogen-containing reducing gas to shaft part of blast furnace
KR20180109064A (en) 2016-02-05 2018-10-05 신닛테츠스미킨 카부시키카이샤 Method for supplying hydrogen-containing reducing gas to the blast furnace shaft
CN114787391A (en) * 2019-11-29 2022-07-22 日本制铁株式会社 Method for operating blast furnace
CN114787391B (en) * 2019-11-29 2023-09-12 日本制铁株式会社 Method for operating blast furnace

Also Published As

Publication number Publication date
JP4661890B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP4661890B2 (en) Blast furnace operation method
JP6513680B2 (en) How to operate furnace top gas circulation blast furnace equipment
AU2011309835B2 (en) Method and apparatus for producing direct reduced iron utilizing a source of reducing gas comprising hydrogen and carbon monoxide
CA2715525C (en) Method for the melting of pig iron with the recirculation of blast furnace gas and with the addition of hydrocarbons
WO2010137748A1 (en) Blast furnace operation method
JP2015510030A (en) Blast furnace for recirculating furnace top gas
JP2009221547A5 (en)
KR20160025621A (en) Desulfurization of gases in the production of pig iron
TWI803522B (en) Method for producing hot synthesis gas, in particular for use in blast furnace operation
JP5315732B2 (en) Blast furnace operation method
KR102558258B1 (en) How the blast furnace works
JP2010275582A (en) Method for operating vertical furnace
JP2007186759A (en) Method for operating blast furnace
JP2015199984A (en) Blast furnace operation method
JP5549056B2 (en) Blast furnace operation method
CN113825845B (en) Method for operating a metallurgical furnace
JP7055082B2 (en) How to operate the blast furnace
JP6137087B2 (en) Method for producing sintered ore
JP2013100582A (en) Method for modifying iron-making raw material
EP2982768B1 (en) Blast furnace operation method and lance
JP5707858B2 (en) Blast furnace operation method using ferro-coke
JP2005089797A (en) Method of producing hydrogen and reduced iron, and device therefor
TWI765510B (en) Blast furnace operation method and blast furnace accessory equipment
JP7348466B2 (en) Blast furnace operating method and pig iron manufacturing method
JP2012177141A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100617

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100617

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Ref document number: 4661890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250