JP2013185181A - Blast furnace operating method - Google Patents

Blast furnace operating method Download PDF

Info

Publication number
JP2013185181A
JP2013185181A JP2012049698A JP2012049698A JP2013185181A JP 2013185181 A JP2013185181 A JP 2013185181A JP 2012049698 A JP2012049698 A JP 2012049698A JP 2012049698 A JP2012049698 A JP 2012049698A JP 2013185181 A JP2013185181 A JP 2013185181A
Authority
JP
Japan
Prior art keywords
furnace
blast furnace
hydrogen
reducing gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012049698A
Other languages
Japanese (ja)
Other versions
JP5770124B2 (en
Inventor
Kenichi Higuchi
謙一 樋口
Shinroku Matsuzaki
眞六 松崎
Akihiko Shinotake
昭彦 篠竹
Kouji Saito
公児 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Nisshin Co Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel and Sumitomo Metal Corp
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd, Nippon Steel and Sumitomo Metal Corp, Nisshin Steel Co Ltd filed Critical JFE Steel Corp
Priority to JP2012049698A priority Critical patent/JP5770124B2/en
Publication of JP2013185181A publication Critical patent/JP2013185181A/en
Application granted granted Critical
Publication of JP5770124B2 publication Critical patent/JP5770124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a blast furnace operating method for making ore reduction and permeability in a furnace diameter direction be proper when blowing a hydrogen-containing reducing gas into a blast furnace shaft part.SOLUTION: In a blast furnace operating method, when blowing a hydrogen-containing reducing gas from a blast furnace shaft part, a blowing amount of a hydrogen gas is 20 Nmor more and 150 Nmor less per ton of pig iron, and O/C in a radial direction in a blast furnace top part satisfies the following expressions (1) and (2). The expression (1) is (0.003×VH+1.2)≥a≥(0.003×VH+0.85) and the expression (2) is a≥1.0, provided that: (a) is (O/C)/(O/C), and it is a ratio of O/C of a furnace peripheral part and a furnace intermediate part when the radial direction of the furnace top part is divided into three and defined as 1, 2 and 3 from a furnace center to a furnace wall; and VHis a blowing amount (Nm/tp) of the hydrogen gas.

Description

本発明は、高炉操業方法に関する。   The present invention relates to a blast furnace operating method.

近年、地球環境保護の観点から、二酸化炭素の排出低減の必要性が増大し、高炉における二酸化炭素の削減策が、検討されている。高炉で燃焼されるコークス及び微粉炭(以下PCと記す。)は、主成分である炭素が燃焼し、羽口前レースウェイ内で一酸化炭素となり、高炉内を上昇する際に鉄鉱石を還元して二酸化炭素となって炉頂より排出される。
ここで、炭素が主成分であるコークス及びPCに替わり、水素とメタンを大量に含むコークス炉ガス(以下、COGと記す。)、メタンを主成分とする天然ガス(以下、LNGと記す。)、又は、COGを改質し水素含有量が多い改質COG等の水素を含む還元性ガスを高炉に吹き込むことにより、高炉から排出される二酸化炭素の低減が期待できる。
In recent years, from the viewpoint of protecting the global environment, the need for reducing carbon dioxide emissions has increased, and measures for reducing carbon dioxide in a blast furnace have been studied. Coke and pulverized coal (hereinafter referred to as PC) burned in the blast furnace burns carbon, the main component, into carbon monoxide in the front tuyere raceway, reducing iron ore when ascending in the blast furnace. Then it becomes carbon dioxide and is discharged from the top of the furnace.
Here, coke oven gas containing a large amount of hydrogen and methane (hereinafter referred to as COG) and natural gas containing methane as the main component (hereinafter referred to as LNG) instead of coke and PC containing carbon as the main component. Alternatively, a reduction in carbon dioxide discharged from the blast furnace can be expected by blowing a reducing gas containing hydrogen such as reformed COG having a high hydrogen content by reforming COG.

COG、LNG、又は、改質COG等の水素を含む還元性ガスを高炉の羽口から吹き込む技術がある。この方法は、水素ガスを多量に含有する燃料を用い、高炉からの二酸化炭素の排出を抑制することで、有効な手段である。しかし、これらのガスが羽口前で燃焼すると、羽口前温度は低下する。その対応策として送風温度の上昇や、酸素吹き込み量の増加を行うと、熱流比が上昇で、高炉シャフト部の熱不足をきたす。又、羽口前レースウェイという限られた空間で大量のガスを燃焼することには、限界がある。   There is a technique in which a reducing gas containing hydrogen such as COG, LNG, or reformed COG is blown from the tuyere of a blast furnace. This method is an effective means by using a fuel containing a large amount of hydrogen gas and suppressing emission of carbon dioxide from the blast furnace. However, when these gases burn in front of the tuyere, the temperature at the tuyere decreases. If the blast temperature is increased or the oxygen blowing rate is increased as a countermeasure, the heat flow ratio is increased, resulting in insufficient heat in the blast furnace shaft. In addition, there is a limit to burning a large amount of gas in a limited space called the tuyere front raceway.

COG、LNG、又は、改質COG等の水素を含む還元性ガスを高炉シャフト下部に吹き込む方法が考えられる。この方法は、高炉内の鉱石が溶融する前に水素により鉱石を還元するものであり、高炉からの二酸化炭素の排出を抑制するには、有効な手段である。羽口前温度の低下や、熱流比の上昇といった問題が無い。   A conceivable method is to blow a reducing gas containing hydrogen such as COG, LNG, or reformed COG into the lower part of the blast furnace shaft. This method reduces the ore with hydrogen before the ore in the blast furnace melts, and is an effective means for suppressing the discharge of carbon dioxide from the blast furnace. There are no problems such as a decrease in temperature before the tuyere and an increase in the heat flow ratio.

しかし、高炉のシャフト下部に、水素を含む還元性ガスを吹き込んでも、炉内には、鉱石とコークスが充填されており、吹き込まれたガスは、炉壁近傍の周辺部にとどまり、炉中心まで浸透しない。その結果、炉内の径方向の鉱石還元と通気性維持が不適正になるという問題がある。
従来、高炉のシャフト下部から還元性ガスを吹き込む技術の開示がある。
吹き込みガスが、炉内に均一には拡散しない点を考慮し、炉頂から垂直にパイプを介してガスを吹き込む方法が開示されている(特許文献1)。
次に、炉下部(羽口)から酸素噴射装置により炭化水素流体を吹き込み、炉上方のシャフト下部から、予熱されたCO,Hを主として含む還元性ガスを吹き込む発明が開示されている(特許文献2)。
又、ガス燃焼・吹き込み装置により、燃料ガス燃焼し、温度を高めたガスを炉シャフト部に吹き込む発明が開示されている(特許文献3)。
又、プラズマアークヒーターで還元性ガスの温度を上げ、周辺部の鉱石とコークスの比(以下、O/Cと記す。)が高い場合に高温の還元性ガスを周辺部に吹き込む技術の開示がある(特許文献4)。
又、重油を熱分解し、水素の含有量が高い還元性ガス(H:46%、CO:44%)を実機高炉で試験吹き込みを行った技術が開示されている(非特許文献1)
However, even if reducing gas containing hydrogen is blown into the lower shaft of the blast furnace, the furnace is filled with ore and coke, and the blown gas stays in the vicinity of the furnace wall and reaches the furnace center. It does not penetrate. As a result, there is a problem that the ore reduction in the radial direction in the furnace and the maintenance of air permeability become inappropriate.
Conventionally, there is a disclosure of a technique in which reducing gas is blown from a lower portion of a blast furnace shaft.
In view of the fact that the blown gas does not diffuse uniformly into the furnace, a method of blowing the gas vertically from the top of the furnace through a pipe is disclosed (Patent Document 1).
Next, an invention is disclosed in which hydrocarbon fluid is blown from the lower part of the furnace (tuyere) by an oxygen injection device, and reducing gas mainly containing preheated CO and H 2 is blown from the lower part of the shaft above the furnace (patent). Reference 2).
Further, there is disclosed an invention in which a gas that has been burned with fuel gas and whose temperature is increased is blown into a furnace shaft portion by a gas combustion / blowing device (Patent Document 3).
Also, there is a disclosure of a technique in which the temperature of the reducing gas is raised with a plasma arc heater and a high-temperature reducing gas is blown into the peripheral portion when the ratio of ore and coke in the peripheral portion (hereinafter referred to as O / C) is high. Yes (Patent Document 4).
Also disclosed is a technique in which heavy oil is pyrolyzed and a reducing gas having a high hydrogen content (H 2 : 46%, CO: 44%) is blown into a test blast furnace (non-patent document 1).

特開昭47−3404号公報Japanese Unexamined Patent Publication No. 47-3404 特開昭47−9104号公報JP-A-47-9104 特許第4760985号公報Japanese Patent No. 4760985 特開平5−195027号公報Japanese Patent Laid-Open No. 5-195027

鉄と鋼 第58年(1972)第5号 P68〜P80Iron and Steel 58th (1972) No.5 P68-P80 CAMP−ISIJ Vol.23(2010)−879CAMP-ISIJ Vol. 23 (2010) -879 CAMP−ISIJ Vol.23(2010)−94CAMP-ISI Vol.23 (2010) -94 鉄と鋼 Vol.87(2001)No5 P154Iron and steel Vol.87 (2001) No5 P154

しかし、特許文献1に記載の発明は、シール性など非常に高い設備技術が要求されるとともに、ベルレス装入装置の高炉では、垂直パイプが旋回シュートの邪魔になり、ベル型装入装置にのみ適用が限定される。又、垂直パイプは、炉中心に設置することは困難であり、装入物の炉内配置を大きく乱すため、安定した高炉操業が困難であるという問題がある。
特許文献2に記載の発明は、炉下部(羽口)からの燃料吹き込みによる炉上部の熱不足を予熱還元性ガスで補うものであり、特許文献3に記載の発明は、炉下部低還元材比の操業によるシャフト上部の温度不足を補うため温度を高めた希釈ガスをシャフト下部に吹き込むものである。又、特許文献4に記載の発明は、周辺部O/Cが高くなったときに周辺部の加熱還元不足を補うものである。これらの文献に記載の発明は、共に、シャフト部の熱不足対策であり、水素を含む還元性ガスが炉中心まで浸透しないということの言及はない。
非特許文献1には、シャフト上部に吹き込んだ還元性ガスの炉内への浸透性をガラス球充填層で調査し、吹き込みガスは、炉周辺にとどまるという記述がある。しかし、これに対する対応策についての検討も記載も無い。又、還元性ガスの吹き込みは、羽口からの重油吹き込みを補填し、重油を変成した還元性ガスを吹き込むことを目的としており、吹き込み量も重油換算で最大29.6kg/tpで少量にとどまる。
本願発明は、COG、LNG、又は、改質COG等の水素を含む還元性ガスを高炉シャフト下部から吹き込み、高炉からの二酸化炭素の排出を抑制することを課題とする。
高炉のシャフト下部に、水素を含む還元性ガスを吹き込む場合に、還元性ガスは、炉壁近傍の周辺部にとどまり、炉中心まで浸透しない。その結果、炉内の径方向の鉱石還元が変化し、通気性維持が困難となり、高炉操業に支障をきたす。
本発明の目的は、高炉のシャフト下部に水素を含む還元性ガスを吹き込む場合に、炉径方向の鉱石還元と通気性が適正となる高炉操業方法を提供することである。
However, the invention described in Patent Document 1 requires very high equipment technology such as sealing performance, and in the blast furnace of the bell-less charging device, the vertical pipe interferes with the turning chute, and only the bell-type charging device. Limited application. In addition, it is difficult to install the vertical pipe at the center of the furnace, and there is a problem that stable blast furnace operation is difficult because the placement of the charge in the furnace is greatly disturbed.
The invention described in Patent Document 2 supplements the heat shortage in the upper part of the furnace due to fuel blowing from the furnace lower part (feather) with a preheating reducing gas. In order to compensate for the lack of temperature at the upper part of the shaft due to the operation of the ratio, a dilution gas having a higher temperature is blown into the lower part of the shaft. In addition, the invention described in Patent Document 4 compensates for insufficient heat reduction in the peripheral portion when the peripheral portion O / C becomes high. The inventions described in these documents are measures against heat shortage of the shaft portion, and there is no mention that the reducing gas containing hydrogen does not penetrate to the furnace center.
Non-Patent Document 1 describes that the permeability of the reducing gas blown into the upper part of the shaft into the furnace is investigated using a glass sphere packed bed, and the blown gas stays around the furnace. However, there is no examination or description of countermeasures against this. The reducing gas injection is intended to compensate for the heavy oil blowing from the tuyere and to inject the reducing gas modified from the heavy oil, and the amount of injection is limited to a maximum of 29.6 kg / tp in terms of heavy oil. .
This invention makes it a subject to suppress the discharge | emission of the carbon dioxide from a blast furnace by blowing in reducing gas containing hydrogen, such as COG, LNG, or reforming COG, from the lower part of a blast furnace shaft.
When reducing gas containing hydrogen is blown into the lower part of the shaft of the blast furnace, the reducing gas stays in the vicinity of the furnace wall and does not penetrate to the furnace center. As a result, the ore reduction in the radial direction in the furnace changes, making it difficult to maintain air permeability and hindering blast furnace operation.
An object of the present invention is to provide a blast furnace operating method in which ore reduction and air permeability in the furnace radial direction are appropriate when reducing gas containing hydrogen is blown into the lower part of the shaft of the blast furnace.

本発明者は、高炉反応シミュレータ(以下、BIS炉という。)により、高炉のシャフト下部に、水素を含む還元性ガスを吹き込む実験を行った結果、炉径方向のO/Cを調整することにより、円滑な高炉操業ができることを見出した。本発明は、この知見に基づいて上記の課題を解決するためになされたものであり、その要旨とするところは、以下のとおりである。   The present inventor conducted an experiment in which a reducing gas containing hydrogen was blown into the lower portion of the shaft of the blast furnace using a blast furnace reaction simulator (hereinafter referred to as a BIS furnace). As a result, the O / C in the furnace radial direction was adjusted. And found that smooth blast furnace operation is possible. The present invention has been made to solve the above problems based on this finding, and the gist of the present invention is as follows.

(1)高炉シャフト部から、水素を含む還元性ガスを吹き込む高炉操業であって、
還元性ガスに含まれる水素ガスの吹き込み量が銑鉄1トン当り20Nm以上、150Nm以下であり、
高炉炉頂部における半径方向のO/Cの分布係数aが、下記(1)、(2)式を満たすことを特徴とする高炉操業方法。
(0.003×VH+1.2)≧a≧(0.003×VH+0.85)・・・(1)
a≧1.0・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(2)
ただし、
a;(O/C)/(O/C)。高炉炉頂部における半径方向を3分割し、炉中心から炉壁に向け、1,2,3とした場合の、炉周辺部(O/C)と炉中間部(O/C)の比である。
VH;水素ガスの吹き込み量(Nm/tp)
(1) A blast furnace operation in which reducing gas containing hydrogen is blown from a blast furnace shaft portion,
Blowing amount of the hydrogen gas contained in the reducing gas pig iron per ton of 20 Nm 3 or more and 150 Nm 3 or less,
A blast furnace operating method characterized in that a distribution coefficient a of O / C in the radial direction at the top of the blast furnace furnace satisfies the following expressions (1) and (2).
(0.003 × VH 2 +1.2) ≧ a ≧ (0.003 × VH 2 +0.85) (1)
a ≧ 1.0 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (2)
However,
a; (O / C) 3 / (O / C) 2 . Ratio of the furnace peripheral part (O / C) 3 and the furnace intermediate part (O / C) 2 when the radial direction at the top of the blast furnace furnace is divided into three and 1, 2, 3 from the furnace center toward the furnace wall It is.
VH 2 ; amount of hydrogen gas blown (Nm 3 / tp)

本発明は、高炉のシャフト下部に水素を含む還元性ガスを吹き込む場合に、適正な炉径方向の鉱石還元と通気性が可能な高炉操業方法を提供することができる。   INDUSTRIAL APPLICABILITY The present invention can provide a blast furnace operating method capable of performing ore reduction and air permeability in an appropriate furnace radial direction when reducing gas containing hydrogen is blown into the lower part of the shaft of the blast furnace.

吹き込みガスの流れを調査する実高炉1/10の実験装置を示す図。The figure which shows the experimental apparatus of the actual blast furnace 1/10 which investigates the flow of blowing gas. 実高炉1/10の実験装置におけるシャフト吹き込みガスの流れを示す図。The figure which shows the flow of the shaft blowing gas in the experimental apparatus of actual blast furnace 1/10. 改質COGによる焼結鉱の圧力損失を示す図。The figure which shows the pressure loss of the sintered ore by modified COG. 改質COGの吹込み量と焼結鉱の最大圧力損失の関係を示す。The relationship between the injection amount of the modified COG and the maximum pressure loss of the sintered ore is shown. 断熱型BIS炉の概略を示す図。The figure which shows the outline of a heat insulation type BIS furnace. 装入O/Cと1100℃還元率の関係を示す図。The figure which shows the relationship between charging O / C and a 1100 degreeC reduction rate. a=(O/C)/(O/C)と排出COの関係を示す図。 a = (O / C) 3 / (O / C) 2 and illustrates the relationship of the discharge CO 2. シャフト吹き込み量と分布係数aの関係を示す図。The figure which shows the relationship between the shaft blowing amount and the distribution coefficient a.

[水素を含む還元性ガスの組成について]
高炉からの二酸化炭素の排出を抑制するためのシャフト部から吹き込む還元性ガスは、COG、LNG、又は、改質COG等の水素を含むガスである。
LNG(CH)は、水蒸気改質(CH+HO=3H+CO)することにより、最大75%の水素を含み、残りはCOである。
COG中のHは57%で、COGのメタン32%を全て水蒸気改質するとHの合計は、78%に増加する。
CO削減効果が発揮されるように、シャフトから吹き込む改質還元性ガスのH濃度は50%以上とし、最大78%とする。
COGの改質方法は本発明の効果には影響を与えない。COGに含有されるメタン(CH)の改質方法として、水蒸気や部分酸化などを組み合わせた改質方法が適用でき、所定の改質後に所定のH濃度のガスが得られれば良い。
[Composition of reducing gas containing hydrogen]
The reducing gas blown from the shaft portion for suppressing the discharge of carbon dioxide from the blast furnace is a gas containing hydrogen such as COG, LNG, or modified COG.
LNG (CH 4 ) contains up to 75% hydrogen by steam reforming (CH 4 + H 2 O = 3H 2 + CO), with the remainder being CO.
H 2 in COG is 57%, the sum of H 2 when all 32% methane COG steam reforming is increased to 78%.
In order to exert the CO 2 reduction effect, the H 2 concentration of the reformed reducing gas blown from the shaft is set to 50% or more and a maximum of 78%.
The COG reforming method does not affect the effect of the present invention. As a method for reforming methane (CH 4 ) contained in COG, a reforming method combined with steam, partial oxidation, or the like can be applied, and a gas having a predetermined H 2 concentration may be obtained after predetermined reforming.

[水素含有還元性ガスの吹き込み量について]
水素を含む還元性ガスの吹き込み量は、水素量(VH)Nm/tpで表し、20Nm/tp乃至150Nm/tpとする。下限は、これ以下では、CO削減効果が小さいからである。上限は、製鉄所内のマスバランスで定められる。コークス炉からのCOG(CH:32%,H:57%)生成量は 156Nm/tpである。下工程へのCOG供給を考慮し、発生量のうち100Nm/tpを水蒸気改質するとし、153Nm/tp(100*(0.57+0.32*3))のHが生成される。
[Blowing amount of hydrogen-containing reducing gas]
Blowing amount of reducing gas containing hydrogen, represents hydrogen amount (VH 2) Nm 3 / tp , and 20 Nm 3 / tp to 150 Nm 3 / tp. This is because the lower limit is less than the CO 2 reduction effect. The upper limit is determined by the mass balance in the steelworks. The amount of COG (CH 4 : 32%, H 2 : 57%) produced from the coke oven is 156 Nm 3 / tp. Considering COG supply to the bottom step, the 100 Nm 3 / tp of the generation amount as steam reforming, H 2 of 153Nm 3 /tp(100*(0.57+0.32*3)) is generated.

[水素含有還元性ガスを吹き込む時のシャフト部での流れについて]
高炉のシャフト下部に、水素を含む還元性ガスを吹き込む場合に、還元性ガスは、炉壁近傍にとどまり、炉中心まで浸透しない。本発明者等は、実高炉1/10の実験装置を用いて、シャフト下部にガスを吹き込んだ場合のシャフト内のガスの分配について調査し、すでに発表している(非特許文献2)。
図1に吹き込みガスの流れを調査する実高炉1/10の実験装置を示す。2〜5mmのコークスを充填し、羽口1から空気800L/min、シャフトのガス吹き込みノズル2からCOを80L/minあるいは160L/min吹き込んで装置背面にあるサンプリング孔3から炉内ガスをサンプリングし炭酸ガスの濃度を測定してガスの流れを調査した。図2に実高炉1/10の実験装置におけるシャフト吹き込みガスの流れを示す。吹き込みガスは、模型幅1000mmに対し、炉壁からの距離が150mmの範囲を上昇している。
5000mクラスのシャフト幅(半径)を8000mmとすると、実炉においては、シャフト下部に吹き込まれた還元性ガスは、炉壁からの距離が約1200mmの周辺部の範囲で、シャフト内を上昇すると考えられる。
[Flow in shaft when hydrogen-containing reducing gas is blown]
When reducing gas containing hydrogen is blown into the lower part of the shaft of the blast furnace, the reducing gas stays in the vicinity of the furnace wall and does not penetrate to the furnace center. The present inventors have investigated and already published the distribution of the gas in the shaft when the gas is blown into the lower part of the shaft using the experimental apparatus of an actual blast furnace 1/10 (Non-patent Document 2).
FIG. 1 shows an experimental apparatus for an actual blast furnace 1/10 for investigating the flow of injected gas. Filled with 2-5 mm coke, sampled the furnace gas from the sampling hole 3 on the back of the device by blowing air from the tuyere 1 at 800 L / min and CO 2 from the gas blowing nozzle 2 at the shaft at 80 L / min or 160 L / min. The gas flow was investigated by measuring the concentration of carbon dioxide. FIG. 2 shows the flow of shaft blowing gas in the experimental apparatus for an actual blast furnace 1/10. The blown gas rises in a range where the distance from the furnace wall is 150 mm with respect to the model width of 1000 mm.
Assuming that the shaft width (radius) of the 5000 m 3 class is 8000 mm, in an actual furnace, the reducing gas blown into the lower part of the shaft rises in the shaft within a range of the peripheral part at a distance of about 1200 mm from the furnace wall. Conceivable.

[水素含有還元性ガスを吹き込む時の鉱石還元について]
本発明者等は、水素含有還元性ガスの吹き込みが、鉄鉱石の高温還元性状に及ぼす影響を調査し、すでに発表している(非特許文献3)。
図3に改質COGによる焼結鉱の圧力損失を示す。実炉を模擬し、荷重を付加した状態で、水素含有還元性ガスにより焼結鉱を還元した場合の焼結鉱の還元・軟化・溶融による鉱石充填層の通気抵抗を調査したものである。温度パターンは、900℃まで10℃/min、900℃で30分保持、900〜1600℃まで5℃/minとし、荷重9.8×10−2MPaを800℃から付加した。ガス組成は、H60%、CO30%、N10%のガスを900℃以上の位置で吹き込んだ。ガス吹き込み量は、0、100、300Nm/tpを吹き込んだ。ガスの分配比率は、吹き込み位置における炉内半径方向を3等分し、中間部の吹き込み量V、周辺部の吹き込み量Vが1:5の場合である。
図3で、改質COGにより焼結鉱の還元が進行し、改質COGを吹き込むことにより焼結鉱充填層の圧損が大幅に低下している。水素の還元力が大きいことを示している。
図4は、改質COGの吹込み量と焼結鉱の最大圧力損失の関係を示す。改質COGの吹き込みにより、周辺部の圧力損失が大幅に低下する。
このことは、改質COGの吹き込みにより、焼結鉱の還元が進み、周辺部の融着帯の融液量が減少し、融着帯が極めて薄くなったものと推定される。その結果、周辺部の圧力損失が大幅に低下すると考えられる。
[Ore reduction when blowing hydrogen-containing reducing gas]
The present inventors have investigated and already published the influence of blowing hydrogen-containing reducing gas on the high-temperature reducing properties of iron ore (Non-patent Document 3).
FIG. 3 shows the pressure loss of the sintered ore by the modified COG. This is an investigation of the ventilation resistance of an ore packed bed due to reduction, softening, and melting of a sintered ore when a sintered ore is reduced with a hydrogen-containing reducing gas while simulating an actual furnace and applying a load. The temperature pattern was 10 ° C./min up to 900 ° C., held at 900 ° C. for 30 minutes, 5 ° C./min from 900 to 1600 ° C., and a load of 9.8 × 10 −2 MPa was applied from 800 ° C. The gas composition was H 2 60%, CO 30%, N 2 10% gas was blown at a position of 900 ° C. or higher. The amount of gas blown was 0, 100, or 300 Nm 3 / tp. The gas distribution ratio is a case where the radial direction in the furnace at the blowing position is equally divided into three, and the blowing amount V 1 at the intermediate portion and the blowing amount V W at the peripheral portion are 1: 5.
In FIG. 3, the reduction of the sinter progresses by the modified COG, and the pressure loss of the sinter packed bed is greatly reduced by blowing the modified COG. It shows that the reducing power of hydrogen is great.
FIG. 4 shows the relationship between the amount of reformed COG injected and the maximum pressure loss of the sintered ore. By blowing the modified COG, the pressure loss in the peripheral portion is greatly reduced.
This is presumed that the reduction of the sintered ore progressed due to the blowing of the modified COG, the amount of the melt in the cohesive zone at the periphery decreased, and the cohesive zone became extremely thin. As a result, it is considered that the pressure loss in the peripheral portion is significantly reduced.

[装入O/Cと1100℃還元率の関係について]
以上より、シャフト下部から、改質COGを吹き込んだ場合、吹き込まれた還元性ガスは、炉の周辺部を上昇する。改質COGの含まれるHは、還元力が強いため、周辺部の鉱石を著しく還元し、その結果、周辺部の圧力損失が低下し、炉内ガスの周辺部への編流が想定される。炉内ガスの周辺部への偏流は、高炉操業の変調をきたす虞がある。そこで、本発明者等は、シャフト下部から水素含有還元性ガスを吹き込む場合に、周辺部のO/Cをあげ、周辺流を抑制することを考えた。
本発明者等は、まず、断熱型BIS炉により、装入O/Cと鉱石還元率の関係を調査した。
[Relationship between charging O / C and 1100 ° C reduction rate]
As described above, when the reformed COG is blown from the lower part of the shaft, the blown reducing gas rises in the peripheral part of the furnace. Since H 2 containing reformed COG has a strong reducing power, the ore in the peripheral part is remarkably reduced. As a result, the pressure loss in the peripheral part is reduced, and knitting flow to the peripheral part of the furnace gas is assumed. The The drift of the in-furnace gas to the periphery may cause modulation of blast furnace operation. Therefore, the present inventors considered increasing the O / C of the peripheral portion and suppressing the peripheral flow when the hydrogen-containing reducing gas is blown from the lower portion of the shaft.
The present inventors first investigated the relationship between the charging O / C and the ore reduction rate using an adiabatic BIS furnace.

断熱型BIS炉は、加熱型高炉内反応シミュレーター(BIS炉)を断熱型に改造したものである。図5に断熱型BIS炉の概略を示す。反応管4の中に鉱石5とコークス6を層状に充填し、ヒーター7を移動させ、ガスを反応管4に導入することで、向流移動層としている。断熱は、断熱層8により反応管4からの熱の放散を防止し、反応管4の内部と外壁に接触させた温度計9から温度を検出し、制御部10により両温度が合致するように、電気炉を制御する(非特許文献4)。   The adiabatic BIS furnace is a heating type blast furnace reaction simulator (BIS furnace) modified to an adiabatic type. FIG. 5 shows an outline of the heat insulation type BIS furnace. The reaction tube 4 is filled with ore 5 and coke 6 in layers, the heater 7 is moved, and the gas is introduced into the reaction tube 4 to form a countercurrent moving layer. For heat insulation, heat dissipation from the reaction tube 4 is prevented by the heat insulation layer 8, the temperature is detected from the thermometer 9 in contact with the inside and the outer wall of the reaction tube 4, and both temperatures are matched by the control unit 10. The electric furnace is controlled (Non-Patent Document 4).

図6に水素含有還元性ガスを吹き込んだ場合の装入O/Cと1100℃還元率の関係を示す。断熱型BIS炉により調査したものである。
装入O/Cは、高炉炉頂部における半径方向を3分割し、中心から炉壁に向け、1,2,3とした場合の、分割されたそれぞれの部位におけるO/Cで管理する。
図6において、VH=0Nm/tpの直線は、吹き込み還元性ガス中の水素が浸透しない炉の中間部における装入(O/C)(以下、(O/C)と記す。)と1100℃還元率の関係を意味する。一方、VH=100Nm/tpの直線は、吹き込み還元性ガスが浸透する炉の周辺部における装入(O/C)(以下、(O/C)と記す。)と1100℃還元率の関係を意味する。
FIG. 6 shows the relationship between the charging O / C and the 1100 ° C. reduction rate when the hydrogen-containing reducing gas is blown. This was investigated using an adiabatic BIS furnace.
The charging O / C is managed by O / C at each of the divided parts when the radial direction at the top of the blast furnace furnace is divided into three and is 1, 2, 3 from the center toward the furnace wall.
In FIG. 6, a straight line of VH 2 = 0 Nm 3 / tp is indicated as charging (O / C) 2 (hereinafter referred to as (O / C) 2 ) in the middle part of the furnace where hydrogen in the blowing reducing gas does not permeate. ) And the 1100 ° C. reduction rate. On the other hand, the straight line of VH 2 = 100 Nm 3 / tp is charged (O / C) 3 (hereinafter referred to as (O / C) 3 ) and 1100 ° C. reduction at the periphery of the furnace where the reducing gas is infiltrated. It means rate relationship.

例えば、装入O/Cが、5.0の場合で、中間部(O/C)と周辺部(O/C)が同じ5.0の場合を考える。吹き込み還元性ガス中の水素が、VH=100Nm/tpの場合、還元性ガスが浸透する周辺部の1100℃還元率は69%に上昇するが(B点)、還元性ガスが浸透しない中間部の1100℃還元率は、52%にとどまる(A点)。その結果、図4より、周辺部の鉱石充填層の圧力損失は低下し、炉内ガスは、周辺部に集中してしまい、炉況が変化し不調につながる虞がある。 For example, consider a case where the charging O / C is 5.0 and the intermediate part (O / C) 2 and the peripheral part (O / C) 3 are 5.0. When the hydrogen in the blowing reducing gas is VH 2 = 100 Nm 3 / tp, the 1100 ° C. reduction rate of the peripheral portion where the reducing gas penetrates increases to 69% (point B), but the reducing gas does not penetrate. The 1100 ° C. reduction rate in the middle part remains at 52% (point A). As a result, as shown in FIG. 4, the pressure loss of the ore packed bed in the peripheral portion decreases, and the gas in the furnace concentrates in the peripheral portion, which may lead to a malfunction due to a change in the furnace condition.

図6において、周辺部の圧力損失の低下による周辺部へのガス集中を避けるためには、周辺部の(O/C)を5.9にすればよい(C点)。中間部(O/C)を5.0、周辺部(O/C)を5.9にし、それぞれの1100℃還元率を52%とすれば、周辺部と中間部の炉内ガスのアンバランスを解消することができ、安定した炉況を維持することができると考えられる。 In FIG. 6, in order to avoid gas concentration in the peripheral part due to a decrease in pressure loss in the peripheral part, (O / C) 3 in the peripheral part may be set to 5.9 (point C). If the intermediate part (O / C) 2 is set to 5.0, the peripheral part (O / C) 3 is set to 5.9, and the respective 1100 ° C. reduction rates are set to 52%, the furnace gas in the peripheral part and the intermediate part is reduced. It is considered that the unbalance can be eliminated and a stable furnace condition can be maintained.

[周辺部と、中間部のO/Cと排出COの関係について]
前述の如く水素含有還元性ガスを吹き込んだ場合、炉の周辺部(O/C)と中間部(O/C)により、炉内の鉱石還元状況が変化し、排出CO(kg/tp)が影響される。
(O/C)と(O/C)を変更した場合の排出CO(kg/tp)の変化を前記断熱型BIS炉を用いて調査した。
[A peripheral portion, the relationship between the CO 2 emissions and the intermediate portion O / C]
When the hydrogen-containing reducing gas is injected as described above, the ore reduction state in the furnace is changed by the peripheral part (O / C) 3 and the intermediate part (O / C) 2 of the furnace, and the exhaust CO 2 (kg / kg) is changed. tp) is affected.
Changes in exhaust CO 2 (kg / tp) when (O / C) 3 and (O / C) 2 were changed were investigated using the adiabatic BIS furnace.

周辺部と中間部のO/Cの比を分布係数aとした。即ち、a=(O/C)/(O/C)である。
図7にa=(O/C)/(O/C)と排出COの関係を示す。
水素吹込みが、VH=0Nm/tpの場合、a=(O/C)/(O/C)が1.0のときに、排出CO(kg/tp)は最低値(P点)を示す。
水素吹込みが、VH=50Nm/tpの場合、a=(O/C)/(O/C)が1.0(P点)〜1.35(Q点)のときに、水素吹込みが、VH=0Nm/tpの場合の排出CO(kg/tp)より小さくなる。即ち、水素吹込みが、VH=50Nm/tpの場合は、a=(O/C)/(O/C)を1.0(P点)〜1.35(Q点)にすれば、CO(kg/tp)の排出を削減することができる。
The ratio of O / C between the peripheral part and the intermediate part was defined as a distribution coefficient a. That is, a = (O / C) 3 / (O / C).
FIG. 7 shows the relationship between a = (O / C) 3 / (O / C) 2 and exhaust CO 2 .
When the hydrogen injection is VH 2 = 0 Nm 3 / tp, when a = (O / C) 3 / (O / C) 2 is 1.0, the exhaust CO 2 (kg / tp) is the lowest value ( P point).
When hydrogen injection is VH 2 = 50 Nm 3 / tp, when a = (O / C) 3 / (O / C) 2 is 1.0 (P point) to 1.35 (Q point), Hydrogen injection is smaller than the exhaust CO 2 (kg / tp) when VH 2 = 0 Nm 3 / tp. That is, when the hydrogen injection is VH 2 = 50 Nm 3 / tp, a = (O / C) 3 / (O / C) 2 is changed from 1.0 (P point) to 1.35 (Q point). Then, CO 2 (kg / tp) emission can be reduced.

水素吹込みが、VH=100Nm/tpの場合、a=(O/C)/(O/C)が1.3(R点)〜1.65(S点)のときに、水素吹込みが、VH=0Nm/tpの場合の排出CO(kg/tp)より小さくなる。即ち、水素吹込みが、VH=100Nm/tpの場合は、a=(O/C)/(O/C)を1.3(R点)〜1.65(S点)にすれば、CO(kg/tp)の排出を削減することができる。 When hydrogen injection is VH 2 = 100 Nm 3 / tp, when a = (O / C) 3 / (O / C) 2 is 1.3 (point R) to 1.65 (point S), Hydrogen injection is smaller than the exhaust CO 2 (kg / tp) when VH 2 = 0 Nm 3 / tp. That is, when the hydrogen injection is VH 2 = 100 Nm 3 / tp, a = (O / C) 3 / (O / C) 2 is changed from 1.3 (R point) to 1.65 (S point). Then, CO 2 (kg / tp) emission can be reduced.

[排出COを削減するための、水素吹込み量VH(Nm/tp)とa=(O/C)/(O/C)との関係式の導入について]
前記図7において、P点(VH=50Nm/tp、a=1.0)、R点(VH=150Nm/tp、a=1.3)であれば、排出CO(kg/tp)は、削減できる。
このP点、R点より、排出CO(kg/tp)を削減できる下限である下記式(3)が導かれる。
[To reduce emissions CO 2, the hydrogen blow amount VH 2 and (Nm 3 / tp) a = (O / C) 3 / (O / C) Introduction of the relational expression 2]
In FIG. 7, if the point P (VH 2 = 50Nm 3 /tp,a=1.0),R point (VH 2 = 150Nm 3 /tp,a=1.3) , discharged CO 2 (kg / tp) can be reduced.
From the point P and the point R, the following formula (3), which is a lower limit capable of reducing exhaust CO 2 (kg / tp), is derived.

[数式]
a≧(0.003×VH + 0.85) ・・・・・・・・・・・・・・・・・・(3)
[Formula]
a ≧ (0.003 × VH 2 +0.85) (3)

同様に、Q点(VH=50Nm/tp、a=1.35)、S点(VH=150Nm/tp、a=1.65)より、排出CO(kg/tp)を削減できる上限である下記式(4)が導かれる。 Reduction Similarly, Q point (VH 2 = 50Nm 3 /tp,a=1.35),S point than (VH 2 = 150Nm 3 /tp,a=1.65) , CO 2 emissions of (kg / tp) The following formula (4) which is the upper limit that can be obtained is derived.

[数式]
(0.003×VH+ 1.2)≧a・・・・・・・・・・・・・・・・・・・・(4)
[Formula]
(0.003 × VH 2 + 1.2) ≧ a (4)

前記式(3)と前記式(4)合成することにより、又、aは、1.0以上に限られることより、下記式(1)(2)を導くことができる。   By synthesizing the above formula (3) and the above formula (4), and a is limited to 1.0 or more, the following formulas (1) and (2) can be derived.

[数式]
(0.003×VH+ 1.2)≧a≧(0.003×VH + 0.85)・・・(1)
[Formula]
(0.003 × VH 2 +1.2) ≧ a ≧ (0.003 × VH 2 +0.85) (1)

[数式]
a ≧ 1.0・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(2)
[Formula]
a ≧ 1.0 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (2)

[水素含有還元性ガスを吹き込む時のO/C制御]
本発明は、水素含有還元性ガスの水素含有量に応じて、O/Cの分布係数aを前記式(1)及び(2)に従い実施する。
図8に水素含有還元性ガスを吹き込む時の装入物の分布係数aを示す。制御の仕方は通常操業通り、装入バッチ毎の切り出し位置の変更で調整する。
尚、本発明では、炉中心には中心コ−クスがあり、かつ体積寄与は小さいので、制御精度の観点から中心部は制御しない。
本発明のシャフト吹き込みを行う高炉操業法において、円周方向の吹き込み口の設置数は多ければ多いほど円周方向の均一な吹き込みが可能となり望ましい。一方、過度な数の吹き込み口の設置は、設備費の増大を招くので、吹き込み口の円周方向の間隔を5m以下とすることが望ましい。
[O / C control when blowing hydrogen-containing reducing gas]
In the present invention, the distribution coefficient a of O / C is performed according to the above formulas (1) and (2) according to the hydrogen content of the hydrogen-containing reducing gas.
FIG. 8 shows the distribution coefficient a of the charge when the hydrogen-containing reducing gas is blown. The control method is adjusted by changing the cut-out position for each charging batch as usual.
In the present invention, since there is a central coke at the furnace center and the volume contribution is small, the central portion is not controlled from the viewpoint of control accuracy.
In the method of operating a blast furnace in which the shaft is blown according to the present invention, the larger the number of circumferential blow ports installed, the more desirable uniform blow in the circumferential direction becomes. On the other hand, the installation of an excessive number of blowing ports causes an increase in equipment costs, so it is desirable that the circumferential interval between the blowing ports be 5 m or less.

次に、本発明の実施例について説明するが、本発明は、これに限られるものではない。   Next, examples of the present invention will be described, but the present invention is not limited thereto.

シャフト部に吹き込み口を1つ装備した試験高炉(羽口2個、内容積8m3)を用いて、H2濃度が65%の改質COGを吹き込み操業評価試験を実施した。結果を表1に示す。
(比較例1)
還元性ガスのシャフト吹き込みがないベース条件の操業は、a=1.0の分布係数において、inputCで420kg/tp, 排出CO(Nm/tp) で 1357であり、通気抵抗指数(K値)、炉体放散熱、スリップ頻度など操業管理指標も良好であった。
(実施例1)
水素吹き込み量 を50Nm/tp,とし、分布係数aは、式(1)を満足する1.15とした。高炉操業は、安定し、排出COは66kg/tp削減できた。
(実施例2)
水素吹き込み量 を150Nm/tpとし、分布係数aは、式(1)を満足する1.45とした。高炉操業は、安定し、排出COは132kg/tp削減できた。
(比較例2)
水素吹き込み量 を18Nm/tpとした。水素吹き込み量が少なく、顕著なCO削減効果が発揮されなかった。
(比較例3)
吹き込み量 50Nm/tpとし、分布係数aは、式(1)の上限を超える1.40とした。過度に壁際に還元負荷が高くなった結果、中間部へのガス流れが過剰に促進されて、通気が安定しなかった。その結果、コークスを増配せざるをえなかったので、排出COは削減されず、ベースの比較例1に対し、73kg/tp増加した。
Using a test blast furnace (two tuyere, internal volume 8 m 3 ) equipped with one blowing port in the shaft part, an operation evaluation test was conducted by blowing modified COG having a H 2 concentration of 65%. The results are shown in Table 1.
(Comparative Example 1)
The operation of the base condition where the shaft of reducing gas is not blown is 420 kg / tp for input C and 1357 for discharged CO 2 (Nm 3 / tp) at a distribution coefficient of a = 1.0, and the airflow resistance index (K value) ), Operation management indicators such as furnace body heat dissipation and slip frequency were also good.
(Example 1)
The hydrogen blowing amount was set to 50 Nm 3 / tp, and the distribution coefficient a was set to 1.15 that satisfies the formula (1). The blast furnace operation was stable and the exhausted CO 2 was reduced by 66 kg / tp.
(Example 2)
The hydrogen blowing amount was 150 Nm 3 / tp, and the distribution coefficient a was 1.45 that satisfies the formula (1). The blast furnace operation was stable, and the exhausted CO 2 was reduced by 132 kg / tp.
(Comparative Example 2)
The amount of hydrogen blown was 18 Nm 3 / tp. Hydrogen blowing amount is small, significant CO 2 reduction is not exerted.
(Comparative Example 3)
The blowing amount was 50 Nm 3 / tp, and the distribution coefficient a was 1.40 exceeding the upper limit of the formula (1). As a result of excessive reduction load at the wall, the gas flow to the intermediate portion was excessively promoted and the ventilation was not stable. As a result, since coke had to be increased, the amount of exhausted CO 2 was not reduced and increased by 73 kg / tp relative to the comparative example 1 of the base.

Figure 2013185181
Figure 2013185181

高炉のシャフト下部に、水素を含む還元性ガスを吹き込む場合に、炉径方向の鉱石還元と通気性が適正な高炉操業方法を提供することができる。   When reducing gas containing hydrogen is blown into the lower part of the shaft of the blast furnace, a blast furnace operating method in which ore reduction and air permeability in the furnace radial direction are appropriate can be provided.

1…羽口、2…ガス吹き込みノズル、3…サンプリング孔、4…反応管、5…鉱石、6…コークス、7…ヒーター、8…断熱層、9…温度計、10…制御部。 DESCRIPTION OF SYMBOLS 1 ... tuyere, 2 ... gas injection nozzle, 3 ... sampling hole, 4 ... reaction tube, 5 ... ore, 6 ... coke, 7 ... heater, 8 ... heat insulation layer, 9 ... thermometer, 10 ... control part.

Claims (1)

高炉シャフト部から、水素を含む還元性ガスを吹き込む高炉操業であって、
還元性ガスに含まれる水素ガスの吹き込み量が銑鉄1トン当り20Nm以上、150Nm以下であり、
高炉炉頂部における半径方向のO/Cの分布係数aが、下記(1)、(2)式を満たすことを特徴とする高炉操業方法。
(0.003×VH+1.2)≧a≧(0.003×VH+0.85)・・・(1)
a≧1.0・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(2)
ただし、
a;(O/C)/(O/C)。高炉炉頂部における半径方向を3分割し、炉中心から炉壁に向け、1,2,3とした場合の、炉周辺部(O/C)と炉中間部(O/C)の比である。
VH;水素ガスの吹き込み量(Nm/tp)
A blast furnace operation in which reducing gas containing hydrogen is blown from a blast furnace shaft portion,
Blowing amount of the hydrogen gas contained in the reducing gas pig iron per ton of 20 Nm 3 or more and 150 Nm 3 or less,
A blast furnace operating method characterized in that a distribution coefficient a of O / C in the radial direction at the top of the blast furnace furnace satisfies the following expressions (1) and (2).
(0.003 × VH 2 +1.2) ≧ a ≧ (0.003 × VH 2 +0.85) (1)
a ≧ 1.0 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (2)
However,
a; (O / C) 3 / (O / C) 2 . Ratio of the furnace peripheral part (O / C) 3 and the furnace intermediate part (O / C) 2 when the radial direction at the top of the blast furnace furnace is divided into three and 1, 2, 3 from the furnace center toward the furnace wall It is.
VH 2 ; amount of hydrogen gas blown (Nm 3 / tp)
JP2012049698A 2012-03-06 2012-03-06 Blast furnace operation method Active JP5770124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012049698A JP5770124B2 (en) 2012-03-06 2012-03-06 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012049698A JP5770124B2 (en) 2012-03-06 2012-03-06 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2013185181A true JP2013185181A (en) 2013-09-19
JP5770124B2 JP5770124B2 (en) 2015-08-26

Family

ID=49386888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012049698A Active JP5770124B2 (en) 2012-03-06 2012-03-06 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP5770124B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199984A (en) * 2014-04-08 2015-11-12 新日鐵住金株式会社 Blast furnace operation method
JP2016113677A (en) * 2014-12-16 2016-06-23 新日鐵住金株式会社 Blast furnace operation method
WO2017134829A1 (en) * 2016-02-05 2017-08-10 新日鐵住金株式会社 Method for supplying hydrogen-containing reducing gas to shaft part of blast furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3161120A1 (en) 2019-11-29 2021-06-03 Nippon Steel Corporation Blast furnace operation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4979910A (en) * 1972-11-25 1974-08-01
JPS535243B1 (en) * 1968-09-07 1978-02-25
JPH08188805A (en) * 1995-01-11 1996-07-23 Sumitomo Metal Ind Ltd Operation of blast furnace
JP2000199005A (en) * 1999-01-08 2000-07-18 Nippon Steel Corp Method for controlling center gas flow in blast furnace
JP2009221547A (en) * 2008-03-17 2009-10-01 Jfe Steel Corp Method for operating blast furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535243B1 (en) * 1968-09-07 1978-02-25
JPS4979910A (en) * 1972-11-25 1974-08-01
JPH08188805A (en) * 1995-01-11 1996-07-23 Sumitomo Metal Ind Ltd Operation of blast furnace
JP2000199005A (en) * 1999-01-08 2000-07-18 Nippon Steel Corp Method for controlling center gas flow in blast furnace
JP2009221547A (en) * 2008-03-17 2009-10-01 Jfe Steel Corp Method for operating blast furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199984A (en) * 2014-04-08 2015-11-12 新日鐵住金株式会社 Blast furnace operation method
JP2016113677A (en) * 2014-12-16 2016-06-23 新日鐵住金株式会社 Blast furnace operation method
WO2017134829A1 (en) * 2016-02-05 2017-08-10 新日鐵住金株式会社 Method for supplying hydrogen-containing reducing gas to shaft part of blast furnace
KR20180109064A (en) 2016-02-05 2018-10-05 신닛테츠스미킨 카부시키카이샤 Method for supplying hydrogen-containing reducing gas to the blast furnace shaft
CN108699612A (en) * 2016-02-05 2018-10-23 新日铁住金株式会社 The method that the reducing gas of hydrogen is supplied to blast-furnace shaft portion
KR102135521B1 (en) 2016-02-05 2020-07-17 닛폰세이테츠 가부시키가이샤 Method for supplying hydrogen-containing reducing gas to the blast furnace shaft part
CN108699612B (en) * 2016-02-05 2020-08-18 日本制铁株式会社 Method for supplying reducing gas containing hydrogen to shaft of blast furnace
US10961596B2 (en) 2016-02-05 2021-03-30 Nippon Steel Corporation Method for supplying hydrogen-containing reducing gas to shaft part of blast furnace

Also Published As

Publication number Publication date
JP5770124B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
EP3124626B1 (en) Method of operating oxygen blast furnace
CN105899686A (en) Method for operating blast furnace
JP5770124B2 (en) Blast furnace operation method
TWI758977B (en) How the blast furnace works
JP2009221547A (en) Method for operating blast furnace
JP5971165B2 (en) Blast furnace operation method
JP2017053029A (en) Operation method of oxygen blast furnace
JP4743332B2 (en) Blast furnace operation method
JP5200618B2 (en) Blast furnace operation method
JP6098765B2 (en) Method of injecting pulverized coal into oxygen blast furnace
JP5775476B2 (en) Reducing gas blowing method and blowing lance from blast furnace tuyere
WO2018180892A1 (en) Method for operating blast furnace
JP7105708B2 (en) Method for determining injection amount of reducing gas and method for operating blast furnace
JP7055082B2 (en) How to operate the blast furnace
JP5064086B2 (en) Blast furnace operation method
JP2014210963A (en) Blast furnace operation method
JP2014210965A (en) Blast furnace operation method
JP2019019347A (en) Method of operating blast furnace
JP5987772B2 (en) Blast furnace operation method
JP2022182422A (en) Operation method for blast furnace
JP2023128470A (en) Blast furnace operation method
JP6064933B2 (en) Blast furnace operation method
JP2023114182A (en) Operation method of blast furnace
JP6064934B2 (en) Blast furnace operation method
JP6056794B2 (en) Blast furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150624

R150 Certificate of patent or registration of utility model

Ref document number: 5770124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250