JP5971165B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP5971165B2
JP5971165B2 JP2013060319A JP2013060319A JP5971165B2 JP 5971165 B2 JP5971165 B2 JP 5971165B2 JP 2013060319 A JP2013060319 A JP 2013060319A JP 2013060319 A JP2013060319 A JP 2013060319A JP 5971165 B2 JP5971165 B2 JP 5971165B2
Authority
JP
Japan
Prior art keywords
tuyere
lance
oxygen
pulverized coal
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013060319A
Other languages
Japanese (ja)
Other versions
JP2014031568A (en
Inventor
祐輔 田中
祐輔 田中
竹下 将功
将功 竹下
泰之 森川
泰之 森川
佐藤 裕樹
裕樹 佐藤
晋之介 金山
晋之介 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013060319A priority Critical patent/JP5971165B2/en
Publication of JP2014031568A publication Critical patent/JP2014031568A/en
Application granted granted Critical
Publication of JP5971165B2 publication Critical patent/JP5971165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高炉羽口から微粉炭を吹込んで燃焼温度を上昇させることにより生産性の向上及び還元材原単位の低減を図る高炉の操業方法に関するものである。   The present invention relates to a method for operating a blast furnace in which pulverized coal is blown from a blast furnace tuyere and the combustion temperature is increased to improve productivity and reduce the basic unit of reducing material.

近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出COの抑制は重要な課題である。これを受け、最近の高炉操業では、低還元材比(低RAR:Reduction Agent Ratioの略で、銑鉄1t製造当たりの、羽口からの吹込み還元材と炉頂から装入されるコークスの合計量)操業が強力に推進されている。高炉の安定且つ効率的な操業にとって、羽口先温度の高炉周方向のばらつきを極小に抑制することが必要である。しかしながら、羽口毎の微粉炭吹込み量がばらつくため、羽口先の温度は周方向に大きなばらつきが生じるのが現状である。そこで、下記特許文献1では、炉内温度の周方向に関する偏差量に基づいて羽口からの微粉炭吹込み量を制御することが記載されている。また、下記特許文献2では、送風管(ブローパイプ)に設けた静電容量式の流量計で微粉炭吹込み量を測定し、微粉炭吹込み量が均一になるように微粉炭の搬送エアー流量を制御する方法が記載されている。 In recent years, global warming due to an increase in carbon dioxide emission has become a problem, and the suppression of exhausted CO 2 is an important issue even in the steel industry. In response to this, in recent blast furnace operations, the ratio of low reducing agent (low RAR: Abbreviation for Reduction Agent Ratio) is the sum of the reducing material injected from the tuyere and the coke charged from the top of the furnace per 1 ton of pig iron. Volume) Operation is being strongly promoted. For stable and efficient operation of the blast furnace, it is necessary to minimize variations in the tuyere tip temperature in the blast furnace circumferential direction. However, since the amount of pulverized coal injection at each tuyere varies, the temperature at the tuyere tip is greatly varied in the circumferential direction. Therefore, Patent Document 1 below describes that the amount of pulverized coal injection from the tuyere is controlled based on the deviation amount in the circumferential direction of the furnace temperature. Further, in Patent Document 2 below, the pulverized coal blowing air is measured so that the pulverized coal blowing amount is uniform by measuring the pulverized coal blowing amount with a capacitance type flow meter provided in the blower pipe (blow pipe). A method for controlling the flow rate is described.

特開平11−124609号公報Japanese Patent Laid-Open No. 11-124609 特開2004−300504号公報JP 2004-300504 A

しかしながら、微粉炭の流量を安定して制御すること自体が困難であるため、前記特許文献1や特許文献2に記載される方法で羽口先温度の高炉周方向のばらつきを十分に抑制することができない。高炉の羽口への送風は、必要に応じて酸素を富化した熱風が各羽口に均等に送風されるが、そうした場合に羽口毎の微粉炭吹込み量が高炉周方向でばらつくと、微粉炭/酸素比が変化するので高炉周方向に羽口先温度差が生じてしまう。微粉炭の流量が増加し、微粉炭/酸素比が上昇した羽口は、羽口先温度が低下すると共に、微粉炭の燃焼性が悪化して未燃チャーが発生し、炉内ガス通気性が悪化する。微粉炭の流量が低下し、微粉炭/酸素比が下降すると、羽口先でのコークスの燃焼が相対的に増加し、羽口先温度が上昇する。そして、羽口先温度偏りがあれば、炉内の還元反応に偏りが生じ、装入物の降下異常等の操業状態の悪化を誘発し、結果として、還元材比が増加する。また、羽口先温度差が生じると、溶銑温度の高炉周方向差が生じる。溶銑温度が1530℃よりも高温となった場合、周囲の耐火物の損耗を早める。また、溶銑温度が1500℃を下回ると、溶銑、スラグの出銑、出滓がスムーズにできなくなり、炉況悪化の原因となる。
本発明は、上記のような問題点に着目してなされたものであり、羽口先温度の高炉周方向のばらつきを抑制することが可能な高炉操業方法を提供することを目的とするものである。
However, since it is difficult to stably control the flow rate of pulverized coal, it is possible to sufficiently suppress the variation in the blast furnace circumferential direction of the tuyere tip temperature by the method described in Patent Document 1 and Patent Document 2. Can not. When blowing air to the blast furnace tuyere, oxygen-enriched hot air is evenly blown to each tuyere, but in such cases, if the amount of pulverized coal blown in each tuyere varies in the blast furnace circumferential direction, Since the pulverized coal / oxygen ratio changes, the tip temperature difference occurs in the blast furnace circumferential direction. The tuyere where the flow rate of pulverized coal increased and the pulverized coal / oxygen ratio increased increased the temperature at the tip of the tuyere, deteriorated the combustibility of the pulverized coal, generated unburned char, and increased the gas permeability in the furnace. Getting worse. When the flow rate of pulverized coal decreases and the pulverized coal / oxygen ratio decreases, the combustion of coke at the tuyere tip increases relatively, and the tuyere tip temperature rises. And if there is a tuyere tip temperature deviation, the reduction reaction in the furnace will be biased, inducing deterioration of the operating state such as an abnormal drop of the charge, and as a result, the reducing material ratio increases. Moreover, when a tuyere tip temperature difference arises, the blast furnace circumferential direction difference of hot metal temperature will arise. When the hot metal temperature is higher than 1530 ° C., the wear of surrounding refractories is accelerated. On the other hand, when the hot metal temperature is below 1500 ° C., hot metal, slag outflow and outflow cannot be smoothly performed, which causes deterioration of furnace conditions.
This invention is made paying attention to the above problems, and it aims at providing the blast furnace operating method which can suppress the dispersion | variation in the blast furnace peripheral direction of tuyere tip temperature. .

上記課題を解決するために、本発明の高炉操業方法は、各羽口に送風される熱風中に微粉炭と酸素とを異なる吹込み経路から吹込むランスを有し、当該ランスから高炉の羽口に微粉炭と酸素とを同時に吹込む高炉操業方法であって、微粉炭の吹込み量を各羽口毎又は各羽口群毎に測定し、測定された微粉炭の吹込み量の測定値を用いて前記ランスから吹込む酸素の吹込み量を該当する各羽口毎又は各羽口群毎に設定することを特徴とするものである。   In order to solve the above problems, the blast furnace operating method of the present invention includes a lance for blowing pulverized coal and oxygen from different blowing paths into hot air blown to each tuyere, and the lances of the blast furnace are fed from the lance. A blast furnace operation method in which pulverized coal and oxygen are simultaneously blown into the mouth, and the amount of pulverized coal injected is measured for each tuyere or each tuyere group, and the measured amount of pulverized coal injected is measured. A value is used to set the amount of oxygen blown from the lance for each corresponding tuyere or each tuyere group.

また、溶銑1t当たりの、全羽口からの吹込み微粉炭量の合計である、溶銑1t当たりの微粉炭比が150kg/t−溶銑以上であることを特徴とするものである。
また、羽口1本当たり、微粉炭と酸素とを異なる吹込み経路から吹込み可能な1本のランスで微粉炭及び酸素を同時に羽口に吹込むことを特徴とするものである。
また、羽口1本当たり、微粉炭を吹込むランスと酸素を吹込むランスの2本のランスで微粉炭及び酸素を同時に羽口に吹込むことを特徴とするものである。
Further, the pulverized coal ratio per 1 ton of hot metal, which is the total amount of pulverized coal blown from all tuyere per 1 ton of hot metal, is 150 kg / t-hot metal or more.
Further, pulverized coal and oxygen are simultaneously blown into the tuyere with one lance that can blow pulverized coal and oxygen from different blowing routes per tuyere.
Further, for each tuyere, pulverized coal and oxygen are blown into the tuyere at the same time with two lances, a lance for blowing pulverized coal and a lance for blowing oxygen.

また、羽口に気体還元材を同時に吹込む場合、下記1式で与えられる理論羽口先温度が予め設定した目標値となるように前記ランスから吹込む酸素の吹込み量を設定することを特徴とするものである。
理論羽口先温度(℃)=定数項(℃)+B×送風温度(℃)+C×ランス酸素富化率(%)+D×送風湿分(g/Nm3)+E×微粉炭比(g/Nm3-O2)+F×気体還元材比(g/Nm3-O2) … (1)
Further, when the gas reducing material is simultaneously blown into the tuyere, the amount of oxygen blown from the lance is set so that the theoretical tuyere tip temperature given by the following formula 1 becomes a preset target value. It is what.
Theoretical tuyere tip temperature (° C.) = Constant term (° C.) + B × blast temperature (° C.) + C × lance oxygen enrichment rate (%) + D × blast moisture (g / Nm 3 ) + E × pulverized coal ratio (g / Nm 3 −O 2 ) + F × Gas reducing material ratio (g / Nm 3 −O 2 ) (1)

但し、ランス酸素富化率(%)=ランスからの酸素吹込み量(Nm3/単位時間)/送風流量(Nm3/単位時間)×100、微粉炭比=ランスからの微粉炭吹込み量(g/単位時間)/(ランスからの酸素吹込み量(Nm3/単位時間)+送風中酸素流量(Nm3/単位時間))、気体還元材比=ランスからの気体還元材吹込み量(g/単位時間)/(ランスからの酸素吹込み量(Nm3/単位時間)+送風中酸素流量(Nm3/単位時間))、B〜Fは予め設定された係数 However, the lance oxygen enrichment rate (%) = the amount of oxygen blown from the lance (Nm 3 / unit time) / air flow rate (Nm 3 / unit time) × 100, pulverized coal ratio = the amount of pulverized coal injected from the lance (G / unit time) / (oxygen blown amount from lance (Nm 3 / unit time) + oxygen flow rate during blowing (Nm 3 / unit time)), gas reducing material ratio = gas reducing material blowing amount from lance (G / unit time) / (amount of oxygen blown from the lance (Nm 3 / unit time) + oxygen flow during blowing (Nm 3 / unit time)), B to F are preset coefficients

また、前記羽口群は隣り合う2本乃至5本の羽口を1群として、前記ランスから吹込む酸素の吹込み量を該当する各羽口群毎に設定することを特徴とするものである。
また、前記ランスからの微粉炭吹込みを羽口毎に停止する場合には、同一の羽口へのランスからの酸素吹込みを停止することを特徴とするものである。
The tuyere group is characterized in that two to five tuyere are adjacent to each other, and the amount of oxygen blown from the lance is set for each corresponding tuyere group. is there.
In addition, when the pulverized coal blowing from the lance is stopped for each tuyere, the oxygen blowing from the lance to the same tuyere is stopped.

而して、本発明の高炉操業方法によれば、各羽口に送風される熱風中に微粉炭と酸素とを異なる吹込み経路から吹込むランスを有し、当該ランスから高炉の羽口に微粉炭と酸素とを同時に吹込む場合に、微粉炭の吹込み量を各羽口毎又は各羽口群毎に測定し、測定された微粉炭の吹込み量の測定値を用いてランスから吹込む酸素の吹込み量を該当する各羽口毎又は各羽口群毎に設定する。そのため、羽口先温度の高炉周方向のばらつきを抑制することが可能となる。羽口先温度の高炉周方向のばらつきが抑制されると、微粉炭の燃焼が安定し、装入物の降下速度の周方向ばらつきがなくなり、炉内ガスの通気性が良好となるので、還元効率が上昇し、炉壁からの熱損失が低下するので、安定した低還元材比操業を実現することができる。更に、出銑温度が安定するので、溶銑品質が安定する効果、炉下部の耐火物寿命の延長効果も得られる。そして、これらの効果は、溶銑1t当たりの、全羽口からの吹込み微粉炭量の合計、所謂溶銑1t当たりの微粉炭比が150kg/t−溶銑以上であるときに顕著である。   Thus, according to the blast furnace operating method of the present invention, the hot air blown to each tuyere has a lance that blows pulverized coal and oxygen from different blowing paths, and from the lance to the tuyere tuyere When blowing pulverized coal and oxygen simultaneously, measure the amount of pulverized coal blown for each tuyere or each tuyere group, and use the measured value of the amount of pulverized coal blown from the lance. The amount of oxygen to be blown is set for each corresponding tuyere or each tuyere group. Therefore, it is possible to suppress variations in tuyere tip temperature in the blast furnace circumferential direction. When the variation in the blast furnace circumferential direction of the tuyere temperature is suppressed, the combustion of pulverized coal becomes stable, the variation in the circumferential direction of the descending rate of the charge is eliminated, and the gas permeability in the furnace is improved. Increases and heat loss from the furnace wall decreases, so that stable operation with a low reducing material ratio can be realized. Further, since the temperature of the hot metal is stabilized, the effect of stabilizing the hot metal quality and the effect of extending the life of the refractory at the bottom of the furnace can be obtained. These effects are remarkable when the total amount of pulverized coal injected from all tuyere per 1 ton of hot metal, that is, the ratio of pulverized coal per 1 ton of hot metal is 150 kg / t-hot metal or more.

本発明の高炉操業方法が適用された高炉の一実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Embodiment of the blast furnace to which the blast furnace operating method of this invention was applied. 図1のランスから微粉炭だけを吹込んだときの燃焼状態の説明図である。It is explanatory drawing of a combustion state when only pulverized coal is blown in from the lance of FIG. 図2の微粉炭の燃焼メカニズムの説明図である。It is explanatory drawing of the combustion mechanism of the pulverized coal of FIG. 微粉炭と酸素を羽口から吹込むランスの一例を示す説明図である。It is explanatory drawing which shows an example of the lance which blows in pulverized coal and oxygen from a tuyere. 微粉炭と酸素を羽口から吹込むランスの他の例を示す説明図である。It is explanatory drawing which shows the other example of the lance which blows in pulverized coal and oxygen from a tuyere. 酸素吹込み経路のシーケンス図である。It is a sequence diagram of an oxygen blowing path. 微粉炭比及び吹込み酸素量と羽口先温度の関係の説明図である。It is explanatory drawing of the relationship between a pulverized coal ratio, the amount of blowing oxygen, and tuyere temperature. ランス酸素吹込み量設定のためのブロック図である。It is a block diagram for lance oxygen blowing amount setting. 酸素吹込み量制御の作用の説明図である。It is explanatory drawing of an effect | action of oxygen blowing amount control.

次に、本発明の高炉操業方法の一実施形態について図面を参照しながら説明する。図1は、本実施形態の高炉操業方法が適用された高炉の全体図である。図に示すように、高炉1の羽口3には、熱風を送風するための送風管2が接続され、この送風管2を貫通してランス4が設置されている。羽口3の熱風送風方向先方のコークス堆積層には、レースウエイ5と呼ばれる燃焼空間が存在し、主として、この燃焼空間で鉄鉱石の還元、即ち造銑が行われる。本実施形態では、高炉1の周方向に40本の羽口3を有する。   Next, an embodiment of the blast furnace operating method of the present invention will be described with reference to the drawings. FIG. 1 is an overall view of a blast furnace to which the blast furnace operating method of the present embodiment is applied. As shown in the figure, a blast pipe 2 for blowing hot air is connected to the tuyere 3 of the blast furnace 1, and a lance 4 is installed through the blast pipe 2. A combustion space called a raceway 5 exists in the coke deposit layer in the hot air blowing direction ahead of the tuyere 3, and iron ore is reduced, that is, ironmaking is mainly performed in this combustion space. In the present embodiment, there are 40 tuyere 3 in the circumferential direction of the blast furnace 1.

図2には、ランス4から微粉炭6だけを吹込んだときの燃焼状態を示す。ランス4から羽口3を通過し、レースウエイ5内に吹き込まれた微粉炭6は、コークス7と共に、その揮発分と固定炭素が燃焼し、燃焼しきれずに残った、一般にチャーと呼ばれる炭素と灰分の集合体は、レースウエイから未燃チャー8として排出される。未燃チャー8がレースウエイから装入物中に排出されると、炉内の通気性が悪化する。   FIG. 2 shows a combustion state when only pulverized coal 6 is blown from the lance 4. The pulverized coal 6 that has passed through the tuyere 3 from the lance 4 and is blown into the raceway 5, together with the coke 7, combusts its volatile matter and fixed carbon, and remains unburned, generally called char. The aggregate of ash is discharged as unburned char 8 from the raceway. When the unburned char 8 is discharged from the raceway into the charge, the air permeability in the furnace deteriorates.

図3は、ランス4から送風管2内に微粉炭(図ではPC:Pulverized Coal)6のみを吹込んだ場合の燃焼メカニズムを示す。羽口3からレースウエイ5内に吹き込まれた微粉炭6は、レースウエイ5内の火炎からの輻射伝熱によって粒子が加熱し、更に輻射伝熱、伝導伝熱によって粒子が急激に温度上昇し、300℃以上昇温した時点から熱分解が開始し、揮発分に着火して火炎が形成され、燃焼温度は1400〜1700℃に達する。揮発分が放出してしまうと、前述したチャー8となる。チャー8は、主に固定炭素であるので、燃焼反応と共に、炭素溶解反応と呼ばれる反応も生じる。   FIG. 3 shows a combustion mechanism when only pulverized coal (PC: Pulverized Coal in the figure) 6 is blown into the blow pipe 2 from the lance 4. The pulverized coal 6 blown into the raceway 5 from the tuyere 3 is heated by the radiant heat transfer from the flame in the raceway 5, and the temperature of the pulverized coal 6 is rapidly increased by the radiant heat transfer and conduction heat transfer. The thermal decomposition starts when the temperature is raised to 300 ° C. or more, and the volatile matter is ignited to form a flame, and the combustion temperature reaches 1400 to 1700 ° C. When the volatile matter is released, the above-described char 8 is obtained. Since the char 8 is mainly fixed carbon, a reaction called a carbon dissolution reaction occurs along with a combustion reaction.

本実施形態では、微粉炭の燃焼性を向上するため、ランスを用いて羽口内に酸素を吹込む。また、必要に応じてランスからLNG(Liquefied Natural Gas:液化天然ガス)や都市ガスなどの気体還元材も羽口内に吹込む。例えば微粉炭とLNGと酸素とを同時に吹込む場合、ガスの拡散に伴って微粉炭が分散し、LNGとO2の接触によってLNGが燃焼し、その燃焼熱によって微粉炭が急速に加熱、昇温すると考えられ、これにより微粉炭の燃焼性をより一層向上することができる。 In this embodiment, in order to improve the combustibility of pulverized coal, oxygen is blown into the tuyere using a lance. In addition, gas reducing materials such as LNG (Liquefied Natural Gas) and city gas are blown into the tuyere as needed from the lance. For example, when pulverized coal, LNG, and oxygen are injected at the same time, the pulverized coal is dispersed as the gas diffuses, and LNG is combusted by the contact of LNG and O 2 , and the pulverized coal is rapidly heated and raised by the combustion heat. It is thought that it warms, and, thereby, the combustibility of pulverized coal can be improved further.

図4には、微粉炭とランスを個別に吹込むランス4の一例を示す。このランス4は、所謂単管ランスであり、微粉炭を吹込むランス4と酸素を吹込むランス4を2本セットにして各羽口3内に吹込む。図5には、微粉炭とランスを個別に吹込むランス4の別の例を示す。このランス4は、小径の吹込み管の外側に大径の吹込み管を同心に重ねた所謂二重管ランスであり、例えば内側吹込み管から微粉炭を吹込み、内側吹込み管と外側吹込み管の隙間から酸素を吹込む。二重管ランスにおける微粉炭と酸素の吹込みは、この逆であってもよいが、酸素と微粉炭を接近させてより燃焼しやすい状態とするのが好ましい。なお、本実施形態では、微粉炭と酸素を接近させるためにランスからのみ酸素を吹込み、送風には酸素を富化しない。また、前述したLNGや都市ガスも、図示しないランスを用いて羽口内に吹込む。   In FIG. 4, an example of the lance 4 which blows in pulverized coal and a lance separately is shown. The lance 4 is a so-called single pipe lance, and the lance 4 for blowing in pulverized coal and the lance 4 for blowing in oxygen are set into two sets and blown into each tuyere 3. FIG. 5 shows another example of the lance 4 in which the pulverized coal and the lance are individually blown. This lance 4 is a so-called double pipe lance in which a large-diameter blow pipe is concentrically stacked on the outside of a small-diameter blow pipe. For example, pulverized coal is blown from an inner blow pipe, and the inner blow pipe and the outer Oxygen is blown from the gap between the blow pipes. The pulverized coal and oxygen blowing in the double pipe lance may be reversed, but it is preferable to bring oxygen and pulverized coal closer to facilitate combustion. In the present embodiment, oxygen is blown only from the lance in order to bring pulverized coal and oxygen closer to each other, and oxygen is not enriched in the blown air. Moreover, the above-mentioned LNG and city gas are also blown into the tuyere using a lance (not shown).

図6は、酸素吹込み経路のシーケンス図である。酸素は、高圧の本管11から遮断弁12を介してヘッダー管13に分岐し、そのヘッダー管13に接続される各羽口への枝管14に分配される。従って、枝管14は計40本ある。各枝管14には、上流側から流量調整弁15、遮断弁16、逆止弁17が介装され、各枝管14からランス4に供給される酸素の吹込み量を細かく制御することができる。また、各枝管14には、パージ用の窒素供給管も接続されている。なお、図中の符号PTは圧力計、FTは流量計、TIは温度計を示す。   FIG. 6 is a sequence diagram of the oxygen blowing path. Oxygen branches from the high-pressure main pipe 11 to the header pipe 13 via the shut-off valve 12 and is distributed to the branch pipes 14 to each tuyere connected to the header pipe 13. Accordingly, there are a total of 40 branch pipes 14. Each branch pipe 14 is provided with a flow control valve 15, a shut-off valve 16, and a check valve 17 from the upstream side to finely control the amount of oxygen blown from each branch pipe 14 to the lance 4. it can. Each branch pipe 14 is also connected with a purge nitrogen supply pipe. In the figure, symbol PT indicates a pressure gauge, FT indicates a flow meter, and TI indicates a thermometer.

図7には、ランスから吹込まれる微粉炭の吹込み量や酸素の吹込み量と羽口先温度との関係を示す。図7aは、ランスから吹込まれる酸素吹込み量を一定とし、微粉炭比、即ちランスから吹込まれる微粉炭量が変化したときの羽口先温度を示す。なお、図7aの横軸の微粉炭比は、溶銑1t当たりの、全羽口からの吹込み微粉炭量の合計で表した。また、図7bは、微粉炭の吹込み量を一定とし、酸素吹込み量が変化したときの羽口先温度を示す。これらの図によれば、酸素吹込み量に対する微粉炭吹込み量が大きいほど羽口先温度が低下し、微粉炭吹込み量に対する酸素吹込み量が大きいほど羽口先温度が上昇することが示されている。   FIG. 7 shows the relationship between the amount of pulverized coal blown from the lance and the amount of oxygen blown and the tuyere tip temperature. FIG. 7a shows the tuyere temperature when the amount of oxygen blown from the lance is constant and the pulverized coal ratio, that is, the amount of pulverized coal blown from the lance is changed. In addition, the pulverized coal ratio of the horizontal axis of FIG. 7a was represented with the sum total of the amount of pulverized coal injected from all tuyere per 1t of hot metal. Moreover, FIG. 7 b shows the tuyere tip temperature when the amount of pulverized coal injection is constant and the amount of oxygen injection is changed. According to these figures, it is shown that the tuyere tip temperature decreases as the amount of pulverized coal injection relative to the amount of oxygen injection increases, and the tip temperature increases as the amount of oxygen injection relative to the amount of pulverized coal injection increases. ing.

図8には、各羽口毎にランスから吹込む酸素の吹込み量を設定する酸素吹込み量設定装置のブロック図を示す。本実施形態では、例えば送風温度センサ21によって送風温度(℃)を検出し、送風湿分センサ22によって送風湿分(g/Nm3)を検出し、LNG(又は都市ガス)比センサ23によってLNG(又は都市ガス)比(g/Nm3-O2)を検出し、微粉炭比センサ24によって微粉炭比(g/Nm3-O2)を検出し、送風流量センサ25によって送風流量(Nm3/min)を検出し、それらの検出結果を演算処理装置26に入力する。演算処理装置26では、これらの検出結果以外に、定数項(℃)及び目標羽口先温度(℃)が入力され、それらから下記1式に従って、ランスから吹込む酸素吹込み量(図ではランス酸素吹込み量、Nm3/min)を設定する。このランス酸素吹込み量に応じて、前記酸素吹込み制御回路では、各羽口のランスから吹込まれる酸素の吹込み量を制御する。なお、LNG(又は都市ガス)比は、単位酸素吹込み量当たりのLNG(又は都市ガス)の吹込み量である。また、微粉炭の吹込み量(流量)の検出には、静電容量式の他、差圧測定方式、超音波式などの流量計が使用できる。 FIG. 8 shows a block diagram of an oxygen blowing amount setting device that sets the amount of oxygen blown from the lance for each tuyere. In the present embodiment, for example, the blowing temperature sensor 21 detects the blowing temperature (° C.), the blowing moisture sensor 22 detects the blowing moisture (g / Nm 3 ), and the LNG (or city gas) ratio sensor 23 detects LNG. (Or city gas) ratio (g / Nm 3 -O 2 ) is detected, the pulverized coal ratio sensor 24 detects the pulverized coal ratio (g / Nm 3 -O 2 ), and the blast flow rate sensor 25 detects the blast flow rate (Nm 3 / min) and the detection results are input to the arithmetic processing unit 26. In the arithmetic processing unit 26, in addition to these detection results, a constant term (° C.) and a target tuyere tip temperature (° C.) are input. The blowing amount, Nm 3 / min) is set. In accordance with the lance oxygen blowing amount, the oxygen blowing control circuit controls the amount of oxygen blown from each tuyere lance. The LNG (or city gas) ratio is the amount of LNG (or city gas) injected per unit oxygen injection amount. For detecting the amount (flow rate) of pulverized coal, a flow meter such as a differential pressure measuring method or an ultrasonic method can be used in addition to the capacitance method.

理論羽口先温度(℃)=定数項(℃)+B×送風温度(℃)+C×ランス酸素富化率(%)+D×送風湿分(g/Nm3)+E×微粉炭比(g/Nm3-O2)+F×LNG(又は都市ガス)比(g/Nm3-O2) … (1)
但し、ランス酸素富化率(%)=ランスからの酸素吹込み量(Nm3/min)/送風流量(Nm3/min)×100とする。また、B〜Fは予め設定された係数である。
Theoretical tuyere tip temperature (° C.) = Constant term (° C.) + B × blast temperature (° C.) + C × lance oxygen enrichment rate (%) + D × blast moisture (g / Nm 3 ) + E × pulverized coal ratio (g / Nm 3 −O 2 ) + F × LNG (or city gas) ratio (g / Nm 3 −O 2 ) (1)
However, the lance oxygen enrichment rate (%) = the amount of oxygen blown from the lance (Nm 3 / min) / the flow rate of air flow (Nm 3 / min) × 100. B to F are coefficients set in advance.

ちなみに、前記1式中の微粉炭比は、微粉炭の性状により搬送ガスなどの条件を一定としても流量が変動してしまう。これに対し、前記1式中、送風温度や送風湿分、LNG(又は都市ガス)比は、羽口毎の変動が小さいので、例えば微粉炭吹込み量と酸素吹込み量が羽口先温度に与える影響の関係、例えば図7のマップを用い、微粉炭吹込み量に応じて目標羽口先温度を達成する酸素吹込み量を求め、それをランス酸素吹込み量として設定してもよい。   Incidentally, the flow rate of the pulverized coal ratio in the above formula 1 varies depending on the properties of the pulverized coal even if the conditions such as the carrier gas are constant. On the other hand, the air temperature, air humidity, and LNG (or city gas) ratio in the above formula 1 have small fluctuations at each tuyere, so that, for example, the pulverized coal blowing amount and the oxygen blowing amount become the tuyere tip temperature. The relationship of the influence, for example, the map of FIG. 7, may be used to determine the oxygen injection amount that achieves the target tuyere tip temperature according to the pulverized coal injection amount, and set it as the lance oxygen injection amount.

次に、本実施形態の高炉操業方法の実施例として、体積約5000m3、羽口数40本の大型高炉において、溶銑1t当たりの微粉炭比を145kg/t−溶銑で吹込む操業を実施した。微粉炭と酸素は、図4のように個別のランスから吹込んだ。操業条件は、送風量:7800m3/min、送風温度:約1100℃である。従来(制御前)は、各羽口に均等に酸素を吹込んだが、実施例(制御後)は、前記1式を用いた酸素吹込み量制御を適用した。両者の結果を図9aに、酸素吹込み量制御による微粉炭吹込み量及び酸素吹込み量を図9bに示す。なお、羽口番号25羽口は、微粉炭用の吹込みランスが詰まったため、微粉炭を吹込まないで操業を行った。例えば、この羽口番号25羽口で、微粉炭の吹込みを停止した状態で、他の羽口と同等の酸素を吹込むと、羽口先温度が極端に上昇したが、羽口先温度が目標羽口先温度に一致するように酸素吹込み量制御を行うと、微粉炭が吹込まれていないので酸素の吹込みも停止する結果となる。それらの結果、酸素吹込み量制御を行うと羽口先温度のばらつきが抑制される。その結果、羽口先温度の高炉周方向のばらつき、出銑温度差が改善されると共に、コークス比の低減が達成された。 Next, as an example of the blast furnace operating method of the present embodiment, in a large blast furnace having a volume of about 5000 m 3 and a number of tuyere of 40, an operation was performed in which the ratio of pulverized coal per 1 ton of hot metal was blown at 145 kg / t-hot metal. The pulverized coal and oxygen were blown from individual lances as shown in FIG. The operating conditions are an air volume: 7800 m 3 / min, and an air temperature: about 1100 ° C. Conventionally (before control), oxygen was blown evenly into each tuyere, but in the examples (after control), oxygen blowing amount control using the above-described formula 1 was applied. Both results are shown in FIG. 9a, and the pulverized coal injection amount and the oxygen injection amount by the oxygen injection amount control are shown in FIG. 9b. In addition, tuyere number 25 tuyere was operated without blowing pulverized coal because the blowing lance for pulverized coal was clogged. For example, in this tuyere number 25 tuyere, when the blowing of pulverized coal is stopped and oxygen is blown in the same manner as the other tuyere, the tuyere tip temperature rises extremely, but the tuyere tip temperature is the target. When the oxygen blowing amount control is performed so as to coincide with the tuyere temperature, since the pulverized coal is not blown, the oxygen blowing is also stopped. As a result, variation in tuyere temperature is suppressed when the oxygen injection amount control is performed. As a result, the variation of the tuyere tip temperature in the blast furnace circumferential direction and the temperature difference of the tapping were improved, and the reduction of the coke ratio was achieved.

次に、微粉炭比を変更しながら、本実施形態の高炉操業方法を継続的に行う前(従来例)と、継続的に行ったとき(実施例)の高炉操業状態を下記表1に示す。表中の羽口先温度のばらつきは、40本の羽口の前記1式で求められる理論羽口先温度の標準偏差を示す。また、出銑温度差は、2箇所の出銑口の出銑温度の平均値の差を示す。また、COガス利用率は、CO2/(CO2+CO)で表される。前述から明らかなように、実施例では従来例に比して羽口先温度のばらつきが大幅に低下しており、その結果、2箇所の出銑口の出銑温度の平均値の差も小さくなっている。また、コークス比が低下するため、還元材比が低下しており、その結果、COガス利用率が向上し、結果的にCO2排出量が低下する。また、COガス利用率が向上したため、コークス比、還元材比が低下しており、その結果、結果的にCO2排出量が低下する。そして、この傾向は、微粉炭比が大きい場合に顕著であり、特に溶銑1t当たりの微粉炭比が150kg/t−溶銑以上で、出銑温度差、コークス比及び還元材比の低下が顕著である。 Next, while changing the pulverized coal ratio, the blast furnace operating state before continuously performing the blast furnace operating method of the present embodiment (conventional example) and when continuously performed (example) is shown in Table 1 below. . The variation of the tuyere tip temperature in the table indicates the standard deviation of the theoretical tuyere tip temperature obtained by the above-mentioned formula 1 of 40 tuyere. Moreover, the output temperature difference shows the difference between the average values of the output temperatures at the two outlets. The CO gas utilization rate is expressed by CO 2 / (CO 2 + CO). As is apparent from the above, the variation in the tuyere temperature is significantly lower in the example than in the conventional example, and as a result, the difference in the average value of the tapping temperature at the two tapping holes is also reduced. ing. Further, since the coke ratio is lowered, the reducing material ratio is lowered. As a result, the CO gas utilization rate is improved, and as a result, the CO 2 emission amount is lowered. Further, since the CO gas utilization rate has been improved, the coke ratio and the reducing material ratio are reduced, and as a result, the CO 2 emission amount is reduced. And this tendency is remarkable when the ratio of pulverized coal is large, especially when the ratio of pulverized coal per 1 ton of hot metal is 150 kg / t-molten iron or more, and the decrease in the temperature difference of the molten iron, the coke ratio and the reducing material ratio is remarkable. is there.

Figure 0005971165
Figure 0005971165

このように本実施形態の高炉操業方法では、各羽口3に送風される熱風中に微粉炭と酸素とを異なる吹込み経路から吹込むランス4を有し、当該ランス4から高炉1の羽口3に微粉炭と酸素とを同時に吹込む場合に、微粉炭の吹込み量を各羽口3毎に測定し、測定された微粉炭の吹込み量の測定値を用いてランス4から吹込む酸素の吹込み量を該当する各羽口3毎に設定する。そのため、羽口先温度の高炉周方向のばらつきを抑制することが可能となる。羽口先温度の高炉周方向のばらつきが抑制されると、微粉炭の燃焼が安定し、装入物の降下速度の周方向ばらつきがなくなり、炉内ガスの通気性が良好となるので、還元効率が上昇し、炉壁からの熱損失が低下するので、安定した低還元材比操業を実現することができる。更に、出銑温度が安定するので、溶銑品質が安定する効果、炉下部の耐火物寿命の延長効果も得られる。そして、これらの効果は、溶銑1t当たりの、全羽口からの吹込み微粉炭量の合計、所謂溶銑1t当たりの微粉炭比が150kg/t−溶銑以上であるときに顕著である。   As described above, in the blast furnace operating method of the present embodiment, the hot air blown to each tuyere 3 has the lance 4 that blows pulverized coal and oxygen from different blowing paths, and the wings of the blast furnace 1 from the lance 4. When pulverized coal and oxygen are simultaneously blown into the mouth 3, the amount of pulverized coal blown is measured for each tuyere 3, and the measured value of the measured amount of pulverized coal blown from the lance 4 The amount of oxygen to be injected is set for each corresponding tuyere 3. Therefore, it is possible to suppress variations in tuyere tip temperature in the blast furnace circumferential direction. When the variation in the blast furnace circumferential direction of the tuyere temperature is suppressed, the combustion of pulverized coal becomes stable, the variation in the circumferential direction of the descending rate of the charge is eliminated, and the gas permeability in the furnace is improved. Increases and heat loss from the furnace wall decreases, so that stable operation with a low reducing material ratio can be realized. Further, since the temperature of the hot metal is stabilized, the effect of stabilizing the hot metal quality and the effect of extending the life of the refractory at the bottom of the furnace can be obtained. These effects are remarkable when the total amount of pulverized coal injected from all tuyere per 1 ton of hot metal, that is, the ratio of pulverized coal per 1 ton of hot metal is 150 kg / t-hot metal or more.

なお、前記実施形態では、各羽口毎に微粉炭吹込み量に応じた酸素吹込み量制御を行ったが、例えば隣り合う2本乃至5本の羽口を1群として、前記ランスから吹込む酸素の吹込み量を該当する各羽口群毎に設定するようにしても、同様の効果が得られ、且つ例えば酸素吹込み経路の流量調整弁の数や制御系統を低減することができる。   In the above embodiment, the oxygen injection amount control corresponding to the pulverized coal injection amount is performed for each tuyere, but for example, two to five adjacent tuyere are taken as a group and the lance is blown from the lance. Even if the amount of oxygen to be injected is set for each corresponding tuyere group, the same effect can be obtained, and for example, the number of flow rate adjusting valves in the oxygen blowing path and the control system can be reduced. .

1は高炉、2は送風管、3は羽口、4はランス、5はレースウエイ、6は微粉炭、7はコークス、8はチャー、11は本管、12は遮断弁、13はヘッダー管、14は枝管、15は流量調整弁、16は遮断弁、17は逆止弁   1 is a blast furnace, 2 is a blow pipe, 3 is a tuyere, 4 is a lance, 5 is a raceway, 6 is pulverized coal, 7 is coke, 8 is char, 11 is a main pipe, 12 is a shut-off valve, 13 is a header pipe 14 is a branch pipe, 15 is a flow regulating valve, 16 is a shut-off valve, and 17 is a check valve.

Claims (5)

各羽口に送風される熱風中に微粉炭と酸素とを異なる吹込み経路から吹込むランスを有し、当該ランスから高炉の羽口に微粉炭と酸素とを同時に吹込む高炉操業方法であって、前記羽口に気体還元材を同時に吹込み、微粉炭の吹込み量を各羽口毎又は各羽口群毎に測定し、測定された微粉炭の吹込み量の測定値を用い下記1式で与えられる理論羽口先温度が予め設定した目標値となるように前記ランスから吹込む酸素の吹込み量を設定することを特徴とする高炉操業方法。
理論羽口先温度(℃)=定数項(℃)+B×送風温度(℃)+C×ランス酸素富化率(%)+D×送風湿分(g/Nm3)+E×微粉炭比(g/Nm3-O2)+F×気体還元材比(g/Nm3-O2) … (1)
但し、ランス酸素富化率(%)=ランスからの酸素吹込み量(Nm3/単位時間)/送風流量(Nm3/単位時間)×100、微粉炭比=ランスからの微粉炭吹込み量(g/単位時間)/(ランスからの酸素吹込み量(Nm3/単位時間)+送風中酸素流量(Nm3/単位時間))、気体還元材比=ランスからの気体還元材吹込み量(g/単位時間)/(ランスからの酸素吹込み量(Nm3/単位時間)+送風中酸素流量(Nm3/単位時間))、B〜Fは予め設定された係数
A blast furnace operation method in which pulverized coal and oxygen are blown into the hot air blown to each tuyere through different blowing paths, and pulverized coal and oxygen are simultaneously blown into the tuyere tuyeres from the lance. Then , the gas reducing material was simultaneously blown into the tuyere, the amount of pulverized coal was measured for each tuyere or each tuyere group, and the measured value of the measured amount of pulverized coal was used . A method for operating a blast furnace, wherein an amount of oxygen blown from the lance is set so that a theoretical tuyere tip temperature given by the following formula 1 is a preset target value.
Theoretical tuyere tip temperature (° C.) = Constant term (° C.) + B × blast temperature (° C.) + C × lance oxygen enrichment rate (%) + D × blast moisture (g / Nm 3 ) + E × pulverized coal ratio (g / Nm 3 −O 2 ) + F × Gas reducing material ratio (g / Nm 3 −O 2 ) (1)
However, the lance oxygen enrichment rate (%) = the amount of oxygen blown from the lance (Nm 3 / unit time) / air flow rate (Nm 3 / unit time) × 100, pulverized coal ratio = the amount of pulverized coal injected from the lance (G / unit time) / (oxygen blown amount from lance (Nm 3 / unit time) + oxygen flow rate during blowing (Nm 3 / unit time)), gas reducing material ratio = gas reducing material blowing amount from lance (G / unit time) / (amount of oxygen blown from the lance (Nm 3 / unit time) + oxygen flow during blowing (Nm 3 / unit time)), B to F are preset coefficients
溶銑1t当たりの微粉炭比が150kg/t−溶銑以上であることを特徴とする請求項1に記載の高炉操業方法。   The blast furnace operating method according to claim 1, wherein the ratio of pulverized coal per 1t of hot metal is 150kg / t-hot metal or more. 羽口1本当たり、微粉炭と酸素とを異なる吹込み経路から吹込み可能な1本のランスで微粉炭及び酸素を同時に羽口に吹込み、さらに前記気体還元材を吹込み可能な前記1本のランスと異なる他のランスで前記気体還元材を同時に羽口に吹込むことを特徴とする請求項1又は2に記載の高炉操業方法。 Per tuyere one, was blown into the pulverized coal and oxygen and the potential was blown from different blowing pathways one lance simultaneously tuyere pulverized coal and oxygen, which further can only blow the gas reducing material wherein 1 blast furnace method according to claim 1 or 2, characterized in blown Mukoto simultaneously tuyere said gaseous reducing agent at a different other of the lance and the lance. 羽口1本当たり、微粉炭を吹込むランスと酸素を吹込むランスの2本のランスで微粉炭及び酸素を同時に羽口に吹込み、さらに前記気体還元材を吹込み可能な前記2本のランスと異なる他のランスで前記気体還元材を羽口に同時に吹込むことを特徴とする請求項1又は2に記載の高炉操業方法。 Per tuyere one, of the pulverized coal blown free lance and oxygen blown lance two lances in sparging pulverized coal and oxygen simultaneously tuyere, further wherein the gas reducing agent blowing viewed possible the two blast furnace method according to claim 1 or 2, characterized in simultaneously blow Mukoto the gas reducing material tuyere Reims different other lances. 前記羽口群は隣り合う2本乃至5本の羽口を1群として、前記ランスから吹込む酸素の吹込み量を該当する各羽口群毎に設定することを特徴とする請求項1乃至4の何れか一項に記載の高炉操業方法 The said tuyere group makes 2 to 5 tuyere adjacent to one group, and the amount of oxygen blown from the lance is set for each corresponding tuyere group. The blast furnace operating method according to any one of 4 .
JP2013060319A 2012-07-12 2013-03-22 Blast furnace operation method Active JP5971165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013060319A JP5971165B2 (en) 2012-07-12 2013-03-22 Blast furnace operation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012156546 2012-07-12
JP2012156546 2012-07-12
JP2013060319A JP5971165B2 (en) 2012-07-12 2013-03-22 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2014031568A JP2014031568A (en) 2014-02-20
JP5971165B2 true JP5971165B2 (en) 2016-08-17

Family

ID=50281625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013060319A Active JP5971165B2 (en) 2012-07-12 2013-03-22 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP5971165B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044564B2 (en) * 2014-02-27 2016-12-14 Jfeスチール株式会社 Blast furnace operation method
WO2018180892A1 (en) * 2017-03-30 2018-10-04 Jfeスチール株式会社 Method for operating blast furnace
CN109112239B (en) * 2017-06-26 2021-09-14 鞍钢股份有限公司 Method for adjusting amount of semi coke added in mixed pulverized coal for injection according to blast furnace condition
JP7167652B2 (en) * 2018-11-14 2022-11-09 日本製鉄株式会社 Blast furnace operation method
CN113584248A (en) * 2021-08-25 2021-11-02 新疆八一钢铁股份有限公司 Iron notch oxygen lance system for Europe smelting furnace
CN115386664B (en) * 2022-08-30 2023-07-14 鞍钢股份有限公司 Method for improving tuyere temperature uniformity by adjusting flow of pulverized coal branch pipe of blast furnace

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477209A (en) * 1977-12-02 1979-06-20 Sumitomo Metal Ind Ltd Oxygen blowing into blast furnace tuyere
JPH01156411A (en) * 1987-12-11 1989-06-20 Nkk Corp Operation of blast furnace
JPH01177307A (en) * 1987-12-29 1989-07-13 Nkk Corp Method for operating blast furnace
JPH0688109A (en) * 1991-01-16 1994-03-29 Sumitomo Metal Ind Ltd Method for blowing pulverized coal from tuyere in blast furnace
JPH051308A (en) * 1991-06-25 1993-01-08 Nkk Corp Method for removing stuck material to furnace wall in blast furnace
JPH05222418A (en) * 1992-02-17 1993-08-31 Nkk Corp Method for injecting pulverized coal into blast furnace
JPH05239512A (en) * 1992-02-25 1993-09-17 Sumitomo Metal Ind Ltd Operation method for blast furnace of pulverized coal injection type
JP2889088B2 (en) * 1993-07-07 1999-05-10 新日本製鐵株式会社 Blast furnace operation method
JP2003247008A (en) * 2002-02-25 2003-09-05 Jfe Steel Kk Method for operating blast furnace injecting a large amount of pulverized fine coal
JP5194504B2 (en) * 2007-03-22 2013-05-08 Jfeスチール株式会社 Apparatus for injecting gas reducing material into blast furnace and operating method of blast furnace using the same

Also Published As

Publication number Publication date
JP2014031568A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
JP5971165B2 (en) Blast furnace operation method
EP3190194B1 (en) Method for detecting air flow distribution in blast furnace
WO2014007152A1 (en) Method for operating blast furnace
JP2013019006A (en) Blast furnace operation method
JP4743332B2 (en) Blast furnace operation method
JP5770124B2 (en) Blast furnace operation method
JP4760985B2 (en) Blast furnace operation method
US10400292B2 (en) Method for operating blast furnace
JP2005213591A (en) Method for blowing solid fuel into blast furnace and blowing lance
JP2012087375A (en) Method for operating blast furnace
JP2007186759A (en) Method for operating blast furnace
JP5614517B1 (en) Blast furnace operation method
WO2018180892A1 (en) Method for operating blast furnace
JP5064086B2 (en) Blast furnace operation method
CN104755867A (en) Apparatus for controlling combustion of furnace with oxygen lancing
JP6737107B2 (en) Blast furnace operation method
JP7167652B2 (en) Blast furnace operation method
JP2019019347A (en) Method of operating blast furnace
JP2018168416A (en) Blast furnace operation method
JP5855536B2 (en) Blast furnace operation method
JP2005213590A (en) Method for blowing solid fuel into blast furnace and blowing lance
JP4345506B2 (en) Method of injecting solid fuel into the blast furnace
JP2007031811A (en) Method for evaluating condition of tuyere and lower part of blast furnace
JP6064934B2 (en) Blast furnace operation method
JP6056794B2 (en) Blast furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160627

R150 Certificate of patent or registration of utility model

Ref document number: 5971165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250