JPH05239512A - Operation method for blast furnace of pulverized coal injection type - Google Patents

Operation method for blast furnace of pulverized coal injection type

Info

Publication number
JPH05239512A
JPH05239512A JP7513092A JP7513092A JPH05239512A JP H05239512 A JPH05239512 A JP H05239512A JP 7513092 A JP7513092 A JP 7513092A JP 7513092 A JP7513092 A JP 7513092A JP H05239512 A JPH05239512 A JP H05239512A
Authority
JP
Japan
Prior art keywords
blast furnace
pulverized coal
gas
furnace
sonde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7513092A
Other languages
Japanese (ja)
Inventor
Takao Jinbo
高生 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7513092A priority Critical patent/JPH05239512A/en
Publication of JPH05239512A publication Critical patent/JPH05239512A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize blast furnace operation by collecting a gas and dust sample in the radial direction of a furnace top of a pulverized coal injection into blast furnace from tuyere, understanding combustion condition in the blast furnace radial direction and accordingly adjusting blast furnace operation. CONSTITUTION:A skin floating sonde 1 and fixed sonde for gas sampling 3-6 are arranged in an open space of the furnace top 2 of a pulverized coal injection into blast furnace from tuyere, dust filters for collecting unburned pulverized coal are installed in the course of the suction piping of each sonde. The gas in the blast furnace radial direction and the furnace inside gas are simultaneously sampled by each sonde 1, 3-6, the combustion condition of pulverized coal in blast furnace is precisely grapsed with the analyzed result, the distribution of charged raw materials in the blast furnace radial direction, the injection quantity of pulverized coal and blast quantity from plural tuyeres are controlled to improve and make the combustion of pulverized coal from tuyere uniform and to stabilize blast furnace operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、最近製鉄各社で盛ん
に実施されている高炉への微粉炭吹込みにおける操業方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operating method for blowing pulverized coal into a blast furnace, which has recently been actively practiced by iron and steel companies.

【0002】[0002]

【従来の技術】高炉は、炉頂から鉄鉱石とコークス等を
装入し、炉底羽口から熱風等を吹込んで溶銑を製造す
る。炉内では鉄鉱石のCOガスによる間接還元反応、ソ
リューションガス反応、溶融ウスタイトの直接還元反応
等多くの化学反応が起こる。高炉の円滑かつ良好な操業
を行なうには、前記化学反応による高炉炉頂部空間にお
けるガス流分布を適正な状態に維持し、ガスの保有する
顕熱と還元能力を効率よく利用するうえで、ガス温度、
ガスの成分分布は非常に重要な情報である。このため、
高炉炉頂部空間におけるガス採取には、各種のゾンデが
使用されている。
2. Description of the Related Art In a blast furnace, iron ore, coke and the like are charged from the top of the furnace and hot air is blown from the tuyere of the bottom of the furnace to produce hot metal. Many chemical reactions such as indirect reduction reaction of iron ore with CO gas, solution gas reaction, direct reduction reaction of molten wustite occur in the furnace. In order to operate the blast furnace smoothly and satisfactorily, the gas flow distribution in the top space of the blast furnace due to the chemical reaction is maintained in an appropriate state, and the sensible heat and reducing ability of the gas are efficiently used. temperature,
The gas component distribution is very important information. For this reason,
Various sondes are used for gas sampling in the blast furnace top space.

【0003】例えば、高炉の炉頂の装入物上の空間に円
周方向のガスサンプリングを行なうスキンフローティン
グゾンデ、それぞれ半径方向のガスサンプリングを行な
う複数の固定ゾンデが配設されている。サンプリング装
置全体は、その設置場所によって異なるが、ガス吸引口
はいずれの場合も配管であり、高炉炉内圧力あるいは高
炉炉外より若干の吸引をさせることによって、炉内ガス
を炉外のガス分析装置に導入することができる。しかし
高炉炉内ガスは、装入物より発生したダストの濃度が高
く、ガス吸引に際してダストが一緒に吸引されるため、
実開昭59−40837号公報、実開昭62−4054
6号公報に開示のとおり、配管の途中にダスト除去装置
を設置し、配管の閉塞を防止している。
For example, a skin floating sonde for circumferential gas sampling and a plurality of fixed sondes for radial gas sampling are arranged in a space above a charge at the top of a blast furnace. Although the whole sampling device differs depending on the installation location, the gas suction port is a pipe in each case, and the gas inside the furnace can be analyzed outside the furnace by a slight suction from the pressure inside the furnace or outside the furnace. It can be installed in the device. However, the gas in the furnace of the blast furnace has a high concentration of dust generated from the charge, and the dust is sucked together when the gas is sucked.
Japanese Utility Model Publication No. 59-40837, Japanese Utility Model Publication No. 62-4054.
As disclosed in Japanese Patent No. 6, a dust removing device is installed in the middle of the pipe to prevent the pipe from being blocked.

【0004】一方、近年羽口から微粉炭を吹込む高炉が
増加しており、前記ガスサンプリングゾンデのガス温
度、ガス組成の情報は、高炉の操業管理上不可欠となっ
ている。さらに、炉頂高炉ガス回収配管での煤サンプリ
ングによって未燃微粉炭量を把握し、上記ゾンデのガス
情報と併せて高炉内における微粉炭の燃焼状況を推定す
ることが行われている。
On the other hand, in recent years, the number of blast furnaces in which pulverized coal is blown from the tuyere is increasing, and the information on the gas temperature and the gas composition of the gas sampling sonde is indispensable for the operation management of the blast furnace. Furthermore, the amount of unburned pulverized coal is grasped by soot sampling in the furnace top blast furnace gas recovery pipe, and the combustion state of pulverized coal in the blast furnace is estimated together with the gas information of the sonde.

【0005】[0005]

【発明が解決しようとする課題】上記ガスサンプリング
ゾンデのガス情報と炉頂高炉ガス回収配管での煤サンプ
リングによる未燃微粉炭量に基づく微粉炭の燃焼状況の
推定は、未燃微粉炭量が炉頂高炉ガス回収配管での煤サ
ンプリング結果に基づくものであるため、全体としての
微粉炭の燃焼状況を推定できるが、高炉の円周方向、半
径方向での微粉炭の燃焼状況を高精度で把握することが
できないという欠点がある。
The estimation of the combustion state of pulverized coal based on the gas information of the gas sampling sonde and the amount of unburned pulverized coal by soot sampling in the furnace top blast furnace gas recovery pipe indicates that the amount of unburned pulverized coal is Since it is based on the soot sampling results in the furnace top blast furnace gas recovery pipe, it is possible to estimate the combustion status of pulverized coal as a whole, but the combustion status of pulverized coal in the circumferential and radial directions of the blast furnace can be estimated with high accuracy. It has the drawback of not being able to grasp.

【0006】この発明の目的は、上記微粉炭吹込みを実
施している高炉の円周方向、半径方向での微粉炭の燃焼
状況を高精度で把握し、吹込み微粉炭の燃焼改善を達成
できる微粉炭吹込み高炉の操業方法を提供することにあ
る。
An object of the present invention is to accurately grasp the combustion condition of the pulverized coal in the circumferential direction and the radial direction of the blast furnace in which the pulverized coal is injected, and to improve the combustion of the injected pulverized coal. An object of the present invention is to provide a method for operating a pulverized coal blowing blast furnace.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意試験研究を重ねた。その結果、高炉炉
頂部円周方法および半径方向に設置された各種ガスサン
プリングゾンデの配管途中にダストフィルターを設け、
ガスサンプリングゾンデによるガス情報と同タイミング
で炉内ダストデータを採取することにより、円周方向お
よび半径方向での微粉炭の燃焼状況を高精度で把握でき
ることを究明し、この発明に到達した。
[Means for Solving the Problems] The inventors of the present invention have made extensive studies to achieve the above object. As a result, a dust filter was installed in the middle of the blast furnace top circumference method and various gas sampling sonde pipes installed in the radial direction.
It has been clarified that the combustion state of pulverized coal in the circumferential direction and the radial direction can be grasped with high accuracy by collecting the dust data in the furnace at the same timing as the gas information by the gas sampling sonde, and arrived at the present invention.

【0008】すなわちこの発明は、微粉炭吹込み高炉の
操業方法において、炉内ガスサンプリング用ゾンデのガ
スサンプリング配管途中にダスト採取用フィルターを設
け、ガス組成およびガス温度のデータと同タイミング
で、炉内ガス中のダストを採取分析して高炉の円周方
向、半径方向での吹込み微粉炭の燃焼状況を解析し、該
解析結果に基いて高炉の半径方向装入物の分布制御およ
び羽口毎の微粉炭吹込み量または送風量を調整するので
ある。
That is, according to the present invention, in a method for operating a pulverized coal blowing blast furnace, a dust sampling filter is provided in the middle of the gas sampling pipe of a furnace gas sampling sonde, and the furnace is set at the same timing as the gas composition and gas temperature data. The dust in the internal gas is sampled and analyzed to analyze the combustion condition of pulverized coal blown in the circumferential and radial directions of the blast furnace, and based on the analysis results, the distribution control of the radial charge of the blast furnace and the tuyere The amount of pulverized coal blown or the amount of air blown is adjusted for each.

【0009】[0009]

【作用】この発明においては、炉内ガスサンプリング用
ゾンデのガスサンプリング配管途中にダスト採取用フィ
ルターを設け、ガス組成およびガス温度のデータと同タ
イミングで、炉内ガス中のダストを採取分析して高炉の
円周方向、半径方向での吹込み微粉炭の燃焼状況を解析
するから、高炉の円周方向、半径方向での吹込み微粉炭
の燃焼状況を高精度で把握することができる。この解析
結果に基いて、高炉の半径方向装入物の分布制御および
羽口毎の微粉炭吹込み量または送風量を調整するから、
吹込み微粉炭を効率よく燃焼せしめることが可能とな
り、高炉のエネルギー原単位の低減、円周方向、半径方
向の不均一性が改善され、高炉の安定操業を達成するこ
とができる。
In the present invention, a dust sampling filter is provided in the gas sampling pipe of the furnace gas sampling sonde, and dust in the furnace gas is sampled and analyzed at the same timing as the gas composition and gas temperature data. Since the combustion condition of the blown pulverized coal in the circumferential direction and the radial direction of the blast furnace is analyzed, the combustion condition of the blown pulverized coal in the circumferential direction and the radial direction of the blast furnace can be grasped with high accuracy. Based on the results of this analysis, the distribution control of the radial charge of the blast furnace and the amount of pulverized coal blown or blown for each tuyere are adjusted.
It is possible to efficiently burn the pulverized coal blown, the energy consumption rate of the blast furnace is reduced, the non-uniformity in the circumferential direction and the radial direction is improved, and stable operation of the blast furnace can be achieved.

【0010】[0010]

【実施例】【Example】

実施例1 以下にこの発明の詳細を実施の一例を示す図1および図
2に基いて説明する。図1はこの発明方法を実施する装
置を備えた高炉炉頂部の概略断面図、図2はダストサン
プリング方法を示す説明図である。図1において、1は
高炉炉頂部2の装入物上の空間で円周方向のガスサンプ
リングを行なうスキンフローティングゾンデ、3、4、
5、6は各々半径方向のガスサンプリングを行なう固定
ゾンデである。スキンフローティングゾンデ1および固
定ゾンデ3、4、5、6の吸引配管7の途中には、図2
に示すとおり、未燃微粉炭採取のためダストフィルター
8が設けられている。なお、9はガス分析装置(ガスク
ロマトグラフ)、10は配管7のパージ用の窒素ガスラ
インである。ダストフィルター8は、耐熱濾布エレメン
ト(5μ)、または金属エレメント(40μ程度)と濾
紙エレメント(5μ)の直列よりなっており、スキンフ
ローティングゾンデ1および固定ゾンデ3、4、5、6
によるガス吸引と同じタイミングで炉内ダストのサンプ
リングを実施できるよう構成されている。
Embodiment 1 Details of the present invention will be described below with reference to FIGS. 1 and 2 showing an example of an embodiment. FIG. 1 is a schematic sectional view of a furnace top portion of a blast furnace equipped with an apparatus for carrying out the method of the present invention, and FIG. 2 is an explanatory view showing a dust sampling method. In FIG. 1, reference numeral 1 is a skin floating sonde for performing gas sampling in the circumferential direction in a space above the charge of the blast furnace top 2, 3, 4,
Reference numerals 5 and 6 are fixed sondes for performing gas sampling in the radial direction. In the middle of the suction piping 7 of the skin floating sonde 1 and the fixed sondes 3, 4, 5, and 6, FIG.
As shown in, a dust filter 8 is provided for collecting unburned pulverized coal. In addition, 9 is a gas analyzer (gas chromatograph), and 10 is a nitrogen gas line for purging the pipe 7. The dust filter 8 is composed of a heat-resistant filter cloth element (5μ) or a metal element (about 40μ) and a filter paper element (5μ) connected in series. The skin floating sonde 1 and the fixed sonde 3, 4, 5, 6
It is configured so that the sampling of dust in the furnace can be performed at the same timing as the gas suction by.

【0011】上記のとおり構成したから、スキンフロー
ティングゾンデ1および固定ゾンデ3、4、5、6によ
る円周方向および半径方向のガスサンプリングと同じタ
イミングで、ダストフィルター8によって炉内ダストの
サンプリングを実施でき、スキンフローティングゾンデ
1および固定ゾンデ3、4、5、6による円周方向およ
び半径方向のガスデータと対応する円周方向および半径
方向のダストデータを対応させて解析することによっ
て、微粉炭の燃焼状況を高精度で把握することができ
る。したがって、この解析結果に基いて高炉の半径方向
装入物の分布制御および羽口毎の微粉炭吹込み量、酸素
吹込み量または送風量の調整等、吹込み微粉炭の燃焼制
御を実施することによって、炉内円周方向、半径方向で
の均一な吹込み微粉炭の燃焼を達成することができる。
With the above configuration, the dust filter 8 samples the dust in the furnace at the same timing as the circumferential and radial gas sampling by the skin floating sonde 1 and the fixed sondes 3, 4, 5, and 6. Yes, by analyzing the circumferential and radial dust data corresponding to the skin floating sonde 1 and the fixed sondes 3, 4, 5, and 6 and the corresponding circumferential and radial dust data, The combustion status can be grasped with high accuracy. Therefore, based on the results of this analysis, the distribution control of the radial charge of the blast furnace and the control of combustion of the injected pulverized coal, such as the adjustment of the pulverized coal injection amount, oxygen injection amount or blown air amount for each tuyere, are performed. This makes it possible to achieve uniform combustion of blown pulverized coal in the circumferential and radial directions in the furnace.

【0012】実施例2 内容積2700m3、コークス比380kg/銑鉄P−
t、微粉炭吹込み量120kg/銑鉄P−t、出銑量5
500t/Dの高炉において、スキンフローゾンデのガ
ス温度、ガス組成およびダストデータに基き、羽口毎の
微粉炭吹込み量の調整を実施した。その結果を図3
(b)図および図4(b)図に示す。この高炉は、図3
(a)図に示すとおり、円周方向8方位にスキンフロー
ゾンデが設置され、図4(a)図に示すとおり、No.
1〜No.28の羽口から送風、微粉炭吹込みが実施さ
れている。また、微粉炭吹込み量は、No.1〜No.
28羽口の各吹込み支管に設けた流量調整弁によって、
各吹込み支管毎に流量調整が実施できる。
Example 2 Internal volume 2700 m 3 , coke ratio 380 kg / pig iron P-
t, pulverized coal injection amount 120 kg / pig iron P-t, tapping amount 5
In a blast furnace of 500 t / D, the amount of pulverized coal injected for each tuyere was adjusted based on the gas temperature, gas composition and dust data of the skin flow sonde. The result is shown in Figure 3.
It is shown in FIG. 4 (b) and FIG. 4 (b). This blast furnace is shown in Figure 3.
As shown in FIG. 4 (a), skin flow sondes are installed in eight directions in the circumferential direction, and as shown in FIG.
1-No. Air is blown and pulverized coal is injected from 28 tuyere. The pulverized coal injection amount was 1-No.
By the flow control valve provided in each of the 28 tuyere blowing branch pipes,
The flow rate can be adjusted for each blow branch pipe.

【0013】図3(b)図に示すとおり、微粉炭吹込み
量の調整前は、南西ないし西にかけてCで示す微粉炭由
来のカーボン量が多く、また、Dで示す吸引ガス中のC
O/CO2も高く、この方位での微粉炭燃焼効率が低い
ことが判明した。この時の羽口毎の微粉炭吹込み量分布
は、図4(b)図にEで示すとおり、南西〜西の羽口N
o.18〜No.25の吹込み量が多い状況であった。
そこで、羽口No.1〜No.5および羽口No.18
〜No.25の吹込み支管に設けた流量調整弁を絞り、
図4(b)図にFで示すとおり、羽口毎の微粉炭吹込み
量が均一となるよう調整した。その結果、図3(b)図
に示すとおり、南西〜西のGで示す微粉炭由来のカーボ
ン量が低下し、Hで示す吸引ガス中のCO/CO2も低
下し、吹込み微粉炭の燃焼が改善された。
As shown in FIG. 3 (b), before the adjustment of the pulverized coal injection amount, the amount of pulverized coal-derived carbon indicated by C is large from southwest to west, and C in the suction gas indicated by D is large.
O / CO 2 was also high, and it was found that the pulverized coal combustion efficiency in this direction was low. At this time, the pulverized coal blowing amount distribution for each tuyere is as shown in FIG.
o. 18-No. There was a large amount of 25 blown in.
Therefore, the tuyere No. 1-No. 5 and tuyere No. 18
~ No. Throttle the flow control valve provided in the blow-in branch pipe of 25,
As indicated by F in FIG. 4 (b), the amount of pulverized coal injected for each tuyere was adjusted to be uniform. As a result, as shown in FIG. 3 (b), the amount of pulverized coal-derived carbon shown by G in the southwest to the west is reduced, and CO / CO 2 in the suction gas shown by H is also reduced. Improved combustion.

【0014】なお、本実施例における微粉炭由来のカー
ボン量は、採取したダストを樹脂に埋込み、顕微鏡観察
により未燃微粉炭は多孔質未燃チャートと判定して求め
た。また、本実施例2においては、羽口毎の微粉炭吹込
み量による調整の場合を示したが、羽口毎の酸素吹込み
量、送風量の調整により微粉炭の燃焼改善を実施するこ
ともできる。さらに、半径方向で微粉炭の燃焼不均一が
観察された場合は、装入物分布の調整によって、半径方
向のガス流分布を制御することにより、半径方向の微粉
炭の燃焼制御を実施することも可能である。
The carbon amount derived from pulverized coal in this example was determined by embedding the collected dust in a resin and observing unburned pulverized coal as a porous unburned chart by observing with a microscope. Further, in the second embodiment, the case of adjusting the pulverized coal injection amount for each tuyere has been described, but the combustion of pulverized coal should be improved by adjusting the oxygen injection amount and blown air amount for each tuyere. You can also Furthermore, if uneven combustion of pulverized coal is observed in the radial direction, the combustion control of the pulverized coal in the radial direction should be performed by controlling the gas flow distribution in the radial direction by adjusting the charge distribution. Is also possible.

【0015】[0015]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、微粉炭吹込み高炉における微粉炭の燃焼改善を図る
ことができ、高炉のエネルギー原単位の低減、円周方
向、半径方向の不均一性が改善され、高炉の安定操業を
達成することができる。
As described above, according to the method of the present invention, it is possible to improve the combustion of pulverized coal in the pulverized coal injection blast furnace, reduce the energy consumption rate of the blast furnace, and reduce the circumferential and radial defects. Uniformity is improved and stable operation of the blast furnace can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明方法を実施する装置を備えた高炉炉頂
部の概略断面図である。
FIG. 1 is a schematic sectional view of a blast furnace top equipped with an apparatus for carrying out the method of the present invention.

【図2】実施例1のダストサンプリング方法を示す説明
図である。
FIG. 2 is an explanatory diagram showing a dust sampling method according to the first embodiment.

【図3】実施例2におけるとスキンフローゾンデの設置
位置と本発明方法実施前後のスキンフローゾンデのデー
タを示すもので、(a)図はスキンフローゾンデの設置
位置図、(b)図は本発明方法実施前後のスキンフロー
ゾンデのデータを示すグラフである。
FIG. 3 shows the installation position of the skin flow sonde and the data of the skin flow sonde before and after the method of the present invention in Example 2, (a) is the installation position of the skin flow sonde, and (b) is the diagram. It is a graph which shows the data of the skin flow sonde before and behind execution of the method of the present invention.

【図4】実施例2におけると羽口の設置位置と本発明方
法実施前後の各羽口毎の微粉炭吹込み量分布のデータを
示すもので、(a)図は羽口の設置位置図、(b)図は
本発明方法実施前後の各羽口毎の微粉炭吹込み量分布の
データデータを示すグラフである。
FIG. 4 shows the tuyere installation position and the data of the pulverized coal blowing amount distribution for each tuyere before and after the method of the present invention in Example 2, and FIG. 4 (a) is a tuyere installation position diagram. , (B) are graphs showing data data of the pulverized coal injection amount distribution for each tuyere before and after the method of the present invention.

【符号の説明】[Explanation of symbols]

1 スキンフローゾンデ 2 高炉炉頂部 3,4,5,6 固定ゾンデ 7 吸引配管 8 ダストフィルター 9 ガス分析装置 10 窒素ガスライン 1 Skin Flow Sonde 2 Top of Blast Furnace 3, 4, 5, 6 Fixed Sonde 7 Suction Pipeline 8 Dust Filter 9 Gas Analyzer 10 Nitrogen Gas Line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 微粉炭吹込み高炉の操業方法において、
炉内ガスサンプリング用ゾンデのガスサンプリング配管
途中にダスト採取用フィルターを設け、ガス組成および
ガス温度のデータと同タイミングで、炉内ガス中のダス
トを採取分析して高炉の円周方向、半径方向での吹込み
微粉炭の燃焼状況を解析し、該解析結果に基いて高炉の
半径方向装入物の分布制御、羽口毎の微粉炭吹込み量ま
たは送風量を調整することを特徴とする微粉炭吹込み高
炉の操業方法。
1. A method of operating a pulverized coal blowing blast furnace, comprising:
A dust sampling filter is installed in the gas sampling pipe of the furnace gas sampling sonde, and dust in the furnace gas is sampled and analyzed at the same timing as the data of the gas composition and gas temperature, in the circumferential and radial directions of the blast furnace. Is characterized by analyzing the combustion state of pulverized coal blown in, and controlling the distribution of the blast furnace radial charge based on the analysis result, and adjusting the pulverized coal blow-in amount or blown air amount for each tuyere. Operation method of pulverized coal injection blast furnace.
JP7513092A 1992-02-25 1992-02-25 Operation method for blast furnace of pulverized coal injection type Pending JPH05239512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7513092A JPH05239512A (en) 1992-02-25 1992-02-25 Operation method for blast furnace of pulverized coal injection type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7513092A JPH05239512A (en) 1992-02-25 1992-02-25 Operation method for blast furnace of pulverized coal injection type

Publications (1)

Publication Number Publication Date
JPH05239512A true JPH05239512A (en) 1993-09-17

Family

ID=13567310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7513092A Pending JPH05239512A (en) 1992-02-25 1992-02-25 Operation method for blast furnace of pulverized coal injection type

Country Status (1)

Country Link
JP (1) JPH05239512A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389240B1 (en) * 2000-09-08 2003-06-27 주식회사 포스코 Gas density control method of blast furnace bottom
JP2014031568A (en) * 2012-07-12 2014-02-20 Jfe Steel Corp Blast furnace operation method
CN109055635A (en) * 2018-10-10 2018-12-21 鞍钢股份有限公司 A kind of blowing method improving Combustion Efficiency of Coal Powder
KR20200132959A (en) * 2018-03-28 2020-11-25 제이에프이 스틸 가부시키가이샤 Blast furnace equipment and operation method of blast furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389240B1 (en) * 2000-09-08 2003-06-27 주식회사 포스코 Gas density control method of blast furnace bottom
JP2014031568A (en) * 2012-07-12 2014-02-20 Jfe Steel Corp Blast furnace operation method
KR20200132959A (en) * 2018-03-28 2020-11-25 제이에프이 스틸 가부시키가이샤 Blast furnace equipment and operation method of blast furnace
US11512899B2 (en) 2018-03-28 2022-11-29 Jfe Steel Corporation Blast furnace apparatus and operation method for blast furnace
CN109055635A (en) * 2018-10-10 2018-12-21 鞍钢股份有限公司 A kind of blowing method improving Combustion Efficiency of Coal Powder

Similar Documents

Publication Publication Date Title
CN101550479B (en) System for controlling atmosphere gas inside furnace
JPH05239512A (en) Operation method for blast furnace of pulverized coal injection type
Andersen et al. Pilot-Scale Test of Flue Gas Recirculation for The Silicon Process
CN205133650U (en) System for iron -smelting of gas making flash
CN206502833U (en) OG methods pneumatic steelmaking coal gas complete recovering technique and its control system
CA1089222A (en) Blast furnace testing and control methods
JPS63192451U (en)
CN208537256U (en) SO in a kind of coke oven flue gas2Content detection system
Farrand et al. Post combustion trials at Dofascós KOBM furnace
JPS6043886B2 (en) Waste gas recovery method in converter waste gas treatment equipment
CN116189801A (en) Blast furnace energy consumption monitoring and hydrogen-rich smelting prediction method based on Rist operation line
US3681052A (en) Method for controlling the treatment of exhaust gases in oxygen top-blowing converter
Turner et al. The application of simultaneous TG-DTA to the determination of the fate of injected coal in a pilot-scale blast furnace simulation rig
Abramenko et al. System for continuously monitoring gas composition over the radius of the top of blast furnaces
JPH07126648A (en) Method for removing soot between gas mixing chamber and high-temperature tuyere in vertically formed coke dry distillation oven
JP3756432B2 (en) Gas recovery method during dephosphorization operation in converter exhaust gas treatment facility for decarburization blowing
JPS5938425Y2 (en) Blast furnace circumferential deviation detection device
CN110863078A (en) Method for recovering coal gas of vanadium extraction converter
CN117612624A (en) Converter endpoint carbon content judging method based on flue gas analysis
JPS6263610A (en) Treatment of gas produced in metallic bath gasifying furnace
SU1254270A1 (en) Arrangement for removing gases from electric arc furnace
CN113984127A (en) Real-time monitoring system and method for electric furnace steelmaking flue gas
CN117272681A (en) Method for determining blast furnace smelting process parameters of blowing valuable gas at tuyere
Sleptsov et al. Investigation of the Completeness of Utilization of Natural Gas in the Blast-Furnace Process by a Method Based on Stable Carbon Isotopes
KR950010236B1 (en) Method of coal powder burning with blast f'ce