JP2008214735A - Method for operating blast furnace - Google Patents

Method for operating blast furnace Download PDF

Info

Publication number
JP2008214735A
JP2008214735A JP2007058124A JP2007058124A JP2008214735A JP 2008214735 A JP2008214735 A JP 2008214735A JP 2007058124 A JP2007058124 A JP 2007058124A JP 2007058124 A JP2007058124 A JP 2007058124A JP 2008214735 A JP2008214735 A JP 2008214735A
Authority
JP
Japan
Prior art keywords
gas
blast furnace
furnace
shaft
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007058124A
Other languages
Japanese (ja)
Other versions
JP4702309B2 (en
JP2008214735A5 (en
Inventor
Michitaka Sato
道貴 佐藤
Yasuhei Nouchi
泰平 野内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007058124A priority Critical patent/JP4702309B2/en
Publication of JP2008214735A publication Critical patent/JP2008214735A/en
Publication of JP2008214735A5 publication Critical patent/JP2008214735A5/ja
Application granted granted Critical
Publication of JP4702309B2 publication Critical patent/JP4702309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide a method for operating a blast furnace by which even in performing operation having low reducing material ratio, malfunction of furnace condition, especially defective temperature rise at the upper part of the furnace can be avoided. <P>SOLUTION: The method for operating a blast furnace is used in blast furnace operation in which hot-blast blowing having ≤10 vol% oxygen-enriching ratio from tuyeres 2 is performed, the method is characterized in that when the furnace top temperature becomes ≤110°C, gas having quantity of ≤10 vol% of the furnace top gas (c) quantity is blown into the blast furnace from the upper part of the blast furnace shaft as the shaft gas, It is desirable that the blast furnace generating gas stocked in a gas holder in the iron-making plant or gaseous mixture (g) of the blast furnace generating gas and a coke-furnace generating gas or a part of circulating furnace top gas is blown as the shaft gas. Further, it is desirable that the shaft gas is blown after removing carbon dioxide and the shaft gas is blown after being heated to ≥500°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、安定した低還元材比操業を実施するための高炉の操業方法に関する。   The present invention relates to a method for operating a blast furnace for performing a stable operation with a low reducing material ratio.

近年、地球環境問題を背景として、製鉄所においても炭酸ガス(CO2)発生抑制が強く要求されている。これを受け、最近の高炉操業では低還元材比(低RAR)操業が強力に推進されている。しかしながら、RAR(Reduction Agent Ratio:銑鉄1t製造当たりの、微粉炭、廃プラ、LNG、重油などの吹き込み燃料と炉頂から装入されるコークスの合計量)が低下すると、原理的に送風量が低下し、この結果、シャフト上部においては装入物の昇温が遅れ、順調な還元が達成されなくなるばかりか、亜鉛化合物などの壁付きが助長され風圧変動や荷下がり異常などの炉況不調を招くことが懸念されている。また炉頂温度が低下して100℃を割り込むような場合には、排ガス中の水分が配管内に凝縮する問題が生じる。 In recent years, there has been a strong demand for suppression of carbon dioxide (CO 2 ) generation at steelworks against the background of global environmental problems. In response to this, in recent blast furnace operations, low-reducing material ratio (low RAR) operations are being strongly promoted. However, when the RAR (Reduction Agent Ratio: the total amount of injected fuel such as pulverized coal, waste plastic, LNG, and heavy oil and coke charged from the top of the furnace per 1 ton of pig iron) decreases, As a result, the temperature rise of the charged material is delayed at the upper part of the shaft and smooth reduction is not achieved, and the addition of a wall of zinc compound is promoted, resulting in furnace conditions such as wind pressure fluctuations and unloading abnormalities. There is concern about inviting. In addition, when the furnace top temperature decreases and falls below 100 ° C., there is a problem that moisture in the exhaust gas is condensed in the pipe.

通常の高炉操業において、上記のような各種炉況不調、特に炉上部の昇温不良を回避するには、
(a)酸素富化率を下げ、ガス量を増す(熱流比を下げ、ガス温度を上昇させる)
(b)微粉炭など燃料吹き込み量を増す(熱流比を下げ、ガス温度を上昇させる)
(c)還元効率(シャフト効率)を下げ、還元材比を高くする
などの対策がとられるのが通例である。しかしながら、上記(a)の対策は生産量低下に繋がるため望ましくない。上記(b)は吹き込み能力の余裕代に依存するが、能力限界近くで操業している製鉄所では、その増加量に制約がある。また燃料吹き込み量を増した場合には、ボッシュガス量が増え生産量を低下させるため、酸素富化を同時に実施する必要がある。しかし、使用できる酸素量にも供給能力上の制限がある。上記(c)はわざわざ効率を下げた操業を指向することで、CO2削減に関する本来の目的に逆行する。
In normal blast furnace operation, in order to avoid the above-mentioned various furnace conditions, especially the temperature rise failure at the top of the furnace,
(A) Decrease oxygen enrichment and increase gas volume (lower heat flow ratio and increase gas temperature)
(B) Increase the amount of pulverized coal or other fuel injected (lower the heat flow ratio and increase the gas temperature)
(C) Usually, measures such as reducing the reduction efficiency (shaft efficiency) and increasing the reducing material ratio are taken. However, the measure (a) is not desirable because it leads to a decrease in production. The above (b) depends on the margin of the blowing capacity, but the amount of increase is limited in the steelworks operating near the capacity limit. Further, when the amount of fuel injected is increased, the amount of Bosch gas increases and the production volume decreases, so it is necessary to simultaneously enrich oxygen. However, the amount of oxygen that can be used is limited in terms of supply capacity. The above (c) goes back to the original purpose related to CO 2 reduction by aiming at the operation with reduced efficiency.

一方、純酸素送風を前提とした酸素高炉プロセスにおいては、原理的に高炉内を通過するガス量が少なくなるため、本質的に炉上部の昇温が困難なプロセスである。この炉上部温度を上昇させる方法としては、炉頂ガスを一部循環させてシャフト上部へ吹き込む方法(例えば、特許文献1、非特許文献1参照。)を用いることができる。
特開昭62−27509号公報 大野ら著 「鉄と鋼」日本鉄鋼協会 75(1989年)、p.1278
On the other hand, the oxygen blast furnace process premised on pure oxygen blowing is a process in which it is essentially difficult to raise the temperature of the upper part of the furnace because the amount of gas passing through the blast furnace is reduced in principle. As a method for raising the furnace top temperature, a method in which a part of the furnace top gas is circulated and blown into the top of the shaft (see, for example, Patent Document 1 and Non-Patent Document 1) can be used.
JP-A-62-27509 Ohno et al. "Iron and Steel" The Japan Steel Association 75 (1989), p. 1278

上記のように、低RAR操業を行なう場合は、通常の操業範囲内での操業条件の変更で各種炉況不調、特に炉上部の昇温不良を回避することは困難である。   As described above, when performing a low RAR operation, it is difficult to avoid various furnace conditions, particularly temperature rise failures in the upper part of the furnace, by changing the operating conditions within the normal operating range.

一方で、純酸素送風を前提とした酸素高炉プロセスにおいては、高炉内を通過するガス量は高々800〜900m3(標準状態:以下単にNm3と記載する。)/tと極めて少ないため、炉上部を昇温させるためのシャフト上部吹き込みガス量は300〜400Nm3/tとかなり膨大なものとなり、またガス温度も約1000℃まで高める必要がある。このため、大型の昇圧装置、昇温装置などの付帯設備を必要とし、純酸素送風を行なう場合に炉頂ガスを一部循環させてシャフト上部へ吹き込む方法で炉上部を昇温させることは経済的でない。 On the other hand, in the oxygen blast furnace process on the premise of pure oxygen blowing, the amount of gas passing through the blast furnace is at most 800 to 900 m 3 (standard state: hereinafter simply described as Nm 3 ) / t. The amount of gas blown into the upper part of the shaft for raising the temperature of the upper part is as extremely large as 300 to 400 Nm 3 / t, and the gas temperature needs to be raised to about 1000 ° C. For this reason, auxiliary equipment such as a large pressure booster and temperature riser is required, and it is economical to raise the temperature of the furnace upper part by circulating part of the furnace top gas and blowing it to the upper part of the shaft when pure oxygen is blown Not right.

したがって本発明の目的は、上述のような従来技術の課題を解決し、低RAR操業を行なう場合であっても、炉況不調、特に炉上部の昇温不良を回避することのできる高炉の操業方法を、低コストで提供することにある。   Accordingly, an object of the present invention is to solve the problems of the prior art as described above, and to operate a blast furnace that can avoid a poor furnace condition, particularly a temperature rise failure in the upper part of the furnace, even when low RAR operation is performed. It is to provide a method at a low cost.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)酸素富化率が10体積%以下の羽口熱風吹込みを行なっている高炉操業において、炉頂温度が110℃以下となった場合、炉頂ガス量の10体積%以下の量のガスをシャフトガスとして高炉シャフト上部から高炉内に吹き込むことを特徴とする高炉の操業方法。
(2)シャフトガスとして、酸素を含まないガスを用いることを特徴とする(1)に記載の高炉の操業方法。
(3)シャフトガスとして、製鉄所でガスホルダーに貯蔵されている高炉発生ガス、または高炉発生ガスとコークス炉発生ガスとの混合ガスを吹き込むことを特徴とする(2)に記載の高炉の操業方法。
(4)シャフトガスとして、炉頂ガスの一部を循環させて吹き込むことを特徴とする(2)に記載の高炉の操業方法。
(5)シャフトガスを脱炭酸後に吹き込むことを特徴とする(3)または(4)に記載の高炉の操業方法。
(6)シャフトガスを500℃以上に加熱して吹き込むことを特徴とする(1)ないし(5)のいずれかに記載の高炉の操業方法。
The features of the present invention for solving such problems are as follows.
(1) In blast furnace operation in which tuyere hot air blowing with an oxygen enrichment rate of 10% by volume or less is performed, when the furnace top temperature is 110 ° C. or less, the amount of the volume of the furnace top gas is 10% by volume or less. A method of operating a blast furnace, characterized in that gas is injected into the blast furnace from the top of the blast furnace shaft as shaft gas.
(2) The method for operating a blast furnace according to (1), wherein a gas not containing oxygen is used as the shaft gas.
(3) The operation of the blast furnace as described in (2), characterized in that a blast furnace generated gas stored in a gas holder at a steel mill or a mixed gas of blast furnace generated gas and coke oven generated gas is blown as shaft gas. Method.
(4) A method for operating a blast furnace according to (2), wherein a part of the furnace top gas is circulated and blown as the shaft gas.
(5) The method for operating a blast furnace according to (3) or (4), wherein the shaft gas is blown after decarboxylation.
(6) The method for operating a blast furnace according to any one of (1) to (5), wherein the shaft gas is heated to 500 ° C. or more and blown.

本発明によれば、低RAR操業時の装入物の昇温不良、あるいは炉頂温度低下時の水分凝縮等のトラブルに対してフレキシブルに対応でき、低RAR操業を安定的に継続して行なうことができる。また、脱炭酸技術を組み合わせることで製鉄所から発生するCO2量を大きく削減でき、地球環境保全に貢献できる。 According to the present invention, it is possible to flexibly deal with troubles such as poor heating of the charged material during low RAR operation or moisture condensation when the furnace top temperature is lowered, and low RAR operation is stably continued. be able to. Also, by combining decarbonation technology, the amount of CO 2 generated from steelworks can be greatly reduced, contributing to global environmental conservation.

本発明の一実施形態を図1に示す。   One embodiment of the present invention is shown in FIG.

図1は、高炉およびその周辺設備の概略図である。本発明においては炉上部を昇温させるためにシャフト上部から高炉内にガス吹込みを行うこととし、そのために高炉の羽口送風の酸素富化率が10体積%以下での操業を前提とする。前述したように、酸素富化率が増加するに従い、高炉内を通過するガス量が減り、シャフト上部を昇温するために必要なシャフト上部吹き込みガス(以下、「シャフトガス」と記載する。)量が大幅に増加するためである。このような低酸素富化率での条件下で操業を行ない、炉頂温度が110℃以下となった場合に、炉頂ガス温度を上昇させ得る量のシャフトガスをシャフト上部から吹き込むことで、炉頂温度を上昇させる。なお、シャフト部とは高炉の上部から下方にかけて下広がりになった部分である。   FIG. 1 is a schematic view of a blast furnace and its peripheral equipment. In the present invention, gas is blown into the blast furnace from the upper part of the shaft in order to raise the temperature of the upper part of the furnace. For this purpose, it is assumed that the oxygen enrichment rate of the blast furnace air blow is 10% by volume or less. . As described above, as the oxygen enrichment rate increases, the amount of gas passing through the blast furnace decreases, and the shaft top blowing gas (hereinafter referred to as “shaft gas”) required to raise the temperature of the shaft upper portion. This is because the amount increases significantly. By operating under such a low oxygen enrichment rate, when the furnace top temperature is 110 ° C. or lower, by blowing in an amount of shaft gas from the top of the shaft that can raise the furnace top gas temperature, Increase the furnace top temperature. The shaft portion is a portion that spreads downward from the upper part of the blast furnace.

図1において、高炉1は羽口2から熱風aを吹込む操業を行なっている。溶銑温度(HMT)は約1500℃である。熱風aの酸素富化率は10体積%以下であり、熱風aとともに微粉炭やLNG等bの吹き込みも行なっている。炉頂ガスcの温度をモニターし、炉頂温度の低下を検知する。炉頂温度が110℃以下になった際には、ガスクリーニング装置3によりダストや水分dを除去した炉頂ガスcの一部について、必要に応じて脱炭酸装置4で脱炭酸を行ないCO2eを除去し、燃焼炉5で酸素fを加えてその一部を燃焼させることで加熱して、シャフト部上部からシャフトガスhとして高炉に吹込む。炉頂ガスcの替わりに、または炉頂ガスcに加えて、ガスホルダー6から高炉発生ガス(Bガス)、または高炉発生ガスとコークス炉発生ガス(Cガス)との混合ガスgを燃焼炉5で加熱して、シャフト部上部からシャフトガスとして高炉に吹込むこともできる。これにより炉頂温度を急速に上昇させることができ、操業の定常状態の炉頂温度へと回復させることができる。 In FIG. 1, a blast furnace 1 performs an operation of blowing hot air a from a tuyere 2. The hot metal temperature (HMT) is about 1500 ° C. The oxygen enrichment rate of the hot air a is 10% by volume or less, and pulverized coal, LNG or the like b is blown together with the hot air a. The temperature of the furnace top gas c is monitored and a decrease in the furnace top temperature is detected. When the furnace top temperature becomes 110 ° C. or lower, a part of the furnace top gas c from which dust and moisture d have been removed by the gas cleaning device 3 is decarboxylated by the decarbonation device 4 as necessary, and CO 2. e is removed, oxygen f is added in the combustion furnace 5 and a part thereof is burned and heated, and blown into the blast furnace as shaft gas h from the upper part of the shaft. Instead of or in addition to the furnace top gas c, a blast furnace generated gas (B gas), or a mixed gas g of blast furnace generated gas and coke oven generated gas (C gas) from the gas holder 6 is a combustion furnace. It can also heat by 5 and can inject into a blast furnace as shaft gas from a shaft part upper part. As a result, the furnace top temperature can be rapidly increased, and the furnace top temperature can be restored to a steady state of operation.

シャフトガスの吹き込み量は、炉頂ガス温度を40℃程度以上、上昇できる量であれば十分である。図2に標準的な高炉操業条件におけるシャフトガス吹き込み率(シャフトガス吹き込み量の炉頂ガス全量に対する比)と炉頂温度上昇効果の関係を示す。図2によれば、炉頂ガス温度を40℃上昇させるために必要な条件は、シャフトガス温度が400℃の場合、吹き込み率は約12体積%であるが、シャフトガス温度が高温になるほど少なくて済み、例えばシャフトガス温度が1000℃のときは約3体積%となっている。但し、シャフトガス吹き込みによる高炉内の固体温度を低下させない観点から、シャフトガス温度は500℃以上であることが望ましい。シャフトガス温度が500℃の場合に炉頂ガス温度を40℃上昇させるための吹き込み率は約8体積%であり、よって、操業の変動等を考慮してもシャフトガスの吹き込み率は10体積%以下であれば十分である。この程度の吹き込み量に限定することにより、例えば非特許文献1に記載されているように、炉頂ガスを多量に循環使用する場合に比べて、吹き込みに要する動力(昇圧)、脱炭酸に要する吸収材等の使用量、および動力を大幅に削減することができる。   The amount of shaft gas blown in is sufficient if the furnace top gas temperature can be raised by about 40 ° C. or more. FIG. 2 shows the relationship between the shaft gas blowing rate (ratio of the shaft gas blowing amount to the total amount of furnace top gas) and the effect of raising the furnace top temperature under standard blast furnace operating conditions. According to FIG. 2, the necessary condition for raising the furnace top gas temperature by 40 ° C. is that when the shaft gas temperature is 400 ° C., the blowing rate is about 12% by volume, but the condition becomes smaller as the shaft gas temperature becomes higher. For example, when the shaft gas temperature is 1000 ° C., it is about 3% by volume. However, the shaft gas temperature is preferably 500 ° C. or higher from the viewpoint of not lowering the solid temperature in the blast furnace due to the shaft gas blowing. When the shaft gas temperature is 500 ° C., the blowing rate for raising the furnace top gas temperature by 40 ° C. is about 8% by volume. Therefore, the shaft gas blowing rate is 10% by volume even if the fluctuation of operation is taken into consideration. The following is sufficient. By limiting to this amount of blowing, for example, as described in Non-Patent Document 1, compared with the case where a large amount of furnace top gas is circulated and used, the power required for blowing (pressure increase) and decarbonation are required. The amount of absorbent material used and power can be greatly reduced.

シャフトガスの吹き込み位置はシャフト上部であり、高炉本体の高さのおよそ上部1/3以内の領域(炉内容積5000m3クラスの高炉では装入面から、装入面の下方約10m以内の領域)であればよい。 Blowing position of the shaft gas is shaft top, from the loading surface in the blast furnace of approximately upper third region within (furnace capacity 5000 m 3 classes of blast furnace body height, a region within approximately lower SoIrimen 10m ).

シャフトガスの吹き込み方法に関しては、高炉操業条件(炉上部温度上昇アクション、例えば酸素富化率、微粉炭吹き込み量など)を変更しない場合はシャフトガス吹き込みを停止すると効果が失われるため、連続吹き込みが前提となる。シャフトガス吹き込みを実施中に高炉操業条件を変更する場合は、炉上部温度上昇が見込まれた時点でシャフトガス吹き込みを停止すればよい。   With regard to the shaft gas blowing method, if the blast furnace operating conditions (furnace upper temperature rise action, such as oxygen enrichment rate, pulverized coal blowing amount, etc.) are not changed, the effect will be lost if the shaft gas blowing is stopped. It is a premise. When changing the operating conditions of the blast furnace during the shaft gas blowing, the shaft gas blowing may be stopped when the temperature rise in the upper furnace is expected.

シャフトガスとして、酸素を含まないガスを用いることが好ましい。酸素を含むガスを用いると、還元中の鉄酸化物(Fe23、FeO)を再酸化させるためである。尚、酸素を含まないガスとは、O2としての酸素ガスを含まないガスであることを意味する。 It is preferable to use a gas that does not contain oxygen as the shaft gas. This is because when a gas containing oxygen is used, the iron oxide (Fe 2 O 3 , FeO) being reduced is reoxidized. Incidentally, the gas not containing oxygen means a gas not containing oxygen gas as O 2 .

シャフトガスとして、製鉄所でガスホルダーに貯蔵されている高炉発生ガス(Bガス)、または高炉発生ガスとコークス炉発生ガス(Cガス)の混合ガスを用いることができる。高炉で発生する副生ガスであるBガス(主成分CO、CO2、N2)およびコークス炉で発生する副生ガスであるCガス(主成分水素、メタン)は製鉄所で多量に発生、または貯蔵されているので、シャフトガスとして用いることで有効利用が可能である。このBガス、またはBガスとCガスとの混合ガスは、そのまま昇圧して吹き込むか、脱炭酸した後に高炉に吹き込む。脱炭酸することでCO主体の高カロリーガスとなるため、燃焼炉で使用する酸素量を減らすことができる。また脱炭酸されたCO2を大気中に放散させなければ地球環境保全に貢献できる。 As the shaft gas, a blast furnace generated gas (B gas) stored in a gas holder at an ironworks or a mixed gas of a blast furnace generated gas and a coke oven generated gas (C gas) can be used. B gas (main component CO, CO 2 , N 2 ), which is a by-product gas generated in the blast furnace, and C gas (main component hydrogen, methane), which is a by-product gas generated in the coke oven, are generated in large quantities at the steelworks. Or, since it is stored, it can be effectively used as a shaft gas. This B gas or a mixed gas of B gas and C gas is blown up as it is, or blown into a blast furnace after decarboxylation. Decarbonation results in a high-calorie gas mainly composed of CO, so that the amount of oxygen used in the combustion furnace can be reduced. Moreover, if the decarboxylated CO 2 is not released into the atmosphere, it can contribute to the conservation of the global environment.

またはシャフトガスとして、ガスホルダーに貯蔵されている高炉発生ガス(Bガス)でなく、高炉発生ガス(炉頂ガス)を直接、高炉の炉頂配管から一部を分岐して、そのまま昇圧して吹き込むか、脱炭酸後に吹き込むことも好ましい。炉頂ガスには、さらにガスホルダーに貯蔵されている高炉発生ガス(Bガス)やコークス炉発生ガス(Cガス)を混合して吹込むこともできる。   Or, as shaft gas, instead of the blast furnace generated gas (B gas) stored in the gas holder, the blast furnace generated gas (furnace top gas) is directly branched from the blast furnace top piping and partially pressurized. It is also preferable to blow in or after decarboxylation. Blast furnace generated gas (B gas) and coke oven generated gas (C gas) stored in a gas holder can be mixed and blown into the furnace top gas.

シャフトガスを吹込む場合、前述の理由でシャフトガス温度は500℃程度以上とすることが好ましいが、シャフトガスを加熱する際の加熱方式は時に限定されるものではなく、重油やLNGを燃料とした間接加熱方式の燃焼炉、シャフトガスそのもの(BガスおよびCガス)を酸素と混合して燃焼して昇温する直接加熱方式などを採用すればよい。   When the shaft gas is blown, the shaft gas temperature is preferably about 500 ° C. or more for the above-mentioned reasons, but the heating method for heating the shaft gas is not limited at times, and heavy oil or LNG is used as fuel. An indirect heating type combustion furnace, a direct heating method in which shaft gas itself (B gas and C gas) is mixed with oxygen and burned to increase the temperature may be employed.

炉内容積5000m3の高炉において、通常の操業ではLNG吹き込み量を25kg/t、酸素富化率6体積%で操業を行っていた。増産要求に応えるため、LNG吹き込み量を30kg/tまで増量すると同時に酸素富化率を8体積%まで増加させたところ、炉頂温度が130℃から105℃へと急激に低下し、昇温不良に伴う通気変動が検知されるようになり、かつ配管内への水分の凝縮も問題となった。 In a blast furnace with a furnace volume of 5000 m 3 , in normal operation, the operation was performed with an LNG blowing rate of 25 kg / t and an oxygen enrichment rate of 6% by volume. In order to meet the demand for increased production, the LNG blowing rate was increased to 30 kg / t and at the same time the oxygen enrichment rate was increased to 8% by volume. As a result, the furnace top temperature rapidly decreased from 130 ° C to 105 ° C, resulting in poor temperature rise. As a result, the air flow fluctuations associated with the pipes can be detected, and the condensation of moisture into the pipes has also become a problem.

そこで、シャフトガスの吹き込みを行うことにした。シャフトガスとしては高炉発生ガス(Bガス)ホルダーに貯蔵されているBガスを用いた。このBガス100Nm3/t相当を5Nm3/t相当の酸素とともに加熱炉内で混合して混合ガスとし、Bガスを部分燃焼させて混合ガスの温度を約600℃まで昇温させた。そしてこの部分燃焼混合ガスをシャフト上部(装入面から5m下方位置)から吹き込んだ。この結果、炉頂温度は急速に上昇し、定常状態では140℃に達した。 Therefore, we decided to blow shaft gas. B gas stored in a blast furnace generated gas (B gas) holder was used as the shaft gas. The B Gas 100 Nm 3 / t corresponds to a 5 Nm 3 / t equivalent mixed gas is mixed in the furnace together with oxygen, and B gas allowed to warm up to about 600 ° C. The temperature of the mixture gas by partial combustion. And this partial combustion mixed gas was blown in from the upper part of the shaft (a position 5 m below the charging surface). As a result, the furnace top temperature rose rapidly and reached 140 ° C. in a steady state.

上述の操作の結果、高炉操業の通気変動は回復し、配管内への水分の凝縮も完全に回避され、安定した操業に移行できた。   As a result of the above-mentioned operation, the fluctuation in the ventilation of the blast furnace operation was recovered, the condensation of moisture into the piping was completely avoided, and a stable operation was possible.

本発明の一実施形態を示す、高炉およびその周辺設備の概略図。The schematic of a blast furnace and its peripheral equipment which shows one Embodiment of this invention. シャフトガス吹込みによる炉頂ガス温度回復の効果を示すグラフ。The graph which shows the effect of the furnace top gas temperature recovery | restoration by shaft gas blowing.

符号の説明Explanation of symbols

1 高炉
2 羽口
3 ガスクリーニング装置
4 脱炭酸装置
5 燃焼炉
6 ガスホルダー
a 熱風
b 微粉炭やLNG等
c 炉頂ガス
d 水分
e CO2
f 酸素
g Bガス、またはBガスとCガスとの混合ガス
h シャフトガス
DESCRIPTION OF SYMBOLS 1 Blast furnace 2 tuyere 3 Gas cleaning apparatus 4 Decarbonation apparatus 5 Combustion furnace 6 Gas holder a Hot air b Pulverized coal, LNG, etc. c Furnace top gas d Moisture e CO 2
f Oxygen g B gas or mixed gas of B gas and C gas h Shaft gas

Claims (6)

酸素富化率が10体積%以下の羽口熱風吹込みを行なっている高炉操業において、炉頂温度が110℃以下となった場合、炉頂ガス量の10体積%以下の量のガスをシャフトガスとして高炉シャフト上部から高炉内に吹き込むことを特徴とする高炉の操業方法。   In blast furnace operation in which tuyere hot air blowing is performed with an oxygen enrichment rate of 10% by volume or less, when the furnace top temperature becomes 110 ° C. or less, a gas of 10% by volume or less of the furnace top gas amount is shafted. A method of operating a blast furnace, wherein gas is blown into the blast furnace from the top of the blast furnace shaft. シャフトガスとして、酸素を含まないガスを用いることを特徴とする請求項1に記載の高炉の操業方法。   The blast furnace operating method according to claim 1, wherein a gas containing no oxygen is used as the shaft gas. シャフトガスとして、製鉄所でガスホルダーに貯蔵されている高炉発生ガス、または高炉発生ガスとコークス炉発生ガスとの混合ガスを吹き込むことを特徴とする請求項2に記載の高炉の操業方法。   The operating method of a blast furnace according to claim 2, wherein a blast furnace generated gas stored in a gas holder at a steel mill or a mixed gas of a blast furnace generated gas and a coke oven generated gas is blown as the shaft gas. シャフトガスとして、炉頂ガスの一部を循環させて吹き込むことを特徴とする請求項2に記載の高炉の操業方法。   The operating method of a blast furnace according to claim 2, wherein a part of the furnace top gas is circulated and blown as the shaft gas. シャフトガスを脱炭酸後に吹き込むことを特徴とする請求項3または請求項4に記載の高炉の操業方法。   The blast furnace operating method according to claim 3 or 4, wherein the shaft gas is blown after decarboxylation. シャフトガスを500℃以上に加熱して吹き込むことを特徴とする請求項1ないし請求項5のいずれかに記載の高炉の操業方法。   6. A method for operating a blast furnace according to claim 1, wherein the shaft gas is heated to 500 ° C. or more and blown.
JP2007058124A 2007-03-08 2007-03-08 Blast furnace operation method Active JP4702309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007058124A JP4702309B2 (en) 2007-03-08 2007-03-08 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007058124A JP4702309B2 (en) 2007-03-08 2007-03-08 Blast furnace operation method

Publications (3)

Publication Number Publication Date
JP2008214735A true JP2008214735A (en) 2008-09-18
JP2008214735A5 JP2008214735A5 (en) 2010-08-12
JP4702309B2 JP4702309B2 (en) 2011-06-15

Family

ID=39835137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007058124A Active JP4702309B2 (en) 2007-03-08 2007-03-08 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP4702309B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812555A (en) * 2010-04-15 2010-08-25 山东省冶金设计院股份有限公司 Method for strengthening indirect reduction of blast furnace and method for preparing gas special for indirect reduction
CN101818218A (en) * 2010-04-15 2010-09-01 山东省冶金设计院股份有限公司 Method for reinforcing blast furnace indirect reduction and manufacturing method of special gas thereof
WO2010126172A1 (en) 2009-04-30 2010-11-04 Jfeスチール株式会社 Blast furnace operation method
WO2010126171A1 (en) 2009-04-30 2010-11-04 Jfeスチール株式会社 Blast furnace operation method, low-calorific-value gas combustion method for same, and blast furnace equipment
WO2010137748A1 (en) * 2009-05-29 2010-12-02 Jfeスチール株式会社 Blast furnace operation method
JP2010275623A (en) * 2009-04-30 2010-12-09 Jfe Steel Corp Method for operating blast furnace
JP2011032584A (en) * 2009-05-29 2011-02-17 Jfe Steel Corp Method for operating blast furnace
JP2011153371A (en) * 2009-04-30 2011-08-11 Jfe Steel Corp Blast furnace operation method
WO2011108546A1 (en) 2010-03-02 2011-09-09 Jfeスチール株式会社 Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
JP2012177141A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method for operating blast furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033305A (en) * 1983-08-04 1985-02-20 Nippon Steel Corp Operation of blast furnace
JPS62120413A (en) * 1985-11-20 1987-06-01 Nippon Kokan Kk <Nkk> Operating method for blast furnace
JPS63282203A (en) * 1987-05-15 1988-11-18 Nkk Corp Method for operating blast furnace
JPH06100911A (en) * 1992-09-17 1994-04-12 Kobe Steel Ltd Operation of blast furnace when blowing large quantity of pulverized coal
JPH06172830A (en) * 1992-12-09 1994-06-21 Nippon Steel Corp Operation of blast furnace
JP2003247008A (en) * 2002-02-25 2003-09-05 Jfe Steel Kk Method for operating blast furnace injecting a large amount of pulverized fine coal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033305A (en) * 1983-08-04 1985-02-20 Nippon Steel Corp Operation of blast furnace
JPS62120413A (en) * 1985-11-20 1987-06-01 Nippon Kokan Kk <Nkk> Operating method for blast furnace
JPS63282203A (en) * 1987-05-15 1988-11-18 Nkk Corp Method for operating blast furnace
JPH06100911A (en) * 1992-09-17 1994-04-12 Kobe Steel Ltd Operation of blast furnace when blowing large quantity of pulverized coal
JPH06172830A (en) * 1992-12-09 1994-06-21 Nippon Steel Corp Operation of blast furnace
JP2003247008A (en) * 2002-02-25 2003-09-05 Jfe Steel Kk Method for operating blast furnace injecting a large amount of pulverized fine coal

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153371A (en) * 2009-04-30 2011-08-11 Jfe Steel Corp Blast furnace operation method
EP2410065A4 (en) * 2009-04-30 2017-06-07 JFE Steel Corporation Blast furnace operation method
WO2010126172A1 (en) 2009-04-30 2010-11-04 Jfeスチール株式会社 Blast furnace operation method
WO2010126171A1 (en) 2009-04-30 2010-11-04 Jfeスチール株式会社 Blast furnace operation method, low-calorific-value gas combustion method for same, and blast furnace equipment
EP2426223A4 (en) * 2009-04-30 2015-03-18 Jfe Steel Corp Blast furnace operation method, low-calorific-value gas combustion method for same, and blast furnace equipment
JP2010275623A (en) * 2009-04-30 2010-12-09 Jfe Steel Corp Method for operating blast furnace
CN102414328B (en) * 2009-04-30 2014-03-05 杰富意钢铁株式会社 Blast furnace operation method
KR101321653B1 (en) * 2009-04-30 2013-10-23 제이에프이 스틸 가부시키가이샤 Blast furnace operation method
CN102414328A (en) * 2009-04-30 2012-04-11 杰富意钢铁株式会社 Blast furnace operation method
JP2011149085A (en) * 2009-04-30 2011-08-04 Jfe Steel Corp Method for operating blast furnace
WO2010137748A1 (en) * 2009-05-29 2010-12-02 Jfeスチール株式会社 Blast furnace operation method
JP4697340B2 (en) * 2009-05-29 2011-06-08 Jfeスチール株式会社 Blast furnace operation method
JP2011032584A (en) * 2009-05-29 2011-02-17 Jfe Steel Corp Method for operating blast furnace
JP2011006787A (en) * 2009-05-29 2011-01-13 Jfe Steel Corp Blast furnace operation method
WO2011108546A1 (en) 2010-03-02 2011-09-09 Jfeスチール株式会社 Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
CN101812555A (en) * 2010-04-15 2010-08-25 山东省冶金设计院股份有限公司 Method for strengthening indirect reduction of blast furnace and method for preparing gas special for indirect reduction
CN101818218A (en) * 2010-04-15 2010-09-01 山东省冶金设计院股份有限公司 Method for reinforcing blast furnace indirect reduction and manufacturing method of special gas thereof
JP2012177141A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method for operating blast furnace

Also Published As

Publication number Publication date
JP4702309B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4702309B2 (en) Blast furnace operation method
KR101800141B1 (en) Method for operating blast furnace
JP4661890B2 (en) Blast furnace operation method
JP2004309067A (en) Method of using blast furnace gas
US20140217653A1 (en) System for energy optimization in a plant for producing direct-reduced metal ores
JP5509676B2 (en) How to operate a vertical furnace
JP2022534681A (en) how to run a blast furnace
WO2019150204A1 (en) Nitrogen-free pig iron smelting technology with oxygen and carbon dioxide blown into a blast furnace
EP2719778A1 (en) Blast-furnace process with CO2-lean blast furnace gas recycle and production plant for same
JP5315732B2 (en) Blast furnace operation method
JP5476987B2 (en) Blast furnace operation method
JP4427295B2 (en) Reducing gas desulfurization method, blast furnace operating method and reducing gas utilization method
JP5904477B1 (en) Reduced iron manufacturing system and reduced iron manufacturing method
JP5069087B2 (en) How to use blast furnace gas
JP5023490B2 (en) Operation method for reducing coal in steelworks
JP2003247008A (en) Method for operating blast furnace injecting a large amount of pulverized fine coal
JP2007186759A (en) Method for operating blast furnace
JP5549056B2 (en) Blast furnace operation method
JP5708029B2 (en) Blast furnace operation method
JP6604343B2 (en) Preheating gas blowing method, blast furnace operating method, and oxygen blast furnace operating method
JP5884156B2 (en) Blast furnace operation method
JP5779839B2 (en) Blast furnace operation method
JP6604344B2 (en) Preheating gas blowing device to blast furnace shaft, preheating gas blowing method and blast furnace operating method
JP5293402B2 (en) Blast furnace operation method
JP6468272B2 (en) Lance protection method in blast furnace tuyeres lance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100624

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

R150 Certificate of patent or registration of utility model

Ref document number: 4702309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250