JP5476987B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP5476987B2
JP5476987B2 JP2009299113A JP2009299113A JP5476987B2 JP 5476987 B2 JP5476987 B2 JP 5476987B2 JP 2009299113 A JP2009299113 A JP 2009299113A JP 2009299113 A JP2009299113 A JP 2009299113A JP 5476987 B2 JP5476987 B2 JP 5476987B2
Authority
JP
Japan
Prior art keywords
gas
furnace
blast furnace
combustion
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009299113A
Other languages
Japanese (ja)
Other versions
JP2010275623A (en
Inventor
稔 浅沼
泰平 野内
明紀 村尾
晃夫 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009299113A priority Critical patent/JP5476987B2/en
Publication of JP2010275623A publication Critical patent/JP2010275623A/en
Application granted granted Critical
Publication of JP5476987B2 publication Critical patent/JP5476987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

本発明は、安定した低還元材比操業を実施するための高炉の操業方法に関する。   The present invention relates to a method of operating a blast furnace for carrying out a stable operation of a low reducing material ratio.

近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出CO2の抑制は重要な課題である。これを受け、最近の高炉操業では低還元材比(低RAR)操業が強力に推進されている。
しかしながら、RAR(Reduction
Agent Ratio:銑鉄1t製造当たりの、吹き込み燃料と炉頂から装入されるコークスの合計量)が低下すると原理的に送風量が低下し、この結果、シャフト上部においては装入物の昇温が遅れ、順調な還元が達成されなくなる。加えて、亜鉛化合物などの壁付きが助長され、風圧変動や荷下がり異常などの炉況不調を招くことが懸念される。また、炉頂温度が低下して100℃を割り込むような場合には、排ガス中の水分が配管内に凝縮する問題が生じる。
In recent years, global warming due to an increase in carbon dioxide emissions has become a problem, and the suppression of emitted CO 2 is an important issue even in the steel industry. In response to this, in recent blast furnace operations, low-reducing material ratio (low RAR) operations are being strongly promoted.
However, RAR (Reduction
Agent Ratio: The total amount of injected fuel and coke charged from the top of the furnace per 1 ton of pig iron production decreases in principle, and the blast volume decreases. As a result, the temperature of the charged material rises at the top of the shaft. Delayed and smooth return is not achieved. In addition, there is a concern that a wall of zinc compound or the like will be promoted, leading to poor furnace conditions such as wind pressure fluctuations and unloading abnormalities. Further, in the case where the furnace top temperature is lowered and falls below 100 ° C., there arises a problem that moisture in the exhaust gas is condensed in the pipe.

通常の高炉操業において、上述したような各種炉況不調、特に炉上部での装入物の昇温不良を防止するには、以下のような対策が採られるのが通例である。
(a)酸素富化率を下げ、ガス量を増加させる(熱流比を下げ、ガス温度を上昇させる)。
(b)微粉炭などの燃料吹き込み量を増加させる(熱流比を下げ、ガス温度を上昇させる)。
(c)還元効率(シャフト効率)を下げ、還元材比を高くする。
In normal blast furnace operation, the following countermeasures are usually taken to prevent the above-mentioned various furnace conditions, particularly poor temperature rise of the charge in the upper part of the furnace.
(A) Decreasing the oxygen enrichment rate and increasing the gas volume (lowering the heat flow ratio and increasing the gas temperature).
(B) Increasing the amount of pulverized coal or other fuel injected (decreasing the heat flow ratio and increasing the gas temperature).
(C) Reduce the reduction efficiency (shaft efficiency) and increase the ratio of reducing material.

しかしながら、上記(a)の対策は生産量低下に繋がるため望ましくない。上記(b)は吹き込み能力の余裕代に依存するが、能力限界近くで操業している製鉄所では、その増加量に制約がある。また、燃料吹き込み量を増加させた場合には、ボッシュガス量が増えて生産量を低下させるため、酸素富化を同時に実施する必要がある。しかし、使用できる酸素量にも供給能力上の制限がある。上記(c)はわざわざ効率を下げた操業を指向することで、CO2削減に関する本来の目的に逆行する。
このように、普通高炉において低RAR操業を行なう場合、通常の操業範囲内での操業条件の変更により各種炉況不調、特に炉上部の昇温不良を回避することは困難である。
However, the measure (a) is not desirable because it leads to a decrease in production. The above (b) depends on the margin of blowing capacity, but the amount of increase is limited at steelworks operating near the capacity limit. In addition, when the amount of fuel injected is increased, the amount of Bosch gas increases and the production volume decreases, so it is necessary to perform oxygen enrichment simultaneously. However, the amount of oxygen that can be used is limited in terms of supply capacity. The above (c) goes back to the original purpose of CO 2 reduction by aiming at the operation with reduced efficiency.
As described above, when low RAR operation is performed in a normal blast furnace, it is difficult to avoid various furnace condition malfunctions, particularly temperature rise failures in the upper part of the furnace, by changing the operation conditions within the normal operation range.

特許文献1には、上述した課題、すなわち普通高炉(酸素富化率が10体積%以下の羽口熱風吹込みを行なう高炉)において低RAR操業を行った場合にシャフト上部での装入物の昇温が遅れるという課題を解決するために、炉頂温度が110℃以下となった場合に、炉頂ガス量の10体積%以下の量のガスをシャフトガスとしてシャフト上部から炉内に吹き込む方法が示されている。また、同文献には、炉頂部から排出された後、ガスクリーニング装置を通過した高炉ガスの一部を抜き出し、燃焼炉で加熱した後、上記シャフトガスとして使用することが示されている。   In Patent Document 1, when the low RAR operation is performed in the above-described problem, that is, in a normal blast furnace (a blast furnace in which tuyere hot air is blown with an oxygen enrichment rate of 10% by volume or less), In order to solve the problem that the temperature rise is delayed, when the furnace top temperature is 110 ° C. or lower, a gas of 10 volume% or less of the furnace top gas amount is blown into the furnace as the shaft gas from the upper part of the shaft. It is shown. Further, this document shows that after being discharged from the top of the furnace, a part of the blast furnace gas that has passed through the gas cleaning device is extracted, heated in a combustion furnace, and then used as the shaft gas.

特開2008−214735号公報JP 2008-214735 A 特開昭62−27509号公報JP-A-62-27509

大野ら,「鉄と鋼」日本鉄鋼協会 75(1989年),p.1278Ohno et al., “Iron and Steel” The Japan Steel Association 75 (1989), p.1278

特許文献1の方法では、炉頂部から排出された後、ガスクリーニング装置を通過した高炉ガスの一部を抜き出し、燃焼炉で加熱した後、シャフト上部から炉内に吹き込むものであるが、その吹き込みガスは十分に予熱され、しかも吹き込む位置の炉内圧よりも高い圧力を有する必要がある。したがって、この予熱や昇圧のために相当のエネルギーが必要となり、経済性に問題を生じるとともに、低RAR操業のメリットを減殺するおそれもある。   In the method of Patent Document 1, after being discharged from the top of the furnace, a part of the blast furnace gas that has passed through the gas cleaning device is extracted, heated in the combustion furnace, and then blown into the furnace from the upper part of the shaft. The gas must be sufficiently preheated and have a pressure higher than the furnace pressure at the location where it is blown. Therefore, a considerable amount of energy is required for this preheating and boosting, which causes a problem in economy and may reduce the merit of low RAR operation.

なお、特許文献1が対象するような普通高炉プロセスではなく、純酸素送風を行う酸素高炉プロセスは、原理的に高炉内を通過するガス量が少ないため、本質的に炉上部の昇温が困難なプロセスであると言える。この炉上部温度を上昇させる方法として、炉頂ガスを一部循環させてシャフト上部へ吹き込む方法が知られている(例えば、特許文献2、非特許文献1など)。しかし、酸素高炉プロセスでは、高炉内を通過するガス量は800〜900m(標準状態:以下単にNmと記載する。)/t程度と極めて少ないため、炉上部を昇温させるためには、300〜400Nm/tというような膨大な量のガスをシャフト上部に吹き込む必要があり、またガス温度も約1000℃まで高める必要がある。このため大型の昇圧装置や昇温装置などの付帯設備を必要とする。このため、酸素高炉プロセスでは、炉頂ガスを一部循環させてシャフト上部に吹き込む方法で炉上部を昇温させることは、あまり経済的でなく、実用上問題がある。 Note that the oxygen blast furnace process in which pure oxygen is blown instead of the ordinary blast furnace process that is targeted by Patent Document 1 is essentially difficult to raise the temperature of the upper part of the furnace because the amount of gas passing through the blast furnace is small in principle. It can be said that this is a simple process. As a method of raising the furnace upper temperature, a method of circulating a part of the furnace top gas and blowing it into the upper part of the shaft is known (for example, Patent Document 2, Non-Patent Document 1, etc.). However, in the oxygen blast furnace process, the amount of gas passing through the blast furnace is as low as about 800 to 900 m 3 (standard state: hereinafter simply referred to as Nm 3 ) / t. An enormous amount of gas such as 300 to 400 Nm 3 / t needs to be blown into the upper portion of the shaft, and the gas temperature needs to be increased to about 1000 ° C. For this reason, ancillary facilities such as a large booster and a temperature riser are required. For this reason, in the oxygen blast furnace process, it is not very economical and practically problematic to raise the temperature of the upper part of the furnace by circulating part of the furnace top gas and blowing it into the upper part of the shaft.

したがって本発明の目的は、以上のような従来技術の課題を解決し、普通高炉の操業において、低RAR操業時の炉況不調、特に炉上部での装入物の昇温不良を防止することができるとともに、シャフト部から吹き込むガスについて、少ないエネルギーで必要な温度と圧力に加熱・昇圧することができ、低RAR操業の経済性と実効性を高めることができる高炉の操業方法を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, and to prevent the malfunction of the furnace during the low RAR operation, particularly the temperature rise of the charge in the upper part of the furnace, in the operation of the ordinary blast furnace. To provide a blast furnace operating method that can increase the economics and effectiveness of low RAR operations by enabling the gas injected from the shaft to be heated and boosted to the required temperature and pressure with less energy. It is in.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]空気または酸素富化空気を羽口送風する高炉操業において、
炉頂部から排出された後、ガス清浄装置に導入される前の高炉ガス(G)の一部を抜き出して燃焼炉(7)に導入し、該燃焼炉(7)では、高炉ガス(G)中にダストの一部として含まれる炭素を燃料の一部として燃焼させることで高炉ガスを予熱し、この予熱ガスをシャフト部に設けられたガス吹込部(A)から高炉内に吹き込むようにした高炉操業方法であって、
炉頂部とガス清浄装置との間の流路(9)から、高炉ガス(G )の一部を燃焼炉(7)に供給するための流路(10)が分岐し、該流路(10)の途中に高炉ガス(G )を昇圧する昇圧機(6)が設けられ、炉頂部とガス清浄装置との間の流路(9)又は昇圧機(6)の上流側の流路(10)には、高炉ガス(G )の組成、ダスト濃度、温度および圧力を測定するセンサー(8a)が設置されるとともに、ガス吹込部(A)近傍には炉内圧力、温度を測定するセンサー(8b)が設置され、これらのセンサー(8a),(8b)の測定値に基づき、昇圧機(6)で昇圧するガス圧力、燃焼炉(7)に投入する支燃ガス量を制御することを特徴とする高炉操業方法。
The gist of the present invention for solving the above problems is as follows.
[1] In blast furnace operation where air or oxygen-enriched air is ventilated,
After being discharged from the top of the furnace, a part of the blast furnace gas (G 0 ) before being introduced into the gas purifier is extracted and introduced into the combustion furnace (7). In the combustion furnace (7) , the blast furnace gas (G the carbon contained in 0) as part of the dust and blast furnace gas is preheated by burning a part of the fuel, so as to blow the preheating gas from the gas blowing portion provided in a shaft portion (a) in the blast furnace A blast furnace operating method,
A flow path (10) for supplying a part of the blast furnace gas (G 0 ) to the combustion furnace (7) branches off from the flow path (9) between the furnace top and the gas purifier. A booster (6) for boosting the blast furnace gas (G 0 ) is provided in the middle of 10), and the flow path (9) between the top of the furnace and the gas purifier or the upstream flow path of the booster (6) In (10), a sensor (8a) for measuring the composition, dust concentration, temperature and pressure of blast furnace gas (G 0 ) is installed, and the pressure and temperature in the furnace are measured in the vicinity of the gas blowing part (A). Sensor (8b) is installed, and based on the measured values of these sensors (8a) and (8b), the gas pressure boosted by the booster (6) and the amount of combustion-supporting gas introduced into the combustion furnace (7) are controlled. A method of operating a blast furnace, characterized by:

[2]上記[1]の高炉操業方法において、高炉ガス(G)以外のガス(G)を、高炉ガス(G)とともに燃焼炉(7)に導入することを特徴とする高炉操業方法。 [2] In the blast furnace method of the above-mentioned [1], blast furnace operation, which comprises introducing a blast furnace gas (G 0) other than the gas (G A), the combustion furnace with blast furnace gas (G 0) (7) Method.

本発明によれば、普通高炉の操業において、低RAR操業時の炉上部での装入物の昇温不良を防止できるとともに、炉頂温度低下による水分凝縮や亜鉛化合物の壁付き等も効果的に抑えることができるので、低RAR操業を安定的に実施することができる。しかも、シャフト部から吹き込むガスについて、少ないエネルギーで必要な温度と圧力に加熱・昇圧することができるので、低RAR操業の経済性と実効性を高めることができる。   According to the present invention, in ordinary blast furnace operation, it is possible to prevent the temperature rise of the charge in the upper part of the furnace at the time of low RAR operation, and it is also effective to condense water due to a decrease in the furnace top temperature or to have a zinc compound wall. Therefore, the low RAR operation can be stably performed. Moreover, since the gas blown from the shaft portion can be heated and boosted to the required temperature and pressure with a small amount of energy, the economy and effectiveness of the low RAR operation can be improved.

本発明の一実施形態における高炉およびその周辺設備を示す説明図Explanatory drawing which shows the blast furnace and its peripheral equipment in one Embodiment of this invention 参考例の一実施形態における高炉およびその周辺設備を示す説明図Explanatory drawing which shows the blast furnace and its peripheral equipment in one embodiment of a reference example 参考例の他の実施形態における高炉およびその周辺設備を示す説明図Explanatory drawing which shows the blast furnace and its peripheral equipment in other embodiment of a reference example

本発明は、空気または酸素富化空気を羽口送風する高炉操業、すなわち普通高炉の操業を対象とする。酸素富化空気を羽口送風する場合には、通常、酸素富化率20体積%以下、好ましくは10体積%以下での操業が行われる。なお、酸素富化率が増加するにしたがい炉内を通過するガス量が減り、シャフト上部を昇温するために必要な吹き込みガス量が大幅に増加するため、この点からも、上記のような酸素富化率での操業が好ましい。   The present invention is directed to the operation of a blast furnace in which air or oxygen-enriched air is blown down, that is, the operation of a normal blast furnace. When the oxygen-enriched air is blown into the tuyere, the operation is usually performed at an oxygen enrichment rate of 20% by volume or less, preferably 10% by volume or less. As the oxygen enrichment rate increases, the amount of gas passing through the furnace decreases, and the amount of blown gas required to raise the temperature of the upper portion of the shaft significantly increases. From this point as well, Operation at an oxygen enrichment rate is preferred.

図1は、本発明の一実施形態における高炉およびその周辺設備を示す説明図である。図において、1は高炉、2はその羽口であり、この羽口2から熱風と補助還元材(例えば、微粉炭、LNGなど)が炉内に吹き込まれる。
高炉1の炉頂部から排出された高炉ガスG(炉頂ガス)は、ガス清浄装置であるダストキャッチャー3でダストを除去され、同じくミストセパレータ4で水分を除去された後、炉頂ガス発電装置5に導かれ、炉頂ガスの圧力が電気として回収される。
FIG. 1 is an explanatory diagram showing a blast furnace and its peripheral equipment in one embodiment of the present invention. In the figure, 1 is a blast furnace, 2 is a tuyere thereof, and hot air and an auxiliary reducing material (for example, pulverized coal, LNG, etc.) are blown into the furnace from the tuyere 2.
The blast furnace gas G 0 (furnace top gas) discharged from the top of the blast furnace 1 is dust-removed by a dust catcher 3 which is a gas cleaning device, and moisture is removed by the mist separator 4, and then the top gas power generation. It is led to the device 5 and the pressure of the furnace top gas is recovered as electricity.

本発明では、シャフト部(好ましくはシャフト中部〜上部の位置)から高炉内にガスを吹込む。このようにしてガスを炉内に吹き込む主たる目的は、低RAR操業による送風量の低下を補い、炉上部でのガス流量を確保するためであるが、無用に炉頂ガス温度を低下させるような温度のガスを吹き込むことは発明の主旨に反するので、吹き込みガスとしては予熱ガスを用いる。図1に示すように本発明では、炉頂部から排出された後、ガス清浄装置(ダストキャッチャー3およびミストセパレータ4)に導入される前の高炉ガスGの一部を抜き出し、昇圧機6で昇圧した後、燃焼炉7に導入し、この燃焼炉7では、高炉ガスG中にダストの一部として含まれる炭素を燃料の一部として燃焼させることで高炉ガスを予熱し、この予熱ガスをガス吹込部Aから高炉内に吹き込むものである。高炉1の炉頂部から排出される高炉ガスの流路9のうち、炉頂部とダストキャッチャー3との間の流路部分から、高炉ガスの一部を燃焼炉7に供給するための流路10が分岐している。 In the present invention, gas is blown into the blast furnace from the shaft portion (preferably from the middle portion to the upper portion of the shaft). In this way, the main purpose of blowing gas into the furnace is to make up for the decrease in the amount of air flow due to low RAR operation and to secure the gas flow rate at the top of the furnace, but to lower the furnace top gas temperature unnecessarily. Blowing a temperature gas is contrary to the gist of the invention, so a preheated gas is used as the blown gas. In the present invention, as shown in FIG. 1, after being discharged from the furnace top, extracting a portion of the blast furnace gas G 0 before being introduced into the flue gas treatment system (dust catcher 3 and mist separator 4), with the booster 6 after boosting, and introduced into the combustion furnace 7, in the combustion furnace 7, the blast furnace gas is preheated by the combustion of a carbon contained as part of the dust in blast furnace gas G 0 as a part of the fuel, the preheating gas Is blown into the blast furnace from the gas blowing section A. A flow path 10 for supplying a part of the blast furnace gas to the combustion furnace 7 from a flow path portion between the top of the blast furnace gas and the dust catcher 3 among the flow path 9 of the blast furnace gas discharged from the top of the blast furnace 1. Is branched.

シャフト部に吹込まれる予熱ガスの圧力は、吹込む位置の炉内圧力より高くする必要がある。高炉操業により炉内圧力は変動するが、予熱ガスの圧力は吹込む位置の炉内圧に対して、0.2〜1.0kg/cmほど高ければよい。昇圧機6に導入される高炉ガスGは、ほぼ炉頂ガス圧(通常、2〜2.5kgf/cm)を維持しているため、シャフト部に吹込まれる予熱ガスの圧力を確保するには、通常、昇圧機6で高炉ガスGを軽度に昇圧するだけでよい。
燃焼炉7には、酸素や酸素含有ガス(空気、酸素富化空気など)である支燃ガスが供給され、高炉ガスG中の可燃ガス成分とダストの一部である炭素が燃焼する。
通常、炉頂部とダストキャッチャー3との間の流路9或いは高炉ガスGを昇圧機6に導く流路10には、高炉ガスGの組成、ダスト濃度、温度および圧力などを測定するセンサー8aが設置され、また、ガス吹込部A近傍には炉内圧力、温度を測定するセンサー8bが設置され、これらのセンサー8a,8bの測定値に基づき、昇圧機6で昇圧するガス圧力、燃焼炉7に投入する支燃ガス量などが制御される。
The pressure of the preheating gas blown into the shaft portion needs to be higher than the furnace pressure at the blow-in position. Although the pressure in the furnace varies depending on the operation of the blast furnace, the pressure of the preheating gas only needs to be about 0.2 to 1.0 kg / cm 2 higher than the pressure in the furnace at the position where the gas is blown. The blast furnace gas G 0 introduced into the booster 6 maintains a pressure at the top of the furnace (usually 2 to 2.5 kgf / cm 2 ), and therefore ensures the pressure of the preheating gas blown into the shaft portion. In general, it is only necessary to slightly boost the blast furnace gas G 0 with the booster 6.
The combustion furnace 7, oxygen or an oxygen-containing gas (air, oxygen-enriched air) is supplied oxidizing gas is carbon which is part of the combustible gas components and dust blast furnace gas G in 0 burns.
Usually, a sensor for measuring the composition, dust concentration, temperature and pressure of the blast furnace gas G 0 is provided in the flow path 9 between the top of the furnace and the dust catcher 3 or the flow path 10 for introducing the blast furnace gas G 0 to the booster 6. 8a is installed in the vicinity of the gas blowing part A, and a sensor 8b for measuring the pressure and temperature in the furnace is installed. Based on the measured values of these sensors 8a and 8b, the gas pressure and the combustion pressure are increased by the booster 6. The amount of combustion-supporting gas charged into the furnace 7 is controlled.

最近の高炉操業では、生産性を向上させるために4〜5kgf/cm程度の熱風を羽口から送風する加圧下での操業が行われている。炉内ではコークスおよび補助還元材が燃焼し、その燃焼ガスがさらにコークスと反応してCO等の還元ガスが生成し、高炉上部に向かって高温の還元ガスが移動する。この還元ガスは鉄鉱石を還元し、COに変換され、高炉ガスとして炉頂より排出される(ガス組成は、羽口送風条件にもよるが、乾燥基準でCO:23vol%、CO:23vol%、H:3vol%、残部:N)。炉内圧力は炉内装入物の圧力損失等で低下し、炉頂部で2〜2.5kgf/cmである。炉頂部から排出された高炉ガスGは、ガス清浄装置(ダストキャッチャー3およびミストセパレータ4)を経た後、炉頂ガス発電装置5においてガス発電に利用されることでエネルギーが回収され、圧力が低下した状態で製鉄所内の加熱炉等に供給される。また、高炉ガスGは、ガス清浄装置(ダストキャッチャー3およびミストセパレータ4)や炉頂ガス発電装置5を通過することにより温度が低下し、一般にはガス清浄装置を通過した時点で常温近くになる。 In recent blast furnace operations, in order to improve productivity, operations under pressure where hot air of about 4 to 5 kgf / cm 2 is blown from the tuyere are performed. In the furnace, coke and auxiliary reducing material are combusted, and the combustion gas further reacts with the coke to generate reducing gas such as CO, and the hot reducing gas moves toward the upper part of the blast furnace. This reducing gas reduces iron ore, is converted to CO 2, and is discharged from the top of the furnace as blast furnace gas (the gas composition depends on tuyere blowing conditions, but CO: 23 vol%, CO 2 : on a dry basis) 23vol%, H 2: 3vol% , the balance: N 2). The pressure inside the furnace decreases due to the pressure loss of the furnace interior, and is 2 to 2.5 kgf / cm 2 at the top of the furnace. Furnace top blast furnace gas G 0 discharged from, after a gas cleaning device (dust catcher 3 and mist separator 4), energy is recovered by being utilized in gas power in the furnace top gas power device 5, the pressure It is supplied to a heating furnace or the like in the ironworks in a lowered state. Further, the temperature of the blast furnace gas G 0 is lowered by passing through the gas cleaning device (dust catcher 3 and mist separator 4) and the furnace top gas power generation device 5, and in general, when the gas passes through the gas cleaning device, it is close to normal temperature. Become.

一方において、シャフト部から炉内に吹き込むガスは、十分に予熱され、且つ吹き込む位置の炉内圧よりも高い圧力を有する必要がある。
この点本発明では、シャフト部から炉内に予熱ガスを吹込むに当たり、高炉の炉頂部から排出される高炉ガスGの圧力と温度をそのまま利用できるので、昇圧機6や燃焼炉7において吹き込み用ガスを得るために必要なエネルギー(昇圧機6の電力、燃焼炉7に供給される酸素)を最小とすることができる。加えて、燃焼炉7において高炉ガスG中にダストの一部として含まれる炭素を燃料の一部として燃焼させることで、高炉の低RAR操業(炭酸ガス排出削減)にも寄与できる。通常の高炉操業では10〜30kg/t(炭素濃度20〜30mass%)のダストが炉頂ガスとともに排出されており、このダストを燃料の一部として使用することができる。仮に、ダスト排出原単位25kg/t(炭素濃度25mass%)では、22.9kg/tの炭酸ガス排出量削減となる。また、炭素を燃焼させる分、高炉ガスGの循環量を少なくでき、燃焼用の酸素量も減らすことができる。
On the other hand, the gas blown into the furnace from the shaft portion needs to be sufficiently preheated and have a pressure higher than the furnace pressure at the blow-in position.
In this respect the present invention, per blow the one and the preheated gas into the furnace from the shaft portion, because the pressure and temperature of the blast furnace gas G 0 discharged from the furnace top of the blast furnace can be used as it is, blowing the booster 6 and the combustion furnace 7 The energy required to obtain the working gas (the power of the booster 6 and the oxygen supplied to the combustion furnace 7) can be minimized. In addition, the carbon contained as part of the dust in blast furnace gas G 0 in the combustion furnace 7 by burning as part of the fuel, also can contribute to low RAR operation of the blast furnace (carbon dioxide emissions). In normal blast furnace operation, 10 to 30 kg / t (carbon concentration 20 to 30 mass%) of dust is discharged together with the furnace top gas, and this dust can be used as part of the fuel. If the dust emission basic unit is 25 kg / t (carbon concentration: 25 mass%), the carbon dioxide emission is reduced by 22.9 kg / t. Also, minutes to burn the carbon, can reduce the circulation amount of the blast furnace gas G 0, can also reduce the amount of oxygen for combustion.

ガス吹込部Aからの予熱ガスの吹き込みは、常時行ってもよいし、炉頂ガス温度が低下した場合にのみ行ってもよい。後者の場合には、例えば、炉頂ガス温度をセンサーで測定し、炉頂ガス温度が所定温度以下(例えば、110℃以下)となった場合に、ガス吹込部Aから予熱ガスの吹き込みを行う。
ガス吹込部Aから吹き込む予熱ガスの温度に特別な制限はないが、吹込む位置の炉内ガス温度より低いと、炉内を逆に冷やしてしまうため、吹込む位置の炉内ガス温度よりも高い温度が好ましく、一般的には500℃以上、好ましくは800℃以上が望ましい。
Blowing of the preheating gas from the gas blowing section A may be performed constantly or only when the furnace top gas temperature is lowered. In the latter case, for example, the furnace top gas temperature is measured by a sensor, and when the furnace top gas temperature is equal to or lower than a predetermined temperature (for example, 110 ° C. or lower), the preheating gas is blown from the gas blowing portion A. .
Although there is no special restriction | limiting in the temperature of the preheating gas blown in from the gas blowing part A, since it will cool the inside of a furnace conversely if lower than the furnace gas temperature of the blowing position, it will be higher than the furnace gas temperature of the blowing position. A high temperature is preferred, generally 500 ° C. or higher, preferably 800 ° C. or higher.

予熱ガスの吹き込み量にも特別な制限はなく、一般には炉頂ガス温度を100℃以上に維持できるようなガス吹き込み量とすればよい。例えば、RAR470kg/t相当の操業で、800℃の予熱ガスを100Nm/t吹き込めば、炉頂ガス温度を100℃以上に維持することができる。
ガス吹込部Aから吹き込む予熱ガスは、酸素(O2としての酸素ガス。以下同様)を含まない或いは酸素濃度が低いガスを用いることが好ましい。予熱ガスに酸素があると炉内で還元中の鉄酸化物(Fe23、FeO)を再酸化させるためである。したがって、燃焼炉7に供給する支燃ガス中の酸素は、高炉ガス組成(ダストも含む)から算出される燃焼に必要な理論酸素量に対して1以下が好ましい。
There is no particular limitation on the amount of preheated gas blown, and generally the gas blown amount may be set so that the furnace top gas temperature can be maintained at 100 ° C. or higher. For example, the furnace top gas temperature can be maintained at 100 ° C. or higher by blowing preheated gas at 800 ° C. at 100 Nm 3 / t in operation equivalent to RAR 470 kg / t.
As the preheating gas blown from the gas blowing section A, it is preferable to use a gas that does not contain oxygen (oxygen gas as O 2 ; the same applies hereinafter) or has a low oxygen concentration. This is because if the preheating gas contains oxygen, iron oxide (Fe 2 O 3 , FeO) being reduced in the furnace is reoxidized. Therefore, the oxygen in the combustion support gas supplied to the combustion furnace 7 is preferably 1 or less with respect to the theoretical oxygen amount required for combustion calculated from the blast furnace gas composition (including dust).

炉高方向でのガス吹込部Aの設置位置(予熱ガスの吹き込み位置)はシャフト中部〜上部が好ましく、特に、炉口半径をRとし、ストックラインからの深さがRの位置をp、シャフト部下端からの高さがシャフト部全高の1/3の位置をpとしたとき、炉高方向において位置pと位置pとの間にガス吹込部Aを設置し、このガス吹込部Aから予熱ガスを吹き込むことが好ましい。予熱ガスの吹き込み位置が浅すぎる(上方位置すぎる)と、原料充填層の荷重が小さいため、原料の流動化や撹拌が生じて、原料降下の安定性が低下するおそれがある。一方、予熱ガスの吹き込み位置が深すぎる(下方位置すぎる)と炉内の軟化融着帯にかかってしまうおそれがあるので好ましくない。 The installation position of the gas blowing part A (preheating gas blowing position) in the furnace height direction is preferably from the middle to the upper part of the shaft. In particular, the position where the furnace port radius is R 0 and the depth from the stock line is R 0 is p. 1, when the height from the shaft portion the lower end has a position of 1/3 of the total height shaft and p 2, established the gas injection portion a between the position p 1 and the position p 2 in the furnace height direction, the Preheating gas is preferably blown from the gas blowing portion A. If the preheating gas blowing position is too shallow (too high), the load of the raw material packed bed is small, so that the raw material is fluidized and stirred, which may reduce the stability of the raw material drop. On the other hand, if the blowing position of the preheating gas is too deep (too low), it may be applied to the softened fusion zone in the furnace, which is not preferable.

炉周方向におけるガス吹込部Aの設置数や設置形態は特に限定しないが、炉周方向において等間隔で複数箇所に設けることが好ましい。特に、少なくとも、炉周方向において等間隔でn箇所(但し、nは4以上の偶数)に設け、予熱ガスの吹き込み総量に応じて、前記n箇所のガス吹込部Aのなかから、予熱ガスの吹き込みを行うガス吹込部Aを炉周方向において等間隔に選択することが好ましい。この場合のガス吹込部Aの等間隔での設置数は4,8,16,32,64などである。なお、実際の設備では、ガス吹込部Aを炉周方向で厳密に等間隔に設けることは、炉体冷却構造等との関係から困難な場合もあるので、設置する位置の若干のずれは許容される。   The number of installed gas blowing portions A and the installation form in the furnace circumferential direction are not particularly limited, but are preferably provided at a plurality of locations at equal intervals in the furnace circumferential direction. In particular, at least n places (where n is an even number of 4 or more) at equal intervals in the furnace circumferential direction, and depending on the total amount of preheated gas blown, the preheated gas is discharged from the n gas blowing portions A. It is preferable to select the gas blowing parts A for blowing at equal intervals in the furnace circumferential direction. In this case, the number of gas blowing portions A installed at equal intervals is 4, 8, 16, 32, 64, or the like. In actual equipment, it may be difficult to provide the gas blowing parts A at exactly equal intervals in the furnace circumferential direction because of the relationship with the furnace body cooling structure, etc. Is done.

本発明では、上述した高炉ガスG以外のガスを高炉ガスGとともに燃焼炉7に導入し、炉内に吹き込むための予熱ガスを得てもよい。そのようなガスとしては、例えば、ガス清浄装置よりも下流側から抜き出した高炉ガスを用いることができる。すなわち、図1に仮想線で示すように、ミストセパレータ4と炉頂ガス発電装置5との間から抜き出した高炉ガスまたは/および炉頂ガス発電装置5の下流側から抜き出した高炉ガスを、昇圧機6を経て燃焼炉7に導入する。また、そのほかに、例えば、製鉄所でガスホルダーに貯蔵されている高炉発生ガス(Bガス)、または高炉発生ガスとコークス炉発生ガス(Cガス)の混合ガスなどを用いることもできる。 In the present invention, a gas other than the blast furnace gas G 0 described above may be introduced into the combustion furnace 7 together with the blast furnace gas G 0 to obtain a preheating gas to be blown into the furnace. As such gas, for example, blast furnace gas extracted from the downstream side of the gas cleaning device can be used. That is, as shown in phantom lines in FIG. 1, the blast furnace gas extracted from between the mist separator 4 and the top gas generator 5 and / or the blast furnace gas extracted from the downstream side of the top gas power generator 5 is boosted. It is introduced into the combustion furnace 7 via the machine 6. In addition, for example, a blast furnace generated gas (B gas) stored in a gas holder at an ironworks or a mixed gas of a blast furnace generated gas and a coke oven generated gas (C gas) can be used.

図2および図3は、いずれも参考例として示す実施形態であり、図1と同じく高炉およびその周辺設備を示す説明図である。
このうち図2は、ガス清浄装置(ダストキャッチャー3およびミストセパレータ4)でダストや水分を除去された高炉ガスの一部を抜き出し、昇圧機6で昇圧した後、燃焼炉7に導入して予熱し、この予熱ガスをガス吹込部Aから高炉内に吹き込むものである。高炉ガスの流路9のうち、ガス清浄装置(ダストキャッチャー3およびミストセパレータ4)の下流側の流路部分から、高炉ガスの一部を燃焼炉7に供給するための流路11が分岐している。
また、図3は、炉頂ガス発電装置5を通過した高炉ガスの一部を抜き出し、昇圧機6で昇圧した後、燃焼炉7に導入して予熱し、この予熱ガスをガス吹込部Aから高炉内に吹き込むものである。高炉ガスの流路9のうち、炉頂ガス発電装置5の下流側の流路部分から、高炉ガスの一部を燃焼炉7に供給するための流路12が分岐している。
FIG. 2 and FIG. 3 are embodiments shown as reference examples, and are explanatory views showing a blast furnace and its peripheral equipment as in FIG.
Among these, FIG. 2 shows a part of the blast furnace gas from which dust and moisture have been removed by a gas cleaning device (dust catcher 3 and mist separator 4), and after boosting with a booster 6, it is introduced into a combustion furnace 7 and preheated. And this preheating gas is blown into the blast furnace from the gas blowing section A. Of the blast furnace gas flow path 9, a flow path 11 for supplying a part of the blast furnace gas to the combustion furnace 7 is branched from a downstream flow path portion of the gas cleaning device (dust catcher 3 and mist separator 4). ing.
FIG. 3 also shows that a part of the blast furnace gas that has passed through the top gas generator 5 is extracted, boosted by the booster 6, introduced into the combustion furnace 7, and preheated. It blows into the blast furnace. Of the flow path 9 for the blast furnace gas, a flow path 12 for supplying a part of the blast furnace gas to the combustion furnace 7 is branched from a flow path portion on the downstream side of the furnace top gas power generation device 5.

図2、図3の参考例ともに、燃焼炉7に導入される高炉ガスは実質的にダスト(炭素)を含まず、また図1の実施形態に較べて昇圧機6や燃焼炉7に導入される高炉ガスの温度・圧力は低い。
なお、ガス吹込部Aの設置条件、昇圧機6や燃焼炉7の使用条件、予熱ガスおよびその吹き込み条件などは、図1の実施形態と同様である。また、図1と構成が同じものは、同一の符号を付し、詳細な説明は省略する。
2 and FIG. 3, the blast furnace gas introduced into the combustion furnace 7 does not substantially contain dust (carbon), and is introduced into the booster 6 and the combustion furnace 7 as compared with the embodiment of FIG. The temperature and pressure of blast furnace gas is low.
In addition, the installation conditions of the gas blowing part A, the use conditions of the booster 6 and the combustion furnace 7, the preheating gas, the blowing conditions thereof, and the like are the same as in the embodiment of FIG. Also, the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

[実施例1]
炉内容積5000mの高炉において、表1に示す条件で操業を行った。
表1において、比較例1はシャフト部からの予熱ガス吹き込みを行わない通常の操業例、比較例2は比較例1の通常操業から還元材比を下げた低RAR操業例、本発明例1は図1の形態でシャフト部からの予熱ガス吹き込みを行った低RAR操業例、参考例1は図2の形態でシャフト部からの予熱ガス吹き込みを行った低RAR操業例、参考例2は図3の形態でシャフト部からの予熱ガス吹き込みを行った低RAR操業例である。
まず、比較例1では炉頂ガス温度は153℃であった。次いで、炭酸ガス排出量削減を目的にLNG比を35kg/tに変更し、反応性の高いコークスを使用する比較例2を実施したところ、炉頂ガス温度は73℃へと急激に低下し、昇温不良に伴う通気変動が検知されるようになり、また、配管内への水分の凝縮も問題となった。
[Example 1]
The operation was performed under the conditions shown in Table 1 in a blast furnace having a furnace internal volume of 5000 m 3 .
In Table 1, Comparative Example 1 is a normal operation example in which preheating gas is not blown from the shaft portion, Comparative Example 2 is a low RAR operation example in which the reducing material ratio is lowered from the normal operation of Comparative Example 1, and Invention Example 1 is The low RAR operation example in which the preheating gas was blown from the shaft portion in the form of FIG. 1, Reference Example 1 was the low RAR operation example in which the preheating gas was blown from the shaft part in the form of FIG. It is the example of the low RAR operation which performed the preheating gas blowing from the shaft part with the form of this.
First, in Comparative Example 1, the furnace top gas temperature was 153 ° C. Subsequently, when the LNG ratio was changed to 35 kg / t for the purpose of reducing carbon dioxide emission, and Comparative Example 2 using highly reactive coke was carried out, the furnace top gas temperature rapidly decreased to 73 ° C., Ventilation fluctuations due to poor temperature rise have been detected, and condensation of moisture into the piping has also become a problem.

そこで、低RAR操業を本発明例1に切り換え、ガス吹込部Aから予熱ガスの吹き込みを行った。ガス吹込部Aはストックラインから下方7mの位置に設置してある(羽口部から原料装入面までの高さは約25m)。本発明例1による低RAR操業に切り換えた結果、炉頂ガス温度は134℃に回復し、操業の通気変動は回復し、配管内への水分の凝縮も完全に回避され、安定した操業に移行できた。また、以上とは別に参考例1と参考例2(いずれもガス吹込部Aの設置位置は本発明例1と同じ)の操業を実施した。
各実施例の高炉ガスの昇圧に必要なエネルギーを算出したところ、参考例2を100とすると、本発明例1および参考例1で7.3となり、高炉ガスの昇圧に要するエネルギーが削減できた。
Therefore, the low RAR operation was switched to Example 1 of the present invention, and the preheating gas was blown from the gas blowing portion A. The gas blowing section A is installed at a position 7 m below the stock line (the height from the tuyere to the raw material charging surface is about 25 m). As a result of switching to the low RAR operation according to Example 1 of the present invention, the furnace top gas temperature is restored to 134 ° C., the fluctuation in the ventilation of the operation is restored, the condensation of moisture into the pipe is completely avoided, and the operation is shifted to a stable operation. did it. In addition to the above, operations of Reference Example 1 and Reference Example 2 (both are the same as in Example 1 of the present invention) are performed.
The energy required for boosting the blast furnace gas in each example was calculated. Assuming that Reference Example 2 was 100, Example 1 and Reference Example 1 gave 7.3, and the energy required for boosting the blast furnace gas could be reduced. .

Figure 0005476987
Figure 0005476987

[実施例2]
炉内容積5000mの高炉において、表2に示す条件で操業を行った。
本発明例2では、高炉の炉頂部より排出される高炉ガスGの一部(49.6Nm/t)を抜き出し、これを3.50atmから3.95atmに昇圧し、一方、ガスGとして製鉄所ガスホルダーに貯蔵されている高炉発生ガス(49.6Nm/t)を1.20atmから3.95atmに昇圧し、これら高炉ガスGとガスGを混合した後、燃焼炉に導入して酸素により燃焼させ、800℃,100Nm/tの予熱ガスとして、ガス吹込部Aから高炉内に吹き込んだ。昇圧に必要なエネルギーを算出したところ、表1の参考例2を100とすると、本発明例2では53となり、高炉ガスの昇圧に要するエネルギーが削減できた。この本発明例2では、炉頂ガス温度は135℃であり、配管内への水分の凝縮もなく、安定した操業を行うことができた。
[Example 2]
The operation was performed under the conditions shown in Table 2 in a blast furnace having a furnace internal volume of 5000 m 3 .
In Inventive Example 2, part of the blast furnace gas G O discharged from the furnace top portion of the blast furnace extracted (49.6Nm 3 / t), boosts it from 3.50atm to 3.95Atm, whereas, gas G A blast furnace generating gas stored in steelworks gas holder (49.6Nm 3 / t) after boosting the 1.20atm to 3.95Atm, mixing these blast furnace gas G O gas G a, the combustion furnace as It was introduced and burned with oxygen, and was blown into the blast furnace from the gas blowing section A as a preheated gas at 800 ° C. and 100 Nm 3 / t. As a result of calculating the energy required for boosting, assuming Reference Example 2 in Table 1 as 100, it was 53 in Invention Example 2, and the energy required for boosting the blast furnace gas could be reduced. In Example 2 of the present invention, the furnace top gas temperature was 135 ° C., and there was no condensation of moisture into the piping, and stable operation could be performed.

本発明例3では、高炉の炉頂部より排出される高炉ガスGの一部(87.3Nm/t)を抜き出し、これを3.50atmから3.95atmに昇圧し、一方、ガスGとして製鉄所ガスホルダーに貯蔵されているコークス炉ガス(9.7Nm/t、ガス組成=CO:6.4vol%,CO:1.9vol%,H:58.6vol%,CH:27.4vol%,C:3.4vol%,N:2.3vol%を1.10atmから3.95atmに昇圧し、これら高炉ガスGとガスGを混合した後、燃焼炉に導入して酸素により燃焼させ、800℃,100Nm/tの予熱ガスとして、ガス吹込部Aから高炉内に吹き込んだ。昇圧に必要なエネルギーを算出したところ、表1の参考例2を100とすると、本発明例3では30となり、高炉ガスの昇圧に要するエネルギーが削減できた。この本発明例3では、炉頂ガス温度は133℃であり、配管内への水分の凝縮もなく、安定した操業を行うことができた。 In Inventive Example 3, part of the blast furnace gas G O discharged from the furnace top portion of the blast furnace extracted (87.3Nm 3 / t), boosts it from 3.50atm to 3.95Atm, whereas, gas G A Coke oven gas (9.7 Nm 3 / t, gas composition = CO: 6.4 vol%, CO 2 : 1.9 vol%, H 2 : 58.6 vol%, CH 4 : 27.4vol%, C 2 H 4: 3.4vol%, N 2: after a B becomes equal to 2.3 vol% steps up from 1.10atm to 3.95Atm, mixing these blast furnace gas G O gas G a, combustion furnace And was burned with oxygen and blown into the blast furnace as a preheated gas at 800 ° C. and 100 Nm 3 / t from the gas blowing section A. The energy required for pressure increase was calculated. Then, in Example 3 of the present invention, it becomes 30 and the blast furnace gas The energy required for pressurization could be reduced, and in Example 3 of the present invention, the furnace top gas temperature was 133 ° C., and there was no condensation of moisture into the piping, and stable operation could be performed.

Figure 0005476987
Figure 0005476987

1 高炉
2 羽口
3 ダストキャッチャー
4 ミストセパレータ
5 炉頂ガス発電装置
6 昇圧機
7 燃焼炉
8a,8b センサー
9,10,11,12 流路
A ガス吹込部
DESCRIPTION OF SYMBOLS 1 Blast furnace 2 tuyere 3 Dust catcher 4 Mist separator 5 Furnace top gas power generation device 6 Booster 7 Combustion furnace 8a, 8b Sensor 9, 10, 11, 12 Flow path A Gas injection part

Claims (2)

空気または酸素富化空気を羽口送風する高炉操業において、
炉頂部から排出された後、ガス清浄装置に導入される前の高炉ガス(G)の一部を抜き出して燃焼炉(7)に導入し、該燃焼炉(7)では、高炉ガス(G)中にダストの一部として含まれる炭素を燃料の一部として燃焼させることで高炉ガスを予熱し、この予熱ガスをシャフト部に設けられたガス吹込部(A)から高炉内に吹き込むようにした高炉操業方法であって、
炉頂部とガス清浄装置との間の流路(9)から、高炉ガス(G )の一部を燃焼炉(7)に供給するための流路(10)が分岐し、該流路(10)の途中に高炉ガス(G )を昇圧する昇圧機(6)が設けられ、炉頂部とガス清浄装置との間の流路(9)又は昇圧機(6)の上流側の流路(10)には、高炉ガス(G )の組成、ダスト濃度、温度および圧力を測定するセンサー(8a)が設置されるとともに、ガス吹込部(A)近傍には炉内圧力、温度を測定するセンサー(8b)が設置され、これらのセンサー(8a),(8b)の測定値に基づき、昇圧機(6)で昇圧するガス圧力、燃焼炉(7)に投入する支燃ガス量を制御することを特徴とする高炉操業方法。
In blast furnace operation that blows air or oxygen-enriched air,
After being discharged from the top of the furnace, a part of the blast furnace gas (G 0 ) before being introduced into the gas purifier is extracted and introduced into the combustion furnace (7). In the combustion furnace (7) , the blast furnace gas (G the carbon contained in 0) as part of the dust and blast furnace gas is preheated by burning a part of the fuel, so as to blow the preheating gas from the gas blowing portion provided in a shaft portion (a) in the blast furnace A blast furnace operating method,
A flow path (10) for supplying a part of the blast furnace gas (G 0 ) to the combustion furnace (7) branches off from the flow path (9) between the furnace top and the gas purifier. A booster (6) for boosting the blast furnace gas (G 0 ) is provided in the middle of 10), and the flow path (9) between the top of the furnace and the gas purifier or the upstream flow path of the booster (6) In (10), a sensor (8a) for measuring the composition, dust concentration, temperature and pressure of blast furnace gas (G 0 ) is installed, and the pressure and temperature in the furnace are measured in the vicinity of the gas blowing part (A). Sensor (8b) is installed, and based on the measured values of these sensors (8a) and (8b), the gas pressure boosted by the booster (6) and the amount of combustion-supporting gas introduced into the combustion furnace (7) are controlled. A method of operating a blast furnace, characterized by:
高炉ガス(G)以外のガス(G)を、高炉ガス(G)とともに燃焼炉(7)に導入することを特徴とする請求項1に記載の高炉操業方法。 Blast furnace gas (G 0) other than the gas (G A), blast furnace operation method according to claim 1, characterized in that introduced into the combustion furnace with blast furnace gas (G 0) (7).
JP2009299113A 2009-04-30 2009-12-29 Blast furnace operation method Active JP5476987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009299113A JP5476987B2 (en) 2009-04-30 2009-12-29 Blast furnace operation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009110423 2009-04-30
JP2009110423 2009-04-30
JP2009299113A JP5476987B2 (en) 2009-04-30 2009-12-29 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2010275623A JP2010275623A (en) 2010-12-09
JP5476987B2 true JP5476987B2 (en) 2014-04-23

Family

ID=43422851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009299113A Active JP5476987B2 (en) 2009-04-30 2009-12-29 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP5476987B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5790045B2 (en) * 2011-03-16 2015-10-07 株式会社Ihi Hot air generator
JP5884156B2 (en) * 2011-10-28 2016-03-15 Jfeスチール株式会社 Blast furnace operation method
CN102654357A (en) * 2012-05-17 2012-09-05 五冶集团成都节能工程技术服务有限公司 Tail gas recycling system for calcium carbide furnace and application method thereof
JP5962912B2 (en) * 2012-08-20 2016-08-03 Jfeスチール株式会社 Blast furnace operation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA802257B (en) * 1979-04-24 1982-02-24 Foster Wheeler Ltd Production of reducing gas for furnace injection
JPS6227509A (en) * 1985-07-26 1987-02-05 Nippon Kokan Kk <Nkk> Method for operating blast furnace
JPS62120413A (en) * 1985-11-20 1987-06-01 Nippon Kokan Kk <Nkk> Operating method for blast furnace
JP4702309B2 (en) * 2007-03-08 2011-06-15 Jfeスチール株式会社 Blast furnace operation method

Also Published As

Publication number Publication date
JP2010275623A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP4702309B2 (en) Blast furnace operation method
JP6256710B2 (en) Oxygen blast furnace operation method
JPS6227509A (en) Method for operating blast furnace
JP5476987B2 (en) Blast furnace operation method
JP6354962B2 (en) Oxygen blast furnace operation method
KR101758521B1 (en) Apparatus and Method of Recycling and Decomposition of Carbon Dioxide via Accumulated Energy of Hot Stove
KR20150036360A (en) Method and system for operating a blast furnace with top-gas recycle and a fired tubular heater
WO2019150204A1 (en) Nitrogen-free pig iron smelting technology with oxygen and carbon dioxide blown into a blast furnace
JP5509676B2 (en) How to operate a vertical furnace
UA110960C2 (en) process for regulating the joule value of offgases from plants for pig iron or synthesis gas production
KR20150097779A (en) A method and apparatus for supplying blast to a blast furnace
AU2012228448B2 (en) Metallurgical plant with efficient waste-heat utilization
JP4427295B2 (en) Reducing gas desulfurization method, blast furnace operating method and reducing gas utilization method
JP2009221549A (en) Method for operating blast furnace
JP6777894B2 (en) Oxygen blast furnace equipment and method of manufacturing pig iron using the oxygen blast furnace equipment
JP4760985B2 (en) Blast furnace operation method
KR101322903B1 (en) Apparatus for manufacturing molten iron and method for manufacturing the same
JP7028367B1 (en) Blast furnace operation method and blast furnace ancillary equipment
KR20100082696A (en) Process for making iron in a blast furnace and use of top gas resulting from said process
JP6604343B2 (en) Preheating gas blowing method, blast furnace operating method, and oxygen blast furnace operating method
JP5023490B2 (en) Operation method for reducing coal in steelworks
JP6922864B2 (en) Pig iron manufacturing equipment and pig iron manufacturing method using it
JP6604344B2 (en) Preheating gas blowing device to blast furnace shaft, preheating gas blowing method and blast furnace operating method
JP4893291B2 (en) Hot metal production method using vertical scrap melting furnace
JP7028363B2 (en) Blast furnace operation method and blast furnace ancillary equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5476987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250