JP5884156B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP5884156B2
JP5884156B2 JP2011236571A JP2011236571A JP5884156B2 JP 5884156 B2 JP5884156 B2 JP 5884156B2 JP 2011236571 A JP2011236571 A JP 2011236571A JP 2011236571 A JP2011236571 A JP 2011236571A JP 5884156 B2 JP5884156 B2 JP 5884156B2
Authority
JP
Japan
Prior art keywords
gas
blast furnace
furnace
ammonia
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011236571A
Other languages
Japanese (ja)
Other versions
JP2013095923A (en
Inventor
泰平 野内
泰平 野内
浅沼 稔
稔 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011236571A priority Critical patent/JP5884156B2/en
Publication of JP2013095923A publication Critical patent/JP2013095923A/en
Application granted granted Critical
Publication of JP5884156B2 publication Critical patent/JP5884156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

本発明は、安定した低還元材比(低RAR)操業を実施するための高炉の操業方法に関する。   The present invention relates to a method of operating a blast furnace for performing a stable low reducing material ratio (low RAR) operation.

近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においてもCO2削減は重要な課題である。これを受け、最近の高炉操業では低還元材比(低RAR)操業が強力に推進されている。尚、RARはReduction Agent Ratioの略であり、銑鉄1トン(以下、「t」と記す)を製造するにあたり、羽口から吹き込まれる燃料と炉頂から装入されるコークスの合計量である。 In recent years, global warming due to an increase in carbon dioxide emissions has become a problem, and CO 2 reduction is an important issue even in the steel industry. In response to this, in recent blast furnace operations, low-reducing material ratio (low RAR) operations are being strongly promoted. RAR is an abbreviation for Reduction Agent Ratio, and is the total amount of fuel injected from the tuyere and coke charged from the top of the furnace when manufacturing 1 ton of pig iron (hereinafter referred to as “t”).

しかしながら、RARが低下すると原理的に送風量が低下し、この結果、高炉のシャフト上部においては装入物の昇温が遅れ、順調な還元が達成されなくなる。加えて、亜鉛化合物などの炉壁への付着が助長され、風圧変動や荷下がり異常などの炉況不調を招くことが懸念される。また、炉頂温度が低下して100℃以下となるような場合には、炉頂からの排ガス中の水分が配管内に凝縮する問題が生じる。   However, when the RAR is lowered, the amount of blown air is reduced in principle. As a result, the temperature rise of the charged material is delayed at the upper part of the shaft of the blast furnace, and smooth reduction cannot be achieved. In addition, the adhesion of zinc compounds and the like to the furnace wall is encouraged, and there is a concern that furnace conditions such as wind pressure fluctuations and unloading abnormalities may be caused. In addition, when the furnace top temperature decreases to 100 ° C. or less, there is a problem that moisture in the exhaust gas from the furnace top is condensed in the pipe.

通常の高炉操業において、上述したような各種炉況不調、特に炉上部での装入物の昇温不良を防止するには、下記(a)〜(c)のような対策が実施される。
(a)羽口から吹き込む熱風の酸素富化率を下げ、ガス量を増加させる(熱流比を下げ、ガス温度を上昇させる)。
(b)羽口からの微粉炭などの燃料吹き込み量を増加させる(熱流比を下げ、ガス温度を上昇させる)。
(c)還元効率(シャフト効率)を下げ、RARを高くする。
In normal blast furnace operation, the following countermeasures (a) to (c) are implemented in order to prevent the above-described various furnace conditions, particularly the temperature rise failure of the charge in the upper part of the furnace.
(A) Decrease the oxygen enrichment rate of hot air blown from the tuyere and increase the amount of gas (lower the heat flow ratio and increase the gas temperature).
(B) Increasing the amount of fuel blown from the tuyere such as pulverized coal (lowering the heat flow ratio and raising the gas temperature).
(C) Lower the reduction efficiency (shaft efficiency) and increase the RAR.

しかしながら、上記(a)の対策は生産量低下に繋がるため望ましくない。上記(b)の対策は吹き込み能力の余裕代に依存するが、能力限界近くで操業している製鉄所では、その増加量に制約がある。また、燃料吹き込み量を増加させた場合には、ボッシュガス量が増えて生産量を低下させるため、酸素富化を同時に実施する必要がある。しかし、使用できる酸素量にも供給能力上の制限がある。上記(c)の対策は、わざわざ効率を下げた操業を指向することであり、CO2削減に関する本来の目的に逆行する。 However, the measure (a) is not desirable because it leads to a decrease in production. The countermeasure (b) above depends on the margin of the blowing capacity, but the amount of increase is limited in steelworks operating near the capacity limit. In addition, when the amount of fuel injected is increased, the amount of Bosch gas increases and the production volume decreases, so it is necessary to perform oxygen enrichment simultaneously. However, the amount of oxygen that can be used is limited in terms of supply capacity. The countermeasure (c) is directed to an operation with a reduced efficiency, and goes against the original purpose for CO 2 reduction.

このように、普通高炉において低RAR操業を行う場合、通常の操業範囲内での操業条件の変更により各種炉況不調、特に炉上部の昇温不良を回避することは困難である。   As described above, when low RAR operation is performed in a normal blast furnace, it is difficult to avoid various furnace state malfunctions, in particular, temperature rise failures in the upper part of the furnace by changing the operation conditions within the normal operation range.

特許文献1には、上述した課題、すなわち普通高炉(酸素富化率が10体積%以下の羽口熱風吹込みを行う高炉)において低RAR操業のシャフト上部での装入物の昇温が遅れるという課題を解決するために、炉頂温度が110℃以下となった場合に、炉頂ガス量の10体積%以下の量をシャフトガスとしてシャフト上部から炉内に吹き込む方法が開示されている。特許文献1には、製鉄所でガスホルダーに貯蔵されている高炉発生ガス、または高炉発生ガスとコークス炉発生ガスとの混合ガスをシャフトガスとして吹き込むこと、或いは炉頂ガスの一部を循環させてシャフトガスとして吹き込むことなども開示されている。   In Patent Document 1, the above-mentioned problem, that is, the temperature rise of the charged material at the upper part of the shaft of the low RAR operation is delayed in a normal blast furnace (a blast furnace that performs tuyere hot air blowing with an oxygen enrichment rate of 10% by volume or less). In order to solve the problem, a method is disclosed in which when the furnace top temperature becomes 110 ° C. or less, an amount of 10% by volume or less of the furnace top gas amount is blown into the furnace as the shaft gas from the upper part of the shaft. In Patent Document 1, blast furnace generated gas stored in a gas holder at a steel mill, or a mixed gas of blast furnace generated gas and coke oven generated gas is blown as shaft gas, or a part of the furnace top gas is circulated. It is also disclosed that the gas is blown as shaft gas.

特開2008−214735号公報JP 2008-214735 A

特許文献1に記載の方法を用いれば、低RAR操業を行なう際に炉上部の温度を上昇させることが可能となる。しかし、シャフトガスとして用いているのは、高炉発生ガスである炉頂ガスの一部や、高炉発生ガスとコークス炉発生ガスとの混合ガスであり、炭素を含有するガスである。炭素含有量の少ないシャフトガスを用いれば、CO2削減にいっそう寄与することができると考えられる。 If the method described in Patent Document 1 is used, it is possible to raise the temperature of the upper part of the furnace when performing the low RAR operation. However, what is used as the shaft gas is a gas containing carbon, which is a part of the furnace top gas that is blast furnace generated gas or a mixed gas of blast furnace generated gas and coke oven generated gas. If shaft gas with a low carbon content is used, it is thought that it can contribute further to CO 2 reduction.

したがって本発明の目的は、以上のような従来技術の課題を解決し、低RAR操業時の炉況不調、特に炉上部での装入物の昇温不良を防止することができ、安定操業が可能で、従来以上に炭酸ガス排出量を削減できる、シャフト部からのガス吹き込みを行なう高炉の操業方法を提供することにある。   Therefore, the object of the present invention is to solve the problems of the prior art as described above, and to prevent a malfunction of the furnace at the time of low RAR operation, in particular, a temperature rise failure of the charge in the upper part of the furnace, and a stable operation can be prevented. An object of the present invention is to provide a method of operating a blast furnace that is capable of reducing the amount of carbon dioxide emission more than conventional and performing gas blowing from a shaft portion.

このような課題を解決するための本発明の特徴は、以下の通りである。
[1]鉄含有原料とコークスとを高炉の炉頂から装入し、羽口から空気または酸素富化空気を送風する高炉操業において、予熱したアンモニアをシャフトガスとして高炉のシャフト部から高炉内に吹き込むことを特徴とする高炉操業方法。
[2]シャフト部から吹込むガスの温度が200℃以上、900℃以下である[1]に記載の高炉操業方法。
[3]シャフト部から吹き込むガス中の水素の割合が、H/(H+HO)で5mol%以上である、[1]ないし[2]に記載の高炉操業方法。
The features of the present invention for solving such problems are as follows.
[1] In blast furnace operation in which iron-containing raw material and coke are charged from the top of the blast furnace and air or oxygen-enriched air is blown from the tuyere, preheated ammonia is used as shaft gas from the shaft section of the blast furnace into the blast furnace. Blast furnace operation method characterized by blowing.
[2] The blast furnace operating method according to [1], wherein the temperature of the gas blown from the shaft portion is 200 ° C. or higher and 900 ° C. or lower.
[3] The method of operating a blast furnace according to [1] or [2], wherein a ratio of hydrogen in the gas blown from the shaft portion is 5 mol% or more in terms of H 2 / (H 2 + H 2 O).

なお、以下の本発明で用いるRARとは、CO2排出源となる炭素含有化石燃料の総使用量の比であり、アンモニアは還元材であってもRARからは除外される。 The RAR used in the present invention below is the ratio of the total amount of carbon-containing fossil fuel used as a CO 2 emission source, and ammonia is excluded from the RAR even if it is a reducing material.

本発明によれば、高炉の操業において、低RAR操業時の炉上部での装入物の昇温不良を防止できるとともに、炉頂温度低下による水分凝縮や亜鉛化合物の壁付き等も効果的に抑えることができ、鉄鉱石の還元が促進される。これらにより、低RAR操業を安定的に実施することができるとともに、排出CO2量を従来以上に削減することが可能となる。 According to the present invention, in the operation of a blast furnace, it is possible to prevent the temperature rise of the charge in the upper part of the furnace at the time of low RAR operation, and it is also effective for water condensation due to a decrease in the furnace top temperature, walling of zinc compounds, etc. The reduction of iron ore is promoted. As a result, low RAR operation can be carried out stably, and the amount of exhausted CO 2 can be reduced more than before.

本発明の一実施形態を示す、高炉の概略図Schematic of a blast furnace showing one embodiment of the present invention Fe−O−H系の状態図Phase diagram of Fe-O-H system

上記のように高炉における低RAR操業を行なう際に、炉内の還元効率向上や、炉上部の昇温不良を回避するためにシャフト部からガス吹き込みを行なうが、このシャフトガスとして炭素を含有しないガスを用いることで、排出CO2量を削減することが可能となると考えられる。炭素を含有しないガスとしてまず候補となるのは水素ガスである。 When performing the low RAR operation in the blast furnace as described above, gas is blown from the shaft portion in order to improve the reduction efficiency in the furnace and avoid temperature rise failure in the upper portion of the furnace, but this shaft gas does not contain carbon. It is considered that the amount of exhausted CO 2 can be reduced by using gas. The first candidate for a carbon-free gas is hydrogen gas.

しかし、水素は輸送が困難であるという問題がある。気体として用いるものであっても、気体の状態での輸送は体積が大きく効率的でないため、LNG(Liquefied Natural Gas:液化天然ガス)のように液体の状態で輸送することが望ましいが、このためには低温の貯蔵タンクが必要となる。LNGの場合、主成分のCH4の沸点が−162℃であるのに対し、水素の沸点は−253℃であるため、水素の輸送には極低温の貯蔵タンクが必要となり、このようなタンクを用いてトラック等で輸送を行なうことは非常にコスト高であり現実的でない。したがって、水素ガスの利用は、製鉄所内に水素ガスの発生設備があるような、限られた場合にのみ有効な手段であると考えられる。 However, there is a problem that hydrogen is difficult to transport. Even if it is used as a gas, it is desirable to transport it in a liquid state like LNG (Liquefied Natural Gas), because the transportation in the gaseous state is large and inefficient. Requires a cold storage tank. In the case of LNG, the boiling point of CH 4 as a main component is −162 ° C., whereas the boiling point of hydrogen is −253 ° C. Therefore, a cryogenic storage tank is required for transporting hydrogen, and such a tank It is very expensive and unrealistic to transport the vehicle using a truck or the like. Therefore, the use of hydrogen gas is considered to be an effective means only in a limited case where there is a hydrogen gas generation facility in the steelworks.

そこで本発明では、極低温で液化させる必要がないため輸送が容易であり、炭素を含有しないアンモニア(NH3)をシャフトガスとして用いることに想到し、本発明を完成した。アンモニアは沸点が−33℃であるため水素に比較して液化がはるかに容易であり、LNGに比較しても液化が容易である。液化したアンモニアは、輸送が容易であり、貯蔵の際の設備も低コストで建設することができる。またH2に比較して、単位体積あたりの水素含有率が高いため効率的であるという特徴もある。 Therefore, in the present invention, since it is not necessary to liquefy at an extremely low temperature, transportation is easy, and the present invention has been completed by conceiving that ammonia (NH 3 ) containing no carbon is used as a shaft gas. Ammonia has a boiling point of −33 ° C., so it is much easier to liquefy than hydrogen, and liquefaction is also easier than LNG. Liquefied ammonia can be easily transported and equipment for storage can be constructed at low cost. In addition, compared with H 2 , the hydrogen content per unit volume is high, which is also efficient.

したがって本発明では、鉄含有原料とコークスとを高炉の炉頂から装入し、羽口から空気または酸素富化空気を送風する高炉操業において、予熱したアンモニアをシャフトガスとして高炉のシャフト部から高炉内に吹き込む高炉操業方法を用いることとした。   Accordingly, in the present invention, in the blast furnace operation in which the iron-containing raw material and coke are charged from the top of the blast furnace and air or oxygen-enriched air is blown from the tuyere, preheated ammonia is used as the shaft gas from the blast furnace shaft section. It was decided to use the blast furnace operating method to blow in.

ここで、アンモニアを予熱する方法としては、代表的な方法として以下のような方法を採用することができる。なお、(1)〜(3)を併用することもできるし、アンモニアの温度を上昇させることができれば下記の方法には限定されない。
(1)アンモニアを高温の熱媒体中を通過させて、アンモニアの顕熱を増大させる。
(2)アンモニアが完全燃焼しない程度の酸素または空気を吹き込んで部分燃焼させ、燃焼熱によってアンモニアを含むガスの温度を上昇させる。
(3)アンモニアを完全燃焼させて、燃焼熱によってアンモニアを含むガスの温度を上昇させた後、改めてアンモニアを混合する。
Here, as a method for preheating ammonia, the following method can be adopted as a typical method. In addition, (1)-(3) can also be used together and if it can raise the temperature of ammonia, it will not be limited to the following method.
(1) Ammonia is passed through a high-temperature heat medium to increase the sensible heat of ammonia.
(2) Partial combustion is performed by blowing oxygen or air to such an extent that ammonia does not completely burn, and the temperature of the gas containing ammonia is raised by combustion heat.
(3) Ammonia is completely burned, and after the temperature of the gas containing ammonia is raised by the heat of combustion, ammonia is mixed again.

シャフトガスとしてのCO2削減の量的効果はアンモニアガスの量に比例するため、アンモニアガスの吹き込み量は、炉頂排ガス量の1体積%以上、あるいはシャフトへ吹き込むガスの10体積%以上とすることが好ましい。 Since the quantitative effect of CO 2 reduction as shaft gas is proportional to the amount of ammonia gas, the amount of ammonia gas blown is 1 vol% or more of the furnace top exhaust gas amount or 10 vol% or more of the gas blown into the shaft. It is preferable.

シャフトガスとしてのアンモニアを含むガスの吹き込み温度は、炉頂排ガス温度を露点以上に上昇させる目的から、露点より十分高温な200℃以上とすることが好ましい。また、国内の一般的な高炉はクーリングステーブと呼ばれる鋳物製の冷却プレートで炉体が覆われているため、鋳物の変態温度である770℃を大幅に超えるガスを吹き込むと鋳物の劣化の原因となる。鋳物自身の温度が安定して770℃を下回るようにするためには、吹き込みガス温度はガス−装入物間の熱抵抗を考慮しても、900℃以下に抑制する必要がある。   The blowing temperature of the gas containing ammonia as the shaft gas is preferably set to 200 ° C. or higher, sufficiently higher than the dew point, for the purpose of raising the furnace top exhaust gas temperature to the dew point or higher. In addition, since the furnace body is covered with a casting cooling plate called a cooling stave in a general domestic blast furnace, blowing a gas significantly exceeding the casting transformation temperature of 770 ° C. may cause deterioration of the casting. Become. In order for the temperature of the casting itself to stably fall below 770 ° C., the blowing gas temperature needs to be suppressed to 900 ° C. or less even in consideration of the thermal resistance between the gas and the charge.

単に予熱ガスとして使う場合は、アンモニアを空気で完全燃焼させて、H2OとN2の排ガスを炉内に投入する方法が最も簡単である。しかし図2に示す状態図からもわかるように、純粋なH2O雰囲気では、せっかく還元されてできたFe34がFe23に再酸化されてしまうことになる。したがって、アンモニアを燃焼させて予熱する場合は、吹込みガス中の水素の割合が、H2/(H2+H2O)で5%以上となるようにアンモニアを部分燃焼させる(即ち、H2、H2Oの他、NHとN2の混合ガスとなる)のが好ましい。または、アンモニアに含まれる水素モル比(NH→3/2H2として換算した際の水素のモル量から求めた比)が前記濃度相当以上となるように過剰なアンモニアの雰囲気とするのが好ましい。アンモニアを完全燃焼させて、燃焼熱によってアンモニアを含むガスの温度を上昇させた後、改めてアンモニアを混合する場合も同様である。 In the case of simply using it as a preheated gas, the simplest method is to completely burn ammonia with air and to introduce H 2 O and N 2 exhaust gas into the furnace. However, as can be seen from the phase diagram shown in FIG. 2, in a pure H 2 O atmosphere, the reduced Fe 3 O 4 is reoxidized to Fe 2 O 3 . Therefore, when preheating by burning ammonia, the ammonia is partially burned so that the ratio of hydrogen in the blown gas becomes 5% or more in H 2 / (H 2 + H 2 O) (that is, H 2 In addition to H 2 O, a mixed gas of NH 3 and N 2 is preferable. Alternatively, it is preferable to make the atmosphere of excess ammonia so that the molar ratio of hydrogen contained in ammonia (ratio obtained from the molar amount of hydrogen when converted as NH 3 → 3 / 2H 2 ) is equal to or higher than the above concentration. . The same applies to the case where ammonia is completely burned, the temperature of the gas containing ammonia is increased by the heat of combustion, and then ammonia is mixed again.

アンモニアの分解温度は900℃程度であることから、炉内装入物が分解温度以上の温度の場所に吹き込むと分解熱を吸収して、水素と窒素に分解する。炉上部の昇温を目的として予熱アンモニアを吹き込む以上、この分解熱の消費を避けるためには炉内の温度が900℃より低い上部に吹きこむ必要がある。ただし、あまりに原料表面から浅い部分では装入物と熱交換されずに排ガスとなってしまうことから、原料表面から炉口半径長よりも深い位置に吹き込むことが好ましい。さらに好ましくは、予熱ガス温度が炉内での温度分布を乱さないように、所要の予熱ガス温度に対して同じ炉内温度の高さを予め推定または測定して、その高さに吹き込むようにする。   Since the decomposition temperature of ammonia is about 900 ° C., when the furnace interior material blows into a place having a temperature higher than the decomposition temperature, it absorbs the heat of decomposition and decomposes into hydrogen and nitrogen. As long as preheated ammonia is blown in order to raise the temperature of the upper part of the furnace, it is necessary to blow it into the upper part where the temperature in the furnace is lower than 900 ° C. in order to avoid consumption of this decomposition heat. However, it is preferable to blow from the surface of the raw material to a position deeper than the radius of the furnace opening because heat is not exchanged with the charged material in a portion too shallow from the surface of the raw material. More preferably, in order to prevent the preheating gas temperature from disturbing the temperature distribution in the furnace, the height of the same in-furnace temperature is estimated or measured in advance with respect to the required preheating gas temperature, and is blown to that height. To do.

本発明の一実施形態を図1を用いて説明する。   An embodiment of the present invention will be described with reference to FIG.

高炉1では、羽口2から送風3と、補助還元材として微粉炭4の吹き込みを行なっている。シャフトガス吹き込み管5から高炉内にアンモニア6の吹き込みを行なうが、このためには、貯蔵タンク7に貯蔵された液体アンモニアを気化して、高炉内に吹込み可能な圧力まで昇圧機8で昇圧後に炉内に吹き込む。吹き込まれたアンモニアは炉内で還元材として作用し還元を促進し、炉頂部のガス量を増加させて炉頂温度の低下を防止する。   In the blast furnace 1, the air blow 3 is blown from the tuyere 2 and the pulverized coal 4 is blown as an auxiliary reducing material. Ammonia 6 is blown into the blast furnace from the shaft gas blowing pipe 5. For this purpose, the liquid ammonia stored in the storage tank 7 is vaporized, and the pressure is increased by the booster 8 to a pressure that can be blown into the blast furnace. Later, it is blown into the furnace. The blown ammonia acts as a reducing material in the furnace to promote reduction, and increases the amount of gas at the top of the furnace to prevent a decrease in the furnace top temperature.

炉内容積3200m3の高炉において、従来操業として、高炉の炉頂から排出される高炉ガス(BFG)に空気を混合し部分燃焼させることにより生成した800℃の予熱ガスをシャフトガスとして100Nm3/t-pig(/t-pigは、生成した溶銑1トンあたりであることを示す)吹き込むことにより、炉頂ガス温度を118℃に維持していた。なお、仮に予熱した高炉ガスの吹き込みを停止した場合の炉頂ガス温度は理論計算上48℃である。本高炉にてアンモニアに空気を混合し部分燃焼させた800℃の予熱アンモニアガスを100Nm3/t-pig生成して、前記予熱した高炉ガスをすべて置換した場合と50体積%置換した場合について、炉頂ガス温度および高炉の炉頂からの排出CO2(高炉ガスCO2)原単位を測定した結果を、高炉ガスの吹込みを停止した場合の計算結果と併せて表1に示す。表1には、夫々の場合に高炉炉頂から排出される高炉ガス成分も示した。 In a blast furnace having a furnace volume of 3200 m 3 , as a conventional operation, a preheated gas of 800 ° C. generated by mixing air with blast furnace gas (BFG) discharged from the top of the blast furnace and partially burning the shaft gas is used as 100 Nm 3 / The furnace top gas temperature was maintained at 118 ° C. by blowing in t-pig (/ t-pig indicates per ton of produced hot metal). Note that the furnace top gas temperature when the preheated blast furnace gas is stopped is theoretically 48 ° C. In the present blast furnace, preheating ammonia gas of 800 ° C., which is partially burned by mixing air with ammonia in this blast furnace, is generated at 100 Nm 3 / t-pig, and when the preheated blast furnace gas is completely replaced and when 50% by volume is replaced, Table 1 shows the results of measuring the furnace top gas temperature and the CO 2 emission rate from the top of the blast furnace (blast furnace gas CO 2 ), together with the calculation results when the blast furnace gas injection was stopped. Table 1 also shows blast furnace gas components discharged from the top of the blast furnace in each case.

Figure 0005884156
Figure 0005884156

表1より、本発明によれば、予熱した高炉ガスのみを吹き込む従来の場合と同様に炉頂ガス温度を保持できるとともに、高炉の炉頂からの排出CO2(高炉ガスCO2)原単位は、シャフトガスを高炉ガスからアンモニアガスへと順次置換したことにより697kg−CO2/t-pigであった高炉からの排出CO2量は、50%置換で690kg−CO2/t-pig、さらに100%置換で682kg−CO2/t-pigへ減少した。 From Table 1, according to the present invention, the furnace top gas temperature can be maintained as in the conventional case of blowing only preheated blast furnace gas, and the CO 2 emission (blast furnace gas CO 2 ) intensity from the furnace top of the blast furnace is The amount of CO2 emitted from the blast furnace, which was 697 kg-CO 2 / t-pig by sequentially replacing the shaft gas from blast furnace gas to ammonia gas, was 690 kg-CO 2 / t-pig with 50% substitution, and further 100 It decreased to 682kg-CO 2 / t-pig with% substitution.

1 高炉
2 羽口
3 送風
4 補助還元材
5 シャフトガス吹き込み管
6 アンモニア
7 貯蔵タンク
8 昇圧機
9 高炉ガス
1 Blast Furnace 2 Tuyere 3 Blowing 4 Auxiliary Reducing Material 5 Shaft Gas Blowing Pipe 6 Ammonia 7 Storage Tank 8 Booster 9 Blast Furnace Gas

Claims (3)

鉄含有原料とコークスとを高炉の炉頂から装入し、羽口から空気または酸素富化空気を送風する高炉操業において、
予熱したアンモニアを50体積%以上100体積%以下で含むシャフトガスを、高炉のシャフト部から高炉内に吹き込むことを特徴とする高炉操業方法。
In blast furnace operation in which iron-containing raw material and coke are charged from the top of the blast furnace and air or oxygen-enriched air is blown from the tuyere,
A blast furnace operating method characterized by blowing shaft gas containing preheated ammonia in an amount of 50 vol% to 100 vol% into a blast furnace from a shaft portion of the blast furnace.
シャフト部から吹込むガスの温度が200℃以上、900℃以下である請求項1に記載の高炉操業方法。   The blast furnace operating method according to claim 1, wherein the temperature of the gas blown from the shaft portion is 200 ° C or higher and 900 ° C or lower. シャフト部から吹き込むガス中の水素の割合が、H/(H+HO)で5mol%以上である、請求項1または2に記載の高炉操業方法。 The blast furnace operating method according to claim 1 or 2, wherein a ratio of hydrogen in the gas blown from the shaft portion is 5 mol% or more in terms of H 2 / (H 2 + H 2 O).
JP2011236571A 2011-10-28 2011-10-28 Blast furnace operation method Active JP5884156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011236571A JP5884156B2 (en) 2011-10-28 2011-10-28 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011236571A JP5884156B2 (en) 2011-10-28 2011-10-28 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2013095923A JP2013095923A (en) 2013-05-20
JP5884156B2 true JP5884156B2 (en) 2016-03-15

Family

ID=48618211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011236571A Active JP5884156B2 (en) 2011-10-28 2011-10-28 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP5884156B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7180045B2 (en) * 2019-04-18 2022-11-30 株式会社神戸製鋼所 Method for using raw material containing metallic iron containing Zn
CN115478122A (en) * 2022-10-10 2022-12-16 北京首钢国际工程技术有限公司 Ammonia-rich raw fuel for blast furnace iron making and blast furnace iron making method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215613A (en) * 1990-01-19 1991-09-20 Nkk Corp Operation of blast furnace
JPH04247817A (en) * 1991-01-24 1992-09-03 Sumitomo Metal Ind Ltd Method for improving characteristic of charged material in blast furnace
JP5476987B2 (en) * 2009-04-30 2014-04-23 Jfeスチール株式会社 Blast furnace operation method
JP5605828B2 (en) * 2010-03-03 2014-10-15 国立大学法人北海道大学 Iron making method and iron making system

Also Published As

Publication number Publication date
JP2013095923A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
EP3124626B1 (en) Method of operating oxygen blast furnace
KR101800141B1 (en) Method for operating blast furnace
JP4702309B2 (en) Blast furnace operation method
JP4661890B2 (en) Blast furnace operation method
KR20140043385A (en) System and method for reducing iron oxide to metallic iron using coke oven gas and oxygen steelmaking furnace gas
US20220145410A1 (en) Method for operating a blast furnace
JP7297091B2 (en) Blast furnace operation method
JP5315732B2 (en) Blast furnace operation method
JP5884156B2 (en) Blast furnace operation method
JP5509676B2 (en) How to operate a vertical furnace
JP5593883B2 (en) How to reduce carbon dioxide emissions
JP5476987B2 (en) Blast furnace operation method
JP5594013B2 (en) Reduced iron production method
JP5565150B2 (en) Blast furnace operation method
JP2007186759A (en) Method for operating blast furnace
JP5549056B2 (en) Blast furnace operation method
US20230366050A1 (en) Device to inject a reducing gas into a shaft furnace
JP5614517B1 (en) Blast furnace operation method
JP7055082B2 (en) How to operate the blast furnace
JP7105708B2 (en) Method for determining injection amount of reducing gas and method for operating blast furnace
CN103740873B (en) A kind of system for blast furnace ironmaking
JP2020020012A (en) Pig-iron manufacturing facility and method for manufacturing pig-iron using the same
JP2009221546A (en) Method for operating blast furnace
JP2015193927A (en) Oxygen blast furnace operation method
Bailera et al. Decarbonization of ironmaking through power to gas and oxy-fuel combustion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5884156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250