JP6604344B2 - Preheating gas blowing device to blast furnace shaft, preheating gas blowing method and blast furnace operating method - Google Patents

Preheating gas blowing device to blast furnace shaft, preheating gas blowing method and blast furnace operating method Download PDF

Info

Publication number
JP6604344B2
JP6604344B2 JP2017025666A JP2017025666A JP6604344B2 JP 6604344 B2 JP6604344 B2 JP 6604344B2 JP 2017025666 A JP2017025666 A JP 2017025666A JP 2017025666 A JP2017025666 A JP 2017025666A JP 6604344 B2 JP6604344 B2 JP 6604344B2
Authority
JP
Japan
Prior art keywords
gas
blast furnace
preheating
preheating gas
storage chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017025666A
Other languages
Japanese (ja)
Other versions
JP2018131650A (en
Inventor
純仁 小澤
泰平 野内
功一 ▲高▼橋
雄基 川尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017025666A priority Critical patent/JP6604344B2/en
Publication of JP2018131650A publication Critical patent/JP2018131650A/en
Application granted granted Critical
Publication of JP6604344B2 publication Critical patent/JP6604344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、安定した低還元材比操業を実施するための高炉シャフト部への予熱ガス吹込み装置、予熱ガス吹込み方法および高炉操業方法に関する。   The present invention relates to a preheating gas blowing device, a preheating gas blowing method, and a blast furnace operating method for a blast furnace shaft portion for performing stable low reducing material ratio operation.

近年、CO排出量の増加による地球温暖化が問題となっており、製鉄業においてもCO排出量の抑制は重要な課題である。これを受け、最近の高炉操業では低還元材比(低RAR)操業が推進されている。しかしながら、RAR(Reduction Agent Ratio:銑鉄1t製造当たりの、吹込み燃料と炉頂から装入されるコークスの合計量)を低下させることは吹込み燃料やコークスの燃焼量を低減することであるので、原理的に羽口からの送風量を低減させることになる。この結果、炉内ガス量は減少し、また炉内ガスの有する熱量も減少する。 In recent years, global warming due to an increase in CO 2 emissions has become a problem, and suppression of CO 2 emissions is also an important issue in the steel industry. In response, recent blast furnace operations are promoting low-reducing material ratio (low RAR) operations. However, reducing the RAR (Reduction Agent Ratio: the total amount of injected fuel and coke charged from the top of the furnace per 1 ton of pig iron) is to reduce the amount of injected fuel and coke combustion. In principle, the amount of air blown from the tuyere will be reduced. As a result, the amount of gas in the furnace is reduced, and the amount of heat of the gas in the furnace is also reduced.

高炉へ装入される装入物は、高炉内を上昇する炉内ガスにより昇温されるが、炉内ガスの有する熱量が減少するとシャフト上部においては装入物の昇温が遅れ、順調な還元が達成されなくなるおそれがある。加えて、特にシャフト上部で温度低下が生じると、シャフト上部の内壁に炉内ガスに含まれる亜鉛化合物などが付着する、いわゆる壁付きが助長され、これが炉内ガスの流れを阻害して、高炉内の風圧変動や、高炉内の装入物の降下異常などの炉況不調を招く。また、炉上部の温度が低下して100℃を下回るような場合には、炉頂ガス中の水分が炉頂ガス配管内に結露し、配管内壁の耐火物の劣化や配管腐食といった問題が生じることもある。   The charge charged to the blast furnace is heated by the furnace gas rising in the blast furnace, but if the amount of heat of the furnace gas decreases, the temperature rise of the charge is delayed at the upper part of the shaft, and smooth. Reduction may not be achieved. In addition, when a temperature drop occurs especially at the upper part of the shaft, zinc compounds contained in the furnace gas adhere to the inner wall of the upper part of the shaft, which promotes the so-called wall attachment, which hinders the flow of the gas in the furnace, It causes instability of the furnace such as fluctuation of the wind pressure in the inside and abnormal drop of the charge in the blast furnace. Further, when the temperature at the top of the furnace is lowered to below 100 ° C., moisture in the furnace top gas is condensed in the furnace top gas pipe, causing problems such as deterioration of the refractory on the pipe inner wall and pipe corrosion. Sometimes.

特許文献1には、普通高炉において低RAR操業を行った場合にシャフト上部での装入物の昇温が遅れるという課題を解決するために、シャフト部に設けられたガス吹込み部から予熱ガスを吹込む方法が開示されている。   In Patent Document 1, in order to solve the problem that the temperature rise of the charge in the upper part of the shaft is delayed when a low RAR operation is performed in an ordinary blast furnace, a preheating gas is supplied from a gas blowing part provided in the shaft part. A method of blowing is disclosed.

一方、上記した通常の普通高炉とは異なるタイプの高炉として、羽口から常温の純酸素を高炉内に吹込むことにより溶銑を製造する酸素高炉がある(特許文献2参照)。この酸素高炉は、実質的に窒素を含まない高炉ガスを発生させ、これを回収して合成化学工業用ガスとして使用する点に特徴がある。このような酸素高炉では、実質的に窒素を含まない炉内ガスにより装入物の昇温還元を行うが、普通高炉以上に炉内ガス量が少ないので、さらにシャフト上部の装入物の昇温が遅れ、順調な還元が達成されなくなるおそれがある。特許文献3には、このような酸素高炉のシャフト部から吹込むガスとして、酸素高炉の炉頂から発生する高炉ガスを昇圧し、純酸素を用いて燃焼させた予熱ガスを使用することが開示されている。   On the other hand, there is an oxygen blast furnace that produces hot metal by injecting pure oxygen at room temperature into a blast furnace from a tuyere as a type of blast furnace different from the above-described ordinary ordinary blast furnace (see Patent Document 2). This oxygen blast furnace is characterized in that a blast furnace gas containing substantially no nitrogen is generated and recovered and used as a gas for the synthetic chemical industry. In such an oxygen blast furnace, the temperature of the charge is reduced by a furnace gas that does not substantially contain nitrogen, but the amount of gas in the furnace is smaller than that of a normal blast furnace. The temperature is delayed, and there is a risk that smooth reduction cannot be achieved. Patent Document 3 discloses that a preheated gas that is pressurized from blast furnace gas generated from the top of the oxygen blast furnace and burned with pure oxygen is used as the gas blown from the shaft portion of the oxygen blast furnace. Has been.

特開2010−275623号公報JP 2010-275623 A 特開昭60−159104号公報JP 60-159104 A 特開昭62−27509号公報JP-A-62-27509

シャフト部へ吹込むガスの成分、温度、圧力は厳密に制御する必要がある。しかしながら、特許文献1および特許文献3に開示されているように高炉ガスの一部を取り出し、燃焼炉で燃焼させると、予熱ガスの温度はシャフト部から吹込むガスの目標温度より高くなりすぎる傾向があり、燃焼炉における燃焼の制御では予熱ガスの温度のばらつきが大きく、予熱ガスの温度を適切に調整するのが困難である、という課題があった。   It is necessary to strictly control the composition, temperature, and pressure of the gas blown into the shaft portion. However, when a part of the blast furnace gas is taken out and burned in the combustion furnace as disclosed in Patent Document 1 and Patent Document 3, the temperature of the preheated gas tends to be higher than the target temperature of the gas blown from the shaft portion. In the combustion control in the combustion furnace, there is a problem that the temperature of the preheating gas varies greatly, and it is difficult to appropriately adjust the temperature of the preheating gas.

このような課題を解決する本発明の特徴は、以下の通りである。
(1)高炉ガスを昇圧する昇圧機と、昇圧された高炉ガスを燃焼して予熱ガスを生成する燃焼炉と、前記燃焼炉で生成された予熱ガスを貯蔵する貯蔵室と、前記貯蔵室に希釈ガスを供給する希釈ガス流路と、高炉シャフト部を囲むように設けられた環状管であるレシーバータンクと、を有し、前記レシーバータンクは、前記貯蔵室と、高炉シャフト部の円周方向に設置された複数のガス吹込みノズルとに接続されている、高炉シャフト部への予熱ガス吹込み装置。
(2)前記貯蔵室には、少なくとも前記予熱ガスの温度を測定するセンサが設けられ、前記貯蔵室と前記レシーバータンクとの間には遮断弁が設けられている、(1)に記載の高炉シャフト部への予熱ガス吹込み装置。
(3)高炉ガスを回収し、前記高炉ガスを昇圧して高圧ガスを生成し、前記高圧ガスを燃焼して予熱ガスを生成し、前記予熱ガスを貯蔵室に貯蔵し、前記貯蔵室に貯蔵された予熱ガスを、高炉シャフト部を囲むように設けられた環状管を通じて高炉シャフト部の円周方向から高炉内に吹込む予熱ガスの吹込み方法であって、
前記貯蔵室に希釈ガスを導入することで、前記貯蔵室に貯蔵された前記予熱ガスの温度を調整する、予熱ガス吹込み方法。
(4)前記貯蔵室と前記環状管の間に遮断弁が設けられ、前記予熱ガスの温度が調整された後に、前記遮断弁を開いて前記予熱ガスを前記高炉内に吹込む、(3)に記載の予熱ガス吹込み方法。
(5)前記希釈ガスは、前記高圧ガスである、(3)または(4)に記載の予熱ガス吹込み方法。
(6)前記希釈ガスは、窒素である、(3)から(5)のいずれか1つに記載の予熱ガス吹込み方法。
(7)高炉炉下部の羽口から酸素を吹込む高炉操業方法であって、(3)から(5)のいずれか1つに記載の予熱ガス吹込み方法で、高炉シャフト部の円周方向から高炉内に予熱ガスを吹込む、高炉操業方法。
(8)高炉炉下部の羽口から空気または酸素富化空気を吹込む高炉操業方法であって、(3)から(6)のいずれか1つに記載の予熱ガス吹込み方法で、高炉シャフト部の円周方向から高炉内に予熱ガスを吹込む、高炉操業方法。
The features of the present invention that solve such problems are as follows.
(1) A booster that boosts the blast furnace gas, a combustion furnace that burns the boosted blast furnace gas to generate a preheating gas, a storage chamber that stores the preheating gas generated in the combustion furnace, and a storage chamber A dilution gas flow path for supplying a dilution gas; and a receiver tank that is an annular pipe provided so as to surround the blast furnace shaft portion; and the receiver tank includes the storage chamber and a circumferential direction of the blast furnace shaft portion. A preheating gas blowing device connected to a plurality of gas blowing nozzles installed in the blast furnace shaft portion.
(2) The blast furnace according to (1), wherein the storage chamber is provided with at least a sensor for measuring the temperature of the preheating gas, and a shutoff valve is provided between the storage chamber and the receiver tank. Preheating gas blowing device to the shaft.
(3) Collect blast furnace gas, pressurize the blast furnace gas to generate high pressure gas, burn the high pressure gas to generate preheated gas, store the preheated gas in a storage room, and store in the storage room The preheating gas is blown into the blast furnace from the circumferential direction of the blast furnace shaft portion through an annular pipe provided so as to surround the blast furnace shaft portion,
A preheating gas blowing method of adjusting a temperature of the preheating gas stored in the storage chamber by introducing a dilution gas into the storage chamber.
(4) A shutoff valve is provided between the storage chamber and the annular pipe, and after the temperature of the preheated gas is adjusted, the shutoff valve is opened and the preheated gas is blown into the blast furnace. (3) The preheating gas blowing method described in 1.
(5) The preheating gas blowing method according to (3) or (4), wherein the dilution gas is the high-pressure gas.
(6) The preheating gas blowing method according to any one of (3) to (5), wherein the dilution gas is nitrogen.
(7) A blast furnace operating method in which oxygen is blown from the tuyeres at the bottom of the blast furnace, wherein the preheating gas blowing method according to any one of (3) to (5) A blast furnace operation method in which preheating gas is blown into the blast furnace.
(8) A blast furnace operating method for blowing air or oxygen-enriched air from a tuyeres at the bottom of the blast furnace, wherein the preheated gas blowing method according to any one of (3) to (6) A blast furnace operation method in which preheating gas is blown into the blast furnace from the circumferential direction of the section.

本発明に係る予熱ガス吹込み方法の実施により、温度が適切に調整された予熱ガスを高炉シャフト部から吹込むことができる。これにより、炉況不良を回避でき、通常高炉および酸素高炉の安定操業に寄与できる。   By carrying out the preheating gas blowing method according to the present invention, the preheating gas whose temperature is appropriately adjusted can be blown from the blast furnace shaft portion. Thereby, a poor furnace condition can be avoided and it can contribute to the stable operation of a normal blast furnace and an oxygen blast furnace.

高炉10と、本実施形態に係る予熱ガス吹込み装置30を示す断面模式図である。It is a cross-sectional schematic diagram which shows the blast furnace 10 and the preheating gas blowing apparatus 30 which concerns on this embodiment. 実験例1で用いたオフライン実験装置60および実験条件の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the off-line experiment apparatus 60 used in Experimental example 1, and experimental conditions. 実験例2で用いたオフライン実験装置60および実験条件の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the off-line experiment apparatus 60 used in Experimental example 2, and experiment conditions.

以下、本発明に係る高炉シャフト部への予熱ガス吹込み装置を高炉炉下部の羽口から空気または酸素富化空気を吹込むことで溶銑を製造する通常高炉に適用させた実施形態で説明する。図1は、高炉10と、本実施形態に係る予熱ガス吹込み装置30を示す断面模式図である。図1に示すように、高炉10の炉下部には複数の羽口14が設けられ、複数の羽口14から補助還元材16と熱風17とが高炉内に吹込まれて高炉操業が実施される。   Hereinafter, an embodiment in which a preheating gas blowing device for a blast furnace shaft according to the present invention is applied to a normal blast furnace for producing hot metal by blowing air or oxygen-enriched air from a tuyere at the lower part of the blast furnace will be described. . FIG. 1 is a schematic cross-sectional view showing a blast furnace 10 and a preheating gas blowing device 30 according to the present embodiment. As shown in FIG. 1, a plurality of tuyere 14 are provided at the bottom of the blast furnace 10, and auxiliary reducing material 16 and hot air 17 are blown into the blast furnace from the plurality of tuyere 14 to perform blast furnace operation. .

高炉10の炉頂部から排出される高炉ガスGは、ダストキャッチャー22で粗粒ダストが除去され、湿式除塵機24で細粒ダストが除去され、炉頂ガス発電装置26で高炉ガスGの圧力が電気として回収された後に系外28へ排出される。 The blast furnace gas G 0 discharged from the top of the blast furnace 10 has coarse dust removed by the dust catcher 22, fine dust removed by the wet dust remover 24, and the blast furnace gas G 0 is removed by the furnace gas generator 26. After the pressure is recovered as electricity, it is discharged out of the system 28.

高炉10には8つのガス吹込みノズル19が設けられている。8つのガス吹込みノズル19は、シャフト部18の炉周方向に等間隔となるように設けられている。ガス吹込みノズル19には、遮断弁が設けられておらず、開放された状態になっている。何れかのガス吹込みノズル19の近傍には、高炉10の炉内圧力および炉内温度を測定するセンサ20が設けられている。さらに、高炉10の炉頂にも炉頂圧力および炉頂温度を測定するセンサ21が設けられている。   The blast furnace 10 is provided with eight gas blowing nozzles 19. The eight gas blowing nozzles 19 are provided at equal intervals in the furnace circumferential direction of the shaft portion 18. The gas blowing nozzle 19 is not provided with a shut-off valve and is open. A sensor 20 that measures the in-furnace pressure and the in-furnace temperature of the blast furnace 10 is provided in the vicinity of any of the gas blowing nozzles 19. Furthermore, a sensor 21 for measuring the furnace top pressure and the furnace top temperature is also provided at the furnace top of the blast furnace 10.

本実施形態に係る予熱ガス吹込み装置30は、昇圧機32と、燃焼炉34と、貯蔵室35と、レシーバータンク38と、遮断弁36とを有する。昇圧機32は、高炉ガスGを昇圧して高圧ガスを生成する。燃焼炉34は、高圧ガスを燃焼して、予熱ガスを生成する。貯蔵室35は、予熱ガスを貯蔵する。レシーバータンク38は、シャフト部18を囲むように設けられた環状管であって、貯蔵室35と、高炉シャフト部の円周方向に設置された複数のガス吹込みノズル19とを接続している。遮断弁36は、弁を遮断状態と開放状態とに切り替えることができ、開放状態では貯蔵室35からレシーバータンク38への予熱ガスの搬送を許容し、遮断状態では貯蔵室35からレシーバータンク38への予熱ガスの搬送を停止する。 The preheated gas blowing device 30 according to the present embodiment includes a booster 32, a combustion furnace 34, a storage chamber 35, a receiver tank 38, and a shutoff valve 36. Booster 32 generates a high-pressure gas boosts the blast furnace gas G 0. The combustion furnace 34 burns high-pressure gas and generates preheated gas. The storage chamber 35 stores preheated gas. The receiver tank 38 is an annular tube provided so as to surround the shaft portion 18, and connects the storage chamber 35 and a plurality of gas blowing nozzles 19 installed in the circumferential direction of the blast furnace shaft portion. . The shut-off valve 36 can switch the valve between a shut-off state and an open state, and allows the preheated gas to be transferred from the storage chamber 35 to the receiver tank 38 in the open state, and from the storage chamber 35 to the receiver tank 38 in the shut-off state. Stop the preheating gas transport.

さらに、予熱ガス吹込み装置30は、回収流路40と、高圧ガス流路42、43と、予熱ガス流路44、45と、センサ50、52とを有する。回収流路40は、高炉ガスGの一部を回収する流路であって、高炉10の炉頂部とダストキャッチャー22とを接続する流路から分岐された流路である。高圧ガス流路42は、昇圧機32と燃焼炉34とを接続する流路である。高圧ガス流路43は、昇圧機32と貯蔵室35とを接続する流路である。予熱ガス流路44は、燃焼炉34と貯蔵室35とを接続する流路である。予熱ガス流路45は、貯蔵室35とレシーバータンク38とを接続する流路である。センサ50は、回収流路40に設けられ、高炉ガスGの組成、ダスト濃度、温度、圧力を測定する。また、センサ52は、貯蔵室35に設けられ、少なくとも予熱ガスの温度を測定する。 Further, the preheating gas blowing device 30 includes a recovery channel 40, high-pressure gas channels 42 and 43, preheating gas channels 44 and 45, and sensors 50 and 52. The recovery flow path 40 is a flow path for recovering a part of the blast furnace gas G 0 , and is a flow path branched from a flow path connecting the top of the blast furnace 10 and the dust catcher 22. The high-pressure gas channel 42 is a channel that connects the booster 32 and the combustion furnace 34. The high-pressure gas channel 43 is a channel that connects the booster 32 and the storage chamber 35. The preheating gas channel 44 is a channel that connects the combustion furnace 34 and the storage chamber 35. The preheating gas channel 45 is a channel that connects the storage chamber 35 and the receiver tank 38. Sensor 50 is provided in the recovery flow path 40, to measure the composition of the blast furnace gas G 0, dust concentration, temperature, pressure. The sensor 52 is provided in the storage chamber 35 and measures at least the temperature of the preheating gas.

予熱ガス吹込み装置30では、まず、ダストキャッチャー22に導入される前の高炉ガスGの一部が回収され、回収流路40を通じて、昇圧機32に搬送される。昇圧機32では、高炉ガスGが高炉の炉内圧力以上に昇圧されて高圧ガスが生成される。高圧ガスは、高圧ガス流路42を通じて燃焼炉34に搬送される。燃焼炉34では、高圧ガスに支燃ガス46が導入されて、高炉ガスG中にダストの一部として含まれる炭素が燃焼されて予熱ガスが生成される。 In the preheating gas blowing device 30, first, a part of the blast furnace gas G 0 before being introduced into the dust catcher 22 is recovered and conveyed to the booster 32 through the recovery flow path 40. In booster 32, blast furnace gas G 0 is a high-pressure gas is generated is boosted above the furnace pressure of the blast furnace. The high pressure gas is conveyed to the combustion furnace 34 through the high pressure gas flow path 42. In the combustion furnace 34, it introduces the oxidizing gas 46 to the high pressure gas, the preheating gas is produced carbon contained as part of the dust in blast furnace gas G 0 is burned.

燃焼炉34では、高炉内に吹込む予熱ガスとして好ましい温度以上の予熱ガスを生成する。このように、本実施形態では、予熱ガスとして好ましい温度の範囲内になるように燃焼を制御するのではなく、好ましい温度以上になるように燃焼を制御する。予熱ガスの温度を好ましい温度以上になるようにする燃焼の制御は、好ましい温度の範囲内にする燃焼の制御よりも簡易であり、燃焼炉34において厳密に燃焼の制御をしなくてよい。燃焼炉34で生成された予熱ガスは、予熱ガス流路44を通じて貯蔵室35に搬送される。   In the combustion furnace 34, a preheating gas having a temperature higher than a preferable temperature as the preheating gas to be blown into the blast furnace is generated. Thus, in this embodiment, combustion is not controlled so that it may become in the range of preferable temperature as preheating gas, but combustion is controlled so that it may become more than preferable temperature. Combustion control for setting the temperature of the preheated gas to be equal to or higher than a preferable temperature is simpler than control for combustion within the preferable temperature range, and it is not necessary to strictly control the combustion in the combustion furnace 34. The preheated gas generated in the combustion furnace 34 is conveyed to the storage chamber 35 through the preheated gas passage 44.

センサ52は、貯蔵室35に貯蔵されている予熱ガスの温度を測定する。センサ52で測定された予熱ガスの温度が、高炉内に吹込む予熱ガスとして好ましい温度の範囲を超えている場合、高炉内に吹込む予熱ガスとして好ましい温度の範囲内になるように、高圧ガス流路43を通じて貯蔵室35に高圧ガスが導入される。これにより、貯蔵室35内の予熱ガスの温度が調整される。貯蔵室35に導入される高圧ガスおよび予熱ガスの混合割合は、センサ52によって測定される貯蔵室35の予熱ガス温度と、センサ50によって測定される高炉ガスの温度とに基づいて決定される。貯蔵室35に高圧ガスを導入することによる予熱ガスの温度の調整は、高圧ガスおよび予熱ガスの混合割合を調整することで行えるので、燃焼炉34における燃焼を制御することによる温度の調整よりも容易であって高い精度で予熱ガスの温度を調整できる。貯蔵室35の容量は、10秒程度の吹込みができる容量とすることが好ましい。レシーバータンク35の容量が小さすぎると、燃焼炉34で生成した予熱ガスの圧力や組成の均一性が悪くなるので好ましくない。また、貯蔵室35の容量が大きすぎると、設備費が高くなり、経済合理性の観点からは好ましくない。なお、本実施形態における高圧ガスは希釈ガスの一例であり、高炉ガス流路43は希釈ガス流路の一例である。   The sensor 52 measures the temperature of the preheated gas stored in the storage chamber 35. When the temperature of the preheating gas measured by the sensor 52 exceeds the temperature range preferable as the preheating gas to be blown into the blast furnace, the high pressure gas is set so as to be within the temperature range preferable as the preheating gas to be blown into the blast furnace. High-pressure gas is introduced into the storage chamber 35 through the flow path 43. Thereby, the temperature of the preheating gas in the storage chamber 35 is adjusted. The mixing ratio of the high-pressure gas and the preheating gas introduced into the storage chamber 35 is determined based on the preheating gas temperature of the storage chamber 35 measured by the sensor 52 and the temperature of the blast furnace gas measured by the sensor 50. The adjustment of the temperature of the preheating gas by introducing the high pressure gas into the storage chamber 35 can be performed by adjusting the mixing ratio of the high pressure gas and the preheating gas, so that the temperature adjustment by controlling the combustion in the combustion furnace 34 is performed. It is easy and the temperature of the preheating gas can be adjusted with high accuracy. The capacity of the storage chamber 35 is preferably set to a capacity capable of blowing for about 10 seconds. If the capacity of the receiver tank 35 is too small, the uniformity of the pressure and composition of the preheated gas generated in the combustion furnace 34 is not preferable. Moreover, when the capacity | capacitance of the storage chamber 35 is too large, an installation cost will become high and it is unpreferable from a viewpoint of economic rationality. In addition, the high pressure gas in this embodiment is an example of a dilution gas, and the blast furnace gas flow path 43 is an example of a dilution gas flow path.

また、センサ52で測定された予熱ガスの温度が、高炉内に吹込む予熱ガスとして好ましい範囲を超えている場合、高炉内に吹込む予熱ガスとして好ましい温度の範囲内になるように、高圧ガスの導入に代え、または、高圧ガスの導入とともに、貯蔵室35内に窒素47を導入して予熱ガスの温度を調整してもよい。製鉄所内には窒素の供給配管が設置されているので、窒素47を導入することによっても、容易であって高い精度で予熱ガスの温度を調整できる。なお、窒素47は、希釈ガスの他の例であり、窒素を導入するために用いる窒素の供給配管と接続する流路は、希釈ガス流路の他の例である。   Further, when the temperature of the preheating gas measured by the sensor 52 exceeds a preferable range as the preheating gas to be blown into the blast furnace, the high pressure gas is set so as to be within a preferable temperature range as the preheating gas to be blown into the blast furnace. Alternatively, or together with the introduction of high-pressure gas, nitrogen 47 may be introduced into the storage chamber 35 to adjust the temperature of the preheating gas. Since a nitrogen supply pipe is installed in the steelworks, the temperature of the preheating gas can be adjusted easily and with high accuracy by introducing nitrogen 47. Nitrogen 47 is another example of the dilution gas, and the flow path connected to the nitrogen supply pipe used for introducing nitrogen is another example of the dilution gas flow path.

また、センサ52は、貯蔵室35に貯蔵される予熱ガスの温度とともに圧力および/または組成を測定してもよい。予熱ガスの圧力および組成が予熱ガスとして好ましい範囲内でない場合に、貯蔵室35に高圧ガスおよび/または窒素47を導入したり、一部の予熱ガスを不図示の流路を通じて系外28へ放散させることで、貯蔵室35の予熱ガスの圧力および組成を調整してもよい。   The sensor 52 may measure the pressure and / or composition together with the temperature of the preheated gas stored in the storage chamber 35. When the pressure and composition of the preheating gas are not within the preferred range for the preheating gas, a high pressure gas and / or nitrogen 47 is introduced into the storage chamber 35, or a part of the preheating gas is dissipated outside the system 28 through a flow path (not shown). By doing so, the pressure and composition of the preheating gas in the storage chamber 35 may be adjusted.

センサ52によって測定される予熱ガスの温度、圧力および組成が予熱ガスとして好ましい範囲内の場合には、遮断弁36の弁が開放状態となり、予熱ガスは、貯蔵室35からレシーバータンク38へ搬送される。一方、センサ52によって測定される予熱ガスの温度、圧力および組成の少なくとも1つが予熱ガスとして好ましい範囲内でない場合には、遮断弁36の弁が遮断状態となり、予熱ガスの温度、圧力および組成が調整される。なお、予熱ガスの温度、圧力および組成の調整が困難な場合には、不図示の流路を通じて予熱ガスを系外28へ放散させてもよい。本実施形態において、センサ50およびセンサ52は、例えば、温度を測定する温度センサ、圧力を測定する圧力センサおよび組成を測定する赤外線ガス分析センサを含むセンサである。   When the temperature, pressure and composition of the preheating gas measured by the sensor 52 are within the preferable ranges for the preheating gas, the shutoff valve 36 is opened, and the preheating gas is transferred from the storage chamber 35 to the receiver tank 38. The On the other hand, when at least one of the temperature, pressure and composition of the preheating gas measured by the sensor 52 is not within the preferable range as the preheating gas, the shutoff valve 36 is shut off and the temperature, pressure and composition of the preheating gas are changed. Adjusted. If it is difficult to adjust the temperature, pressure and composition of the preheating gas, the preheating gas may be diffused to the outside of the system 28 through a flow path (not shown). In the present embodiment, the sensor 50 and the sensor 52 are sensors including, for example, a temperature sensor that measures temperature, a pressure sensor that measures pressure, and an infrared gas analysis sensor that measures composition.

レシーバータンク38は、高炉シャフト部18の周囲を囲むように設けられた環状管であって、8つガス吹込みノズル19のそれぞれに接続されている。レシーバータンク38では、搬送された予熱ガスを貯留するとともに、当該レシーバータンク38を通じて、8つのガス吹込みノズル19から予熱ガスの吹込みが行われる。本実施形態において、レシーバータンク38は、予熱ガスのリザーバーとして機能するのに十分な容量を有している。このようなレシーバータンク38を用いることで、予熱ガスの圧力や組成の均一性を高めることができる。また、燃焼炉34が高炉10から離れた位置に設置されたとしても、レシーバータンク38を通じて、均一な流量で8つのガス吹込みノズルから予熱ガスを高炉内に吹込むことができる。なお、レシーバータンク38の容量は、3〜15秒程度の吹込みができる容量とすることが好ましい。レシーバータンク38の容量が小さすぎると、燃焼炉34で生成した予熱ガスの圧力や組成の均一性が悪くなるので好ましくない。また、レシーバータンク38の容量が大きすぎると、高炉でのトラブル時に遮断弁36が動作した後も、予熱ガスが高炉内に入り続けることになるので好ましくない。   The receiver tank 38 is an annular pipe provided so as to surround the periphery of the blast furnace shaft portion 18, and is connected to each of the eight gas blowing nozzles 19. In the receiver tank 38, the transported preheating gas is stored, and preheating gas is blown from the eight gas blowing nozzles 19 through the receiver tank 38. In the present embodiment, the receiver tank 38 has a sufficient capacity to function as a reservoir of preheated gas. By using such a receiver tank 38, the pressure and composition uniformity of the preheating gas can be increased. Even if the combustion furnace 34 is installed at a position away from the blast furnace 10, the preheated gas can be injected into the blast furnace through the receiver tank 38 from the eight gas injection nozzles at a uniform flow rate. In addition, it is preferable that the capacity | capacitance of the receiver tank 38 is a capacity | capacitance which can be blown in about 3 to 15 seconds. If the capacity of the receiver tank 38 is too small, the pressure and composition uniformity of the preheated gas generated in the combustion furnace 34 deteriorates, which is not preferable. Further, if the capacity of the receiver tank 38 is too large, it is not preferable because the preheating gas continues to enter the blast furnace even after the shut-off valve 36 is operated in case of trouble in the blast furnace.

また、レシーバータンク38は、高炉シャフト部18の周囲を囲むように設けられているので、レシーバータンク38から高炉シャフト部に設けられたガス吹込みノズル19までの流路は、8つのガス吹込みノズル間でほぼ等しくなる。これにより、レシーバータンク38からそれぞれのガス吹込みノズル19までの圧力損失の差を小さくすることができ、ガス吹込みノズル19から吹込まれる予熱ガスの流量をさらに均一にできる。本実施形態では、ガス吹込みノズル19には遮断弁が設けられていないので、ガス吹込みノズル19を通じた高炉内への予熱ガスの吹込みは、遮断弁36によって制御される。すなわち、遮断弁36の弁が開放状態にされている場合に、ガス吹込みノズル19から高炉内に予熱ガスが吹込まれ、遮断弁36の弁が遮断状態にされている場合に、高炉内への予熱ガスの吹込みが停止される。   Further, since the receiver tank 38 is provided so as to surround the blast furnace shaft portion 18, the flow path from the receiver tank 38 to the gas injection nozzle 19 provided in the blast furnace shaft portion has eight gas injections. Almost equal between nozzles. Thereby, the difference of the pressure loss from the receiver tank 38 to each gas blowing nozzle 19 can be made small, and the flow volume of the preheating gas blown from the gas blowing nozzle 19 can be made more uniform. In the present embodiment, since the gas injection nozzle 19 is not provided with a cutoff valve, the injection of the preheated gas into the blast furnace through the gas injection nozzle 19 is controlled by the cutoff valve 36. That is, when the shut-off valve 36 is opened, preheated gas is blown into the blast furnace from the gas blowing nozzle 19 and when the shut-off valve 36 is shut off, the blast furnace enters the blast furnace. The preheating gas blowing is stopped.

ガス吹込みノズル19から高炉内に予熱ガスを吹込むには、予熱ガスの圧力が、吹込む位置における高炉10の炉内圧力より高いことが必要である。高炉内に予熱ガスを吹込むには、予熱ガスの圧力を高炉の炉内圧力よりも0.02〜0.10MPa以上高くすればよい。高炉の炉内圧力は、センサ20によって測定できるので、予熱ガスとして好ましい圧力は、センサ20によって測定される圧力に0.02〜0.10MPa以上を加えた圧力になる。   In order to blow the preheating gas into the blast furnace from the gas blowing nozzle 19, it is necessary that the pressure of the preheating gas is higher than the pressure inside the blast furnace 10 at the blowing position. In order to blow the preheating gas into the blast furnace, the pressure of the preheating gas may be set higher by 0.02 to 0.10 MPa or more than the pressure in the blast furnace. Since the in-furnace pressure of the blast furnace can be measured by the sensor 20, the pressure preferable as the preheating gas is a pressure obtained by adding 0.02 to 0.10 MPa or more to the pressure measured by the sensor 20.

昇圧機32で昇圧させる圧力は、センサ50によって測定された高炉ガスGの圧力と、上記予熱ガスとして好ましい圧力とから定めることができる。回収される高炉ガスGは、高炉の炉頂ガス圧(通常0.20〜0.25MPa)を維持している。このため、高炉ガスGを用いることで、昇圧機32では軽度に昇圧させるだけで、ガス吹込みノズル19から高炉内に予熱ガスを吹込むための圧力を確保できる。 The pressure to be boosted by the booster 32 can be determined from the pressure of the blast furnace gas G 0 measured by the sensor 50 and the pressure preferable as the preheating gas. Blast furnace gas G 0 to be recovered maintains the furnace top gas pressure of the blast furnace (usually 0.20~0.25MPa). Accordingly, by using the blast furnace gas G 0, simply by booster 32 in mildly boosting, it can be secured pressure for blowing the preheating gas into the blast furnace through the gas blowing nozzle 19.

また、ガス吹込みノズル19から高炉内に吹込む予熱ガスの温度が吹込む位置の炉内ガス温度より低いと高炉内を逆に冷やしてしまう。このため、予熱ガスの温度は、吹込む位置における高炉の炉内温度よりも高いことが必要である。このため、予熱ガスの温度を500℃以上、より好ましくは800℃以上にすることが好ましい。一方、予熱ガス流速などにも依存するが、予熱ガスの温度を1000℃以上にすると高炉内のステーブへの熱負荷が大きくなるのでステーブ破損が懸念される。このため、予熱ガスの温度を1000℃未満にすることが好ましい。   Moreover, if the temperature of the preheating gas blown into the blast furnace from the gas blowing nozzle 19 is lower than the furnace gas temperature at the blowing position, the inside of the blast furnace is cooled. For this reason, the temperature of the preheating gas needs to be higher than the in-furnace temperature of the blast furnace at the blowing position. For this reason, it is preferable that the temperature of the preheating gas is 500 ° C. or higher, more preferably 800 ° C. or higher. On the other hand, depending on the flow rate of the preheating gas, if the temperature of the preheating gas is set to 1000 ° C. or more, the heat load on the stave in the blast furnace increases, so there is a concern about stave breakage. For this reason, it is preferable to set the temperature of the preheating gas to less than 1000 ° C.

ガス吹込みノズル19から高炉内に吹込む予熱ガスが酸素を含有すると、高炉内で還元中の鉄酸化物(Fe、FeO)を再酸化してしまう。このため、酸素濃度の低い予熱ガスを用いることが好ましく、酸素を含まない予熱ガスを用いることがより好ましい。したがって、燃焼炉34に供給する支燃ガス46の酸素は、ダストを含む高炉ガス組成から算出される燃焼に必要な理論酸素量を1以下にすることが好ましい。 When the preheating gas blown into the blast furnace from the gas blowing nozzle 19 contains oxygen, iron oxide (Fe 2 O 3 , FeO) being reduced in the blast furnace is reoxidized. For this reason, it is preferable to use a preheating gas having a low oxygen concentration, and it is more preferable to use a preheating gas not containing oxygen. Therefore, it is preferable that the oxygen of the combustion support gas 46 supplied to the combustion furnace 34 has a theoretical oxygen amount required for combustion calculated from a blast furnace gas composition including dusts of 1 or less.

さらに、ガス吹込みノズル19から高炉内への予熱ガスの吹込みは、常時行ってもよく、また、センサ21によって測定される炉頂温度が低下した場合にのみ行ってもよい。炉頂温度が低下したときに予熱ガスの吹込みを行う場合に、例えば、炉頂温度が所定温度以下(例えば、110℃以下)になった場合に、ガス吹込みノズル19から予熱ガスの吹込みを行うとしてもよい。   Further, the preheating gas may be blown from the gas blowing nozzle 19 into the blast furnace at all times, or only when the furnace top temperature measured by the sensor 21 is lowered. When the preheating gas is blown when the furnace top temperature is lowered, for example, when the furnace top temperature is equal to or lower than a predetermined temperature (for example, 110 ° C. or lower), the preheating gas is blown from the gas blowing nozzle 19. May be included.

予熱ガスの吹込み量は、炉頂温度を概ね100℃以上に維持できるようなガス吹込み量とすればよい。例えば、RAR470kg/t相当の高炉操業では、800℃の予熱ガスを100Nm/t吹込むことによって、炉上部の温度を100℃以上に維持でき、これにより炉上部の昇温不良を解消できる。 The blowing amount of the preheating gas may be a gas blowing amount that can maintain the furnace top temperature at approximately 100 ° C. or higher. For example, in blast furnace operation equivalent to RAR 470 kg / t, the temperature of the upper part of the furnace can be maintained at 100 ° C. or more by blowing a preheated gas of 800 ° C. at 100 Nm 3 / t, thereby eliminating the temperature rise failure at the upper part of the furnace.

また、高炉内において吹抜けが発生し、炉頂圧力や炉頂温度が急激に上昇した場合に、高炉内からガス吹込みノズル19を通じて炉内ガス、鉱石、コークス等の逆流が発生する。このため、センサ21で、炉頂圧力または炉頂温度の少なくとも1つを測定し、予め定められた閾値を超える炉頂圧力または炉頂温度が検出された場合に、遮断弁36の弁を遮断状態にし、レシーバータンク38への予熱ガスの搬送を停止する。これにより、炉内ガスやコークスの逆流によって燃焼炉34が破損することを防止できる。   Further, when a blow-through occurs in the blast furnace and the furnace top pressure and the furnace top temperature rise rapidly, a back flow of furnace gas, ore, coke and the like is generated from the blast furnace through the gas blowing nozzle 19. Therefore, the sensor 21 measures at least one of the furnace top pressure or the furnace top temperature, and shuts off the valve of the shutoff valve 36 when a furnace top pressure or a furnace top temperature exceeding a predetermined threshold is detected. Then, the conveyance of the preheated gas to the receiver tank 38 is stopped. Thereby, it is possible to prevent the combustion furnace 34 from being damaged by the backflow of the furnace gas and coke.

本実施形態において、高炉10のシャフト部18の炉周方向に等間隔となるよう8つのガス吹込みノズル19を設けた例を示したが、これに限らない。ガス吹込みノズル19の設置数や設置形態は特に限定しないが、炉周方向において等間隔で複数箇所に設けることが好ましい。特に、少なくとも、炉周方向において等間隔でn箇所(但し、nは4以上の偶数)に設け、予熱ガスの吹込み総量に応じて、前記n箇所のガス吹込みノズル19のなかから、予熱ガスの吹込みを行うガス吹込みノズル19を炉周方向に等間隔に選択することが好ましい。この場合のガス吹込みノズル19の等間隔での設置数は4、8、16、32、64などである。なお、実際の設備では、ガス吹込みノズル19を炉周方向に等間隔に設けることは、炉体冷却構造等との関係から困難な場合があるので、ガス吹込みノズル19を設置する位置は、炉周方向に等間隔でなくてもよい。   In this embodiment, although the example which provided the eight gas blowing nozzles 19 so that it might become equal intervals in the furnace peripheral direction of the shaft part 18 of the blast furnace 10 was shown, it does not restrict to this. The number of gas blowing nozzles 19 and the installation form are not particularly limited, but are preferably provided at a plurality of locations at equal intervals in the furnace circumferential direction. In particular, at least n places (where n is an even number of 4 or more) at equal intervals in the furnace circumferential direction, and according to the total amount of preheated gas blowing, preheating is performed from among the n gas blowing nozzles 19. It is preferable to select the gas injection nozzles 19 that perform gas injection at equal intervals in the furnace circumferential direction. In this case, the number of gas blowing nozzles 19 installed at equal intervals is 4, 8, 16, 32, 64, or the like. In actual equipment, it may be difficult to provide the gas injection nozzles 19 at equal intervals in the furnace circumferential direction because of the relationship with the furnace body cooling structure and the like. , It may not be equally spaced in the furnace circumferential direction.

また、ガス吹込みノズル19の設置位置は、シャフト部18の中部から上部の範囲内が好ましく、特に、炉口半径をRとし、ストックラインからの深さがRとなる位置をp、シャフト部下端からの高さがシャフト部全高の1/3となる位置をpとしたとき、炉高方向において位置pと位置pとの間にガス吹込みノズル19を設置し、このガス吹込みノズル19から予熱ガスを吹込むことが好ましい。ガス吹込みノズル19の設置位置が高すぎると、高炉原料によって形成される鉱石層またはコークス層が堆積されておらず、その荷重が小さいので、予熱ガスを吹込むことで高炉原料が撹拌され、流動化が生じてしまい高炉原料の降下の安定性が損なわれるので好ましくない。一方、ガス吹込みノズル19の設置位置が下すぎると、予熱ガスの吹込みが高炉内の軟化融着帯にかかる可能性が高くなるので好ましくない。 Also, the installation position of the gas blow nozzle 19 is preferably in the range of middle shaft portion 18 of the upper, in particular, the throat radius and R 0, p 1 the position where the depth from the stock line is R 0 , when the 1/3 a position height of the total height shaft portion from the shaft portion lower end and p 2, established the gas blow nozzle 19 between the position p 1 and the position p 2 in the furnace height direction, Preheating gas is preferably blown from the gas blowing nozzle 19. If the installation position of the gas blowing nozzle 19 is too high, the ore layer or coke layer formed by the blast furnace raw material is not deposited and the load is small, so the blast furnace raw material is stirred by blowing the preheating gas, Since fluidization occurs and the stability of descent of the blast furnace raw material is impaired, it is not preferable. On the other hand, if the installation position of the gas blowing nozzle 19 is too low, there is a high possibility that the blowing of the preheated gas will be applied to the softened cohesive zone in the blast furnace.

本実施形態に係る高炉シャフト部への予熱ガス吹込み装置30および予熱ガス吹込み方法では、高炉内に吹込む予熱ガスを、高炉ガスGを用いて生成している。このように、高炉ガスGを用いることで、高炉ガスGの圧力および温度を利用できるので、昇圧機32で高圧ガスを生成させるためのエネルギーおよび燃焼炉34で予熱ガスを生成するためのエネルギーを少なくできる。 The preheating gas blow device 30 and the preheating gas blowing method of the blast furnace shaft portion according to the present embodiment, the blown preheating gas into the blast furnace, are generated using the blast furnace gas G 0. In this manner, by using the blast furnace gas G 0, it is possible to utilize the pressure and temperature of the blast furnace gas G 0, to produce a preheated gas energy and combustion furnace 34 for generating a high-pressure gas booster 32 Energy can be reduced.

また、通常の高炉操業では10〜30kg/t(炭素濃度20〜30質量%)のダストが高炉ガスGとともに排出されているので、当該ダストを燃焼炉34で予熱ガスを生成するための燃料の一部として使用できる。仮に、ダスト排出量原単位が25kg/t(炭素濃度25質量%)であったとすると、22.9kg/tのCO排出量を削減できるので、高炉の低RAR操業にも寄与できる。また、炭素を燃焼させる分、高炉ガスGの循環量を少なくできるので、燃焼用の酸素量も減らすことができる。 Further, in normal blast furnace operation, 10 to 30 kg / t (carbon concentration 20 to 30% by mass) of dust is discharged together with the blast furnace gas G 0 , so that the fuel for generating the preheating gas in the combustion furnace 34 is used. Can be used as part of If the dust emission basic unit is 25 kg / t (carbon concentration 25% by mass), the CO 2 emission of 22.9 kg / t can be reduced, which can contribute to the low RAR operation of the blast furnace. Also, minutes to burn the carbon, it is possible to reduce the circulation amount of the blast furnace gas G 0, can also reduce the amount of oxygen for combustion.

また、高炉ガスG以外のガスを高炉ガスGとともに燃焼炉34に導入し、炉内に吹込むための予熱ガスを得てもよい。高炉ガスG以外のガスとしては、例えば、湿式除塵機24よりも下流側から抜き出した高炉ガスを用いることができる。すなわち、図1に破線で示すように、湿式除塵機24と炉頂ガス発電装置26との間から抜き出した高炉ガスまたは/および炉頂ガス発電装置26の下流側から抜き出した高炉ガスを、昇圧機32で昇圧して燃焼炉34に導入する。湿式除塵機24で処理された高炉ガスを使用する場合は、より清浄なガスを使用することになるので、高圧ガス流路42、予熱ガス流路44や燃焼炉34でのダストの影響を受けにくく、より安定した予熱ガスの吹込みが実施できる。しかしながら、ダストキャッチャー22および湿式除塵機24で高炉ガスGの圧力が低下するので、昇圧機32で高圧ガスを生成させるためのエネルギーが多く必要となる。なお、高炉ガスG以外のガスとして、例えば、製鉄所のガスホルダーに貯蔵されている高炉発生ガス(Bガス)、または高炉発生ガスとコークス炉発生ガス(Cガス)の混合ガスなどを用いることもできる。 Furthermore, the blast furnace gas G 0 other gas is introduced into the combustion furnace 34 with blast furnace gas G 0, may be obtained pre-heating gas for blowing into the furnace. The blast furnace gas G 0 other than gas, for example, than the wet dust remover 24 can be used blast furnace gas extracted from the downstream side. That is, as shown by a broken line in FIG. 1, the blast furnace gas extracted from between the wet dust remover 24 and the top gas power generation device 26 and / or the blast furnace gas extracted from the downstream side of the top gas power generation device 26 is boosted. The pressure is increased by the machine 32 and introduced into the combustion furnace 34. When using the blast furnace gas processed by the wet dust remover 24, a cleaner gas is used. Therefore, the blast furnace gas is affected by dust in the high pressure gas passage 42, the preheating gas passage 44 and the combustion furnace 34. Difficult and more stable preheating gas can be injected. However, since the pressure of the blast furnace gas G 0 is reduced in the dust catcher 22 and wet dust remover 24, the energy for generating a high-pressure gas often required by booster 32. As the blast furnace gas G 0 other than gas, for example, using a mixed gas of the blast furnace generating gas stored in the gas holder steelworks (B gas), or blast furnace gas generated and coke oven gas generated (C gas) You can also.

以上説明したように、貯蔵室35で予熱ガスの温度を調整することで、燃焼炉における燃焼の制御よる温度調整よりも容易であって高い精度で予熱ガスの温度を調整できるので、本実施形態に係る高炉シャフト部への予熱ガス吹込み装置および予熱ガス吹込み方法を用いることで、貯蔵室35で温度が適切に調整された予熱ガスを、レシーバータンク38を介して高炉内に吹込むことができる。このように温度が適切に調整された予熱ガスを高炉内に吹込むことで、炉上部の昇温不良を解消でき、通常高炉および酸素高炉の安定操業を維持できる。   As described above, by adjusting the temperature of the preheating gas in the storage chamber 35, the temperature of the preheating gas can be adjusted with higher accuracy and easier than temperature adjustment by controlling combustion in the combustion furnace. By using the preheating gas blowing device and the preheating gas blowing method to the blast furnace shaft portion according to the above, the preheating gas whose temperature is appropriately adjusted in the storage chamber 35 is blown into the blast furnace through the receiver tank 38. Can do. By blowing the preheated gas whose temperature is appropriately adjusted in this way into the blast furnace, the temperature rise failure at the upper part of the furnace can be eliminated, and the stable operation of the normal blast furnace and the oxygen blast furnace can be maintained.

本実施形態に係る高炉シャフト部への予熱ガス吹込み装置30では、貯蔵室35とレシーバータンク38を接続する予熱ガス流路44に遮断弁36を設けて予熱ガスの吹込みを制御する。このように、予熱ガス流路44に遮断弁36を設けることによって遮断弁を1つに集約でき、仮に、高炉内で吹抜けが発生してガス吹込みノズル19から炉内ガス、鉱石、コークス等が逆流しても遮断弁36の弁を遮断状態にすることで燃焼炉34に、炉内ガス、鉱石、コークス等が到達することを防止できる。特に、800℃以上の高温環境下に設置可能な遮断弁は非常に高価であることから、本実施形態に係る高炉シャフト部へのガス吹込み装置を用いることで遮断弁36の設置数を少なくでき、これにより、高炉10を含む高炉シャフト部への予熱ガス吹込み装置30全体の設備コストの上昇を抑制できる。   In the preheating gas blowing device 30 to the blast furnace shaft portion according to the present embodiment, the shutoff valve 36 is provided in the preheating gas flow path 44 connecting the storage chamber 35 and the receiver tank 38 to control the blowing of the preheating gas. In this way, by providing the shut-off valve 36 in the preheating gas flow path 44, the shut-off valves can be integrated into one, and tentatively, blow-off occurs in the blast furnace, and the gas in the furnace, gas, ore, coke, etc. Even if the gas flows backward, by setting the shut-off valve 36 to the shut-off state, it is possible to prevent the in-furnace gas, ore, coke and the like from reaching the combustion furnace 34. In particular, shut-off valves that can be installed in a high-temperature environment of 800 ° C. or higher are very expensive. Therefore, the number of shut-off valves 36 can be reduced by using the gas blowing device for the blast furnace shaft according to this embodiment. This can suppress an increase in equipment cost of the entire preheated gas blowing device 30 to the blast furnace shaft portion including the blast furnace 10.

なお、本実施形態では、高炉シャフト部への予熱ガス吹込み装置30および予熱ガス吹込み方法を通常高炉に適用した例を示したが、これに限らない。例えば、本実施形態に係る予熱ガス吹込み装置30および予熱ガス吹込み方法を、羽口14から常温の純酸素を高炉内に吹込むことにより溶銑を製造する酸素高炉に適用してもよい。但し、酸素高炉において、支燃ガス46および希釈ガスに窒素を含むガスを用いることは、酸素高炉プロセスに反することになるので、酸素高炉に適用させる場合には、支燃ガス46として純酸素、希釈ガスとして酸素高炉ガスGを昇圧させた高圧ガスを用いる必要がある。
[実験例1]
In the present embodiment, the example in which the preheating gas blowing device 30 and the preheating gas blowing method to the blast furnace shaft portion are applied to a normal blast furnace is shown, but the present invention is not limited thereto. For example, the preheating gas blowing device 30 and the preheating gas blowing method according to the present embodiment may be applied to an oxygen blast furnace that produces hot metal by blowing pure oxygen at room temperature from the tuyere 14 into the blast furnace. However, in the oxygen blast furnace, using a gas containing nitrogen as the combustion support gas 46 and the dilution gas is contrary to the oxygen blast furnace process. Therefore, when applied to the oxygen blast furnace, pure oxygen, it is necessary to use a high-pressure gas is boosted oxygen blast furnace gas G 0 as a diluent gas.
[Experimental Example 1]

図2は、実験例1で用いたオフライン実験装置60および実験条件の概要を示す模式図である。図2に示すオフライン実験装置60を用いて、本実施形態に係る高炉シャフト部への予熱ガス吹込み方法を通常高炉に適用させることを想定して検証実験を実施した。   FIG. 2 is a schematic diagram showing an outline of the offline experimental device 60 and experimental conditions used in Experimental Example 1. Using the off-line experimental apparatus 60 shown in FIG. 2, a verification experiment was performed assuming that the preheated gas blowing method to the blast furnace shaft portion according to this embodiment is applied to a normal blast furnace.

オフライン実験装置60は、燃焼炉64と、予熱ガス流路66と、貯蔵室70と、予熱ガス流路74と、センサ68と、センサ76とから構成される。まず、空気61と高炉ガスの成分を模して成分調整された模擬高炉ガス62を燃焼炉64へ吹込んで、模擬高炉ガス62に含まれるCOを、空気を用いて燃焼させて予熱ガス(希釈前)67を生成する。   The offline experimental apparatus 60 includes a combustion furnace 64, a preheating gas channel 66, a storage chamber 70, a preheating gas channel 74, a sensor 68, and a sensor 76. First, a simulated blast furnace gas 62 whose components are adjusted by imitating the components of the air 61 and the blast furnace gas is blown into the combustion furnace 64, and CO contained in the simulated blast furnace gas 62 is combusted using air to produce a preheated gas (diluted). Before) 67 is generated.

予熱ガス流路66は、燃焼炉64と貯蔵室70を接続する流路である。燃焼炉64で生成された予熱ガス(希釈前)67を、予熱ガス流路66を通じて貯蔵室70に搬送する。貯蔵室70にはセンサ68が設けられており、当該センサを用いて貯蔵室70に搬送された予熱ガス(希釈前)67の温度と成分を測定する。   The preheating gas channel 66 is a channel that connects the combustion furnace 64 and the storage chamber 70. The preheated gas (before dilution) 67 generated in the combustion furnace 64 is conveyed to the storage chamber 70 through the preheated gas channel 66. A sensor 68 is provided in the storage chamber 70, and the temperature and components of the preheated gas (before dilution) 67 conveyed to the storage chamber 70 are measured using the sensor 68.

貯蔵室76では、希釈ガスとして模擬高炉ガス62または窒素72が混合され、予熱ガス67の温度が調整される。予熱ガス流路74は、貯蔵室70とレシーバータンク78とを接続する流路である。貯蔵室76で希釈された予熱ガス(希釈後)74を、予熱ガス流路74を通じてレシーバータンク78に搬送する。予熱ガス流路74にはセンサ76が設けられており、当該センサを用いて予熱ガス(希釈後)74の温度と成分を測定する。このように動作するオフライン実験装置60を用いて、予熱ガス(希釈前)67と、予熱ガス(希釈後)74の温度と成分を測定した。その結果を表1に示す。   In the storage chamber 76, the simulated blast furnace gas 62 or nitrogen 72 is mixed as a dilution gas, and the temperature of the preheating gas 67 is adjusted. The preheating gas channel 74 is a channel that connects the storage chamber 70 and the receiver tank 78. The preheating gas (after dilution) 74 diluted in the storage chamber 76 is conveyed to the receiver tank 78 through the preheating gas channel 74. A sensor 76 is provided in the preheating gas channel 74, and the temperature and components of the preheating gas (after dilution) 74 are measured using the sensor. Using the off-line experimental apparatus 60 operating in this manner, the temperature and components of the preheating gas (before dilution) 67 and the preheating gas (after dilution) 74 were measured. The results are shown in Table 1.

実験例1では、燃焼炉64に模擬高炉ガス62のCOと空気との酸素比が1程度になるように、空気61と模擬高炉ガス62を吹込んで、模擬高炉ガス62に含まれるCOを燃焼させた。燃焼炉64で燃焼されて生成される予熱ガスは、燃焼炉やバーナーの形状に依存するが、1100〜1300℃になる。実験例1において予熱ガス(希釈前)67の温度は1180℃であった。1000℃以上の予熱ガスを高炉に吹込むと高炉内のステーブへの熱負荷が大きくなり、ステーブ破損が発生するので、高炉内に吹込む予熱ガスとして高すぎる温度であった。一方、予熱ガス(希釈前)67の酸素濃度は0.1質量%以下であり、当該予熱ガスが高炉内に吹込まれたとしても高炉内の還元中の鉄酸化物(Fe、FeO)の再酸化が懸念される濃度ではなかった。 In Experimental Example 1, air 61 and simulated blast furnace gas 62 are blown into the combustion furnace 64 so that the oxygen ratio of CO and air of the simulated blast furnace gas 62 is about 1, and CO contained in the simulated blast furnace gas 62 is combusted. I let you. The preheating gas generated by burning in the combustion furnace 64 is 1100 to 1300 ° C., depending on the shape of the combustion furnace and the burner. In Experimental Example 1, the temperature of the preheated gas (before dilution) 67 was 1180 ° C. When a preheated gas of 1000 ° C. or higher was blown into the blast furnace, the heat load on the stave in the blast furnace was increased and the stave was broken. Therefore, the temperature was too high as the preheated gas blown into the blast furnace. On the other hand, the oxygen concentration of the preheating gas (before dilution) 67 is 0.1% by mass or less, and even if the preheating gas is blown into the blast furnace, iron oxide (Fe 2 O 3 , FeO) being reduced in the blast furnace. ) Was not the concentration at which reoxidation was a concern.

発明例1では、希釈ガスとして模擬高炉ガス62を用いた。20Nm/hの流量で貯蔵室70に模擬高炉ガス62を導入して、予熱ガス(希釈前)67を希釈した。これにより、予熱ガス(希釈後)75の温度を、目標温度の1000℃未満を満足する790℃に調整できた。 In Invention Example 1, simulated blast furnace gas 62 was used as the dilution gas. The simulated blast furnace gas 62 was introduced into the storage chamber 70 at a flow rate of 20 Nm 3 / h to dilute the preheating gas (before dilution) 67. As a result, the temperature of the preheated gas (after dilution) 75 could be adjusted to 790 ° C., which satisfies the target temperature of less than 1000 ° C.

発明例2では、希釈ガスとして窒素72を用いた。20Nm/hの流量で貯蔵室70に窒素72を導入し、予熱ガス(希釈前)67を希釈した。これにより、予熱ガス(希釈後)75の温度を、目標温度の1000℃未満を満足する770℃に調整できた。 In Invention Example 2, nitrogen 72 was used as the diluent gas. Nitrogen 72 was introduced into the storage chamber 70 at a flow rate of 20 Nm 3 / h to dilute the preheating gas (before dilution) 67. As a result, the temperature of the preheated gas (after dilution) 75 could be adjusted to 770 ° C., which satisfies the target temperature of less than 1000 ° C.

このように、本実施形態に係る予熱ガス吹込み方法を用いることで、予熱ガスの温度を適切な温度に調整できることが確認され、通常高炉においてもシャフト部へ適切な温度に調整された予熱ガスを吹込むことができ、これにより、通常高炉の安定操業に寄与できることが確認された。
[実験例2]
Thus, it was confirmed that the temperature of the preheating gas can be adjusted to an appropriate temperature by using the preheating gas blowing method according to the present embodiment, and the preheating gas adjusted to an appropriate temperature to the shaft portion even in a normal blast furnace. It was confirmed that this can contribute to the stable operation of the normal blast furnace.
[Experiment 2]

図3は、実験例2で用いたオフライン実験装置60および実験条件の概要を示す模式図である。図3に示すオフライン実験装置60を用いて、本実施形態に係る高炉シャフト部への予熱ガス吹込み方法を酸素高炉に適用させることを想定して検証実験を実施した。   FIG. 3 is a schematic diagram showing an outline of the offline experimental apparatus 60 and experimental conditions used in Experimental Example 2. Using the off-line experiment apparatus 60 shown in FIG. 3, a verification experiment was conducted assuming that the preheating gas blowing method to the blast furnace shaft portion according to the present embodiment is applied to the oxygen blast furnace.

まず、純酸素80と酸素高炉ガスの成分を模して成分調整された模擬高炉ガス82を燃焼炉64へ吹込んで、模擬高炉ガス82に含まれるCOを、酸素を用いて燃焼させて予熱ガス(希釈前)67を生成する。燃焼炉64で生成された予熱ガス(希釈前)67を、予熱ガス流路66を通じて貯蔵室70に搬送する。貯蔵室70にはセンサ68が設けられており、当該センサを用いて貯蔵室70に搬送された予熱ガス(希釈前)67の温度と成分を測定する。   First, a simulated blast furnace gas 82, which is prepared by imitating components of pure oxygen 80 and oxygen blast furnace gas, is blown into the combustion furnace 64, and CO contained in the simulated blast furnace gas 82 is burned using oxygen to be a preheating gas. 67 (before dilution) is produced. The preheated gas (before dilution) 67 generated in the combustion furnace 64 is conveyed to the storage chamber 70 through the preheated gas channel 66. A sensor 68 is provided in the storage chamber 70, and the temperature and components of the preheated gas (before dilution) 67 conveyed to the storage chamber 70 are measured using the sensor 68.

貯蔵室70では、希釈ガスとして模擬高炉ガス82が混合され、予熱ガス(希釈前)67の温度が調整される。貯蔵室70で希釈された予熱ガス(希釈後)74を、予熱ガス流路74を通じてレシーバータンク78に搬送する。予熱ガス流路74にはセンサ76が設けられており、当該センサを用いて予熱ガス(希釈後)74の温度と成分を測定する。このように動作するオフライン実験装置60を用いて、予熱ガス(希釈前)67と、予熱ガス(希釈後)74の温度と成分を測定した。その結果を表2に示す。   In the storage chamber 70, the simulated blast furnace gas 82 is mixed as a dilution gas, and the temperature of the preheating gas (before dilution) 67 is adjusted. The preheated gas (after dilution) 74 diluted in the storage chamber 70 is conveyed to the receiver tank 78 through the preheated gas channel 74. A sensor 76 is provided in the preheating gas channel 74, and the temperature and components of the preheating gas (after dilution) 74 are measured using the sensor. Using the off-line experimental apparatus 60 operating in this manner, the temperature and components of the preheating gas (before dilution) 67 and the preheating gas (after dilution) 74 were measured. The results are shown in Table 2.


実験例2では、燃焼炉64に模擬高炉ガス82のCOと空気との酸素比が1程度になるように、純酸素80と模擬高炉ガス82を吹込んで、模擬高炉ガス82に含まれるCOを燃焼させた。実験例2において、予熱ガス(希釈前)67の温度は1730℃であった。1000℃以上の予熱ガスを高炉に吹込むと高炉内のステーブへの熱負荷が大きくなり、ステーブ破損が発生するので、高炉内に吹込む予熱ガスとして高すぎる温度であった。一方、酸素濃度は、0.1質量%以下であり、高炉内に吹込まれた後に、内部の還元中の鉄酸化物(Fe,FeO)の再酸化が懸念される濃度ではなかった。 In Experimental Example 2, pure oxygen 80 and simulated blast furnace gas 82 were blown into the combustion furnace 64 so that the oxygen ratio between CO and air in the simulated blast furnace gas 82 was about 1, and the CO contained in the simulated blast furnace gas 82 was reduced. Burned. In Experimental Example 2, the temperature of the preheated gas (before dilution) 67 was 1730 ° C. When a preheated gas of 1000 ° C. or higher was blown into the blast furnace, the heat load on the stave in the blast furnace was increased and the stave was broken. Therefore, the temperature was too high as the preheated gas blown into the blast furnace. On the other hand, the oxygen concentration was 0.1% by mass or less, and it was not a concentration at which reoxidation of iron oxides (Fe 2 O 3 , FeO) during reduction inside the blast furnace was a concern. .

発明例11では、希釈ガスとして模擬高炉ガス82を用いた。16Nm/hの流量で貯蔵室70に模擬高炉ガス82を導入して、予熱ガス(希釈前)67を希釈した。これにより、予熱ガス(希釈後)75の温度を、目標温度の1000℃未満を満足する950℃に調整できた。 In Invention Example 11, simulated blast furnace gas 82 was used as the dilution gas. The simulated blast furnace gas 82 was introduced into the storage chamber 70 at a flow rate of 16 Nm 3 / h to dilute the preheating gas (before dilution) 67. Thereby, the temperature of the preheating gas (after dilution) 75 could be adjusted to 950 ° C. that satisfies the target temperature of less than 1000 ° C.

発明例12においても、希釈ガスとして模擬高炉ガス82を用いた。30Nm/hの流量で貯蔵室70に模擬高炉ガス82を導入して、予熱ガス(希釈前)67を希釈した。これにより、予熱ガス(希釈後)75の温度を、目標温度の1000℃未満を満足する680℃に調整できた。 Also in Example 12, the simulated blast furnace gas 82 was used as the dilution gas. The simulated blast furnace gas 82 was introduced into the storage chamber 70 at a flow rate of 30 Nm 3 / h to dilute the preheating gas (before dilution) 67. As a result, the temperature of the preheating gas (after dilution) 75 could be adjusted to 680 ° C., which satisfies the target temperature of less than 1000 ° C.

このように、本実施形態に係る予熱ガス吹込み方法を用いることで、予熱ガスの温度を適切な温度に調整できることが確認され、酸素高炉においてもシャフト部へ適切な温度に調整された予熱ガスを吹込むことができ、これにより、通常高炉の安定操業に寄与できることが確認された。   Thus, it was confirmed that the temperature of the preheating gas can be adjusted to an appropriate temperature by using the preheating gas blowing method according to the present embodiment, and the preheating gas adjusted to an appropriate temperature to the shaft portion even in the oxygen blast furnace. It was confirmed that this can contribute to the stable operation of the normal blast furnace.

10 高炉
14 羽口
16 補助還元材
17 熱風
18 シャフト部
19 ガス吹込みノズル
20 センサ
21 センサ
22 ダストキャッチャー
24 湿式除塵機
26 炉頂ガス発電装置
28 系外
30 予熱ガス吹込み装置
32 昇圧機
34 燃焼炉
35 貯蔵室
36 遮断弁
38 レシーバータンク
40 回収流路
42 高圧ガス流路
43 高圧ガス流路
44 予熱ガス流路
45 予熱ガス流路
46 支燃ガス
47 窒素
48 センサ
50 センサ
52 センサ
60 オフライン実験装置
61 空気
62 模擬高炉ガス
64 燃焼炉
66 予熱ガス流路
67 予熱ガス(希釈前)
68 センサ
70 貯蔵室
72 窒素
74 予熱ガス流路
75 予熱ガス(希釈後)
76 センサ
78 レシーバータンク
80 純酸素
82 模擬高炉ガス
DESCRIPTION OF SYMBOLS 10 Blast furnace 14 tuyere 16 Auxiliary reducing material 17 Hot air 18 Shaft part 19 Gas injection nozzle 20 Sensor 21 Sensor 22 Dust catcher 24 Wet dust remover 26 Top gas generator 28 Out-of-system 30 Preheating gas injection device 32 Booster 34 Combustion Furnace 35 Storage chamber 36 Shut-off valve 38 Receiver tank 40 Recovery flow path 42 High pressure gas flow path 43 High pressure gas flow path 44 Preheating gas flow path 45 Preheating gas flow path 46 Combustion gas 47 Nitrogen 48 Sensor 50 Sensor 52 Sensor 60 Offline experimental device 61 Air 62 Simulated blast furnace gas 64 Combustion furnace 66 Preheating gas flow path 67 Preheating gas (before dilution)
68 Sensor 70 Storage chamber 72 Nitrogen 74 Preheated gas flow path 75 Preheated gas (after dilution)
76 Sensor 78 Receiver tank 80 Pure oxygen 82 Simulated blast furnace gas

Claims (6)

高炉ガスを昇圧する昇圧機と、
昇圧された高炉ガスを燃焼して予熱ガスを生成する燃焼炉と、
前記燃焼炉で生成された予熱ガスを貯蔵する貯蔵室と、
前記貯蔵室に希釈ガスを供給する希釈ガス流路と、
高炉シャフト部を囲むように設けられた環状管であるレシーバータンクと、
を有し、
前記レシーバータンクは、前記貯蔵室と、高炉シャフト部の円周方向に設置された複数のガス吹込みノズルとに接続され
前記貯蔵室には、少なくとも前記予熱ガスの温度を測定するセンサが設けられ、
前記貯蔵室と前記レシーバータンクとの間には遮断弁が設けられている、高炉シャフト部への予熱ガス吹込み装置。
A booster for boosting the blast furnace gas;
A combustion furnace that generates preheated gas by combusting the pressurized blast furnace gas;
A storage chamber for storing preheated gas generated in the combustion furnace;
A dilution gas flow path for supplying a dilution gas to the storage chamber;
A receiver tank that is an annular pipe provided to surround the blast furnace shaft portion;
Have
The receiver tank is connected to the storage chamber and a plurality of gas blowing nozzles installed in the circumferential direction of the blast furnace shaft portion ,
The storage chamber is provided with a sensor for measuring at least the temperature of the preheating gas,
A preheating gas blowing device for a blast furnace shaft portion, wherein a shutoff valve is provided between the storage chamber and the receiver tank .
高炉ガスを回収し、
前記高炉ガスを昇圧して高圧ガスを生成し、
前記高圧ガスを燃焼して予熱ガスを生成し、
前記予熱ガスを貯蔵室に貯蔵し、
前記貯蔵室に貯蔵された予熱ガスを、高炉シャフト部を囲むように設けられた環状管を通じて高炉シャフト部の円周方向から高炉内に吹込む予熱ガスの吹込み方法であって、
前記貯蔵室に希釈ガスを導入することで、前記貯蔵室に貯蔵された前記予熱ガスの温度を調整し、
前記貯蔵室と前記環状管の間に遮断弁が設けられ、
前記予熱ガスの温度が調整された後に、前記遮断弁を開いて前記予熱ガスを前記高炉内に吹込む、予熱ガス吹込み方法。
Recover the blast furnace gas,
Pressurizing the blast furnace gas to produce high pressure gas,
Combusting the high-pressure gas to generate a preheating gas,
Storing the preheating gas in a storage room;
The preheating gas stored in the storage chamber is a preheating gas blowing method for blowing into the blast furnace from the circumferential direction of the blast furnace shaft portion through an annular pipe provided so as to surround the blast furnace shaft portion,
By introducing a dilution gas into the storage chamber, the temperature of the preheating gas stored in the storage chamber is adjusted ,
A shut-off valve is provided between the storage chamber and the annular pipe;
A preheating gas blowing method in which, after the temperature of the preheating gas is adjusted, the shutoff valve is opened and the preheating gas is blown into the blast furnace .
高炉ガスを回収し、
前記高炉ガスを昇圧して高圧ガスを生成し、
前記高圧ガスを燃焼して予熱ガスを生成し、
前記予熱ガスを貯蔵室に貯蔵し、
前記貯蔵室に貯蔵された予熱ガスを、高炉シャフト部を囲むように設けられた環状管を通じて高炉シャフト部の円周方向から高炉内に吹込む予熱ガスの吹込み方法であって、
前記貯蔵室に希釈ガスを導入することで、前記貯蔵室に貯蔵された前記予熱ガスの温度を調整し、
前記希釈ガスは窒素である、予熱ガスの吹込み方法。
Recover the blast furnace gas,
Pressurizing the blast furnace gas to produce high pressure gas,
Combusting the high-pressure gas to generate a preheating gas,
Storing the preheating gas in a storage room;
The preheating gas stored in the storage chamber is a preheating gas blowing method for blowing into the blast furnace from the circumferential direction of the blast furnace shaft portion through an annular pipe provided so as to surround the blast furnace shaft portion,
By introducing a dilution gas into the storage chamber, the temperature of the preheating gas stored in the storage chamber is adjusted ,
The preheating gas blowing method, wherein the dilution gas is nitrogen .
前記希釈ガスは、前記高圧ガスである、請求項または請求項に記載の予熱ガス吹込み方法。 The preheating gas blowing method according to claim 2 or 3 , wherein the dilution gas is the high-pressure gas. 高炉炉下部の羽口から酸素を吹込む高炉操業方法であって、
請求項から請求項のいずれか一項に記載の予熱ガス吹込み方法で、高炉シャフト部の円周方向から高炉内に予熱ガスを吹込む、高炉操業方法。
A blast furnace operating method in which oxygen is blown from the tuyeres at the bottom of the blast furnace furnace,
A blast furnace operating method in which the preheating gas is injected into the blast furnace from the circumferential direction of the blast furnace shaft portion by the preheating gas injection method according to any one of claims 2 to 4 .
高炉炉下部の羽口から空気または酸素富化空気を吹込む高炉操業方法であって、
請求項から請求項のいずれか一項に記載の予熱ガス吹込み方法で、高炉シャフト部の円周方向から高炉内に予熱ガスを吹込む、高炉操業方法。
A blast furnace operating method in which air or oxygen-enriched air is blown from a tuyere at the bottom of the blast furnace furnace,
A blast furnace operating method in which the preheating gas is injected into the blast furnace from the circumferential direction of the blast furnace shaft portion by the preheating gas injection method according to any one of claims 2 to 4 .
JP2017025666A 2017-02-15 2017-02-15 Preheating gas blowing device to blast furnace shaft, preheating gas blowing method and blast furnace operating method Active JP6604344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017025666A JP6604344B2 (en) 2017-02-15 2017-02-15 Preheating gas blowing device to blast furnace shaft, preheating gas blowing method and blast furnace operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017025666A JP6604344B2 (en) 2017-02-15 2017-02-15 Preheating gas blowing device to blast furnace shaft, preheating gas blowing method and blast furnace operating method

Publications (2)

Publication Number Publication Date
JP2018131650A JP2018131650A (en) 2018-08-23
JP6604344B2 true JP6604344B2 (en) 2019-11-13

Family

ID=63247385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017025666A Active JP6604344B2 (en) 2017-02-15 2017-02-15 Preheating gas blowing device to blast furnace shaft, preheating gas blowing method and blast furnace operating method

Country Status (1)

Country Link
JP (1) JP6604344B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7248744B2 (en) * 2021-06-28 2023-03-29 三菱重工パワーインダストリー株式会社 Gas burner and gas-fired boiler
CN117801845B (en) * 2024-01-03 2024-08-02 星远智维邯郸环境科技有限公司 Energy-saving purifying equipment for blast furnace gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167704A (en) * 1982-03-29 1983-10-04 Kawasaki Steel Corp Blowing-out operation of blast furnace
JPS6033305A (en) * 1983-08-04 1985-02-20 Nippon Steel Corp Operation of blast furnace
JPH0619090B2 (en) * 1986-12-27 1994-03-16 日本鋼管株式会社 Oxygen blast furnace
JPS63282203A (en) * 1987-05-15 1988-11-18 Nkk Corp Method for operating blast furnace
MX2011009350A (en) * 2009-03-17 2011-09-27 Arcelormittal Investigacion Y Desarrollo Sl Method for recirculating blast furnace gas, and associated device.
EP2870225A2 (en) * 2012-07-03 2015-05-13 HYL Technologies, S.A. de C.V. Method and system for operating a blast furnace with top-gas recycle and a fired tubular heater

Also Published As

Publication number Publication date
JP2018131650A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP5608989B2 (en) Hot metal heating method
JP6256710B2 (en) Oxygen blast furnace operation method
JP4702309B2 (en) Blast furnace operation method
CN107099638A (en) It is a kind of to prevent dry method dust converter from opening to be blown off quick-fried control method
JP6604344B2 (en) Preheating gas blowing device to blast furnace shaft, preheating gas blowing method and blast furnace operating method
EP3084013B1 (en) Method to operate a smelt cyclone
JP6354962B2 (en) Oxygen blast furnace operation method
JP5971165B2 (en) Blast furnace operation method
EP2719778A1 (en) Blast-furnace process with CO2-lean blast furnace gas recycle and production plant for same
CN102459652B (en) Blast furnace operation method, low-calorific-value gas combustion method for same, and blast furnace equipment
JP4743332B2 (en) Blast furnace operation method
AU2012350144B2 (en) Starting a smelting process
EP3730631B1 (en) Blast furnace stove device and method for operating blast furnace stove device
EP1939305A1 (en) Process for making pig iron in a blast furnace
JP6604343B2 (en) Preheating gas blowing method, blast furnace operating method, and oxygen blast furnace operating method
JP5476987B2 (en) Blast furnace operation method
JP4760985B2 (en) Blast furnace operation method
EP2719779A1 (en) Blast-furnace process with recycle of a CO-fraction of the blast furnace gas and production plant for same
JP5614517B1 (en) Blast furnace operation method
KR100584735B1 (en) Melt gasifier of corex facilities having coal dust injection device
KR101739861B1 (en) Apparatus for injection the pulverized coal of melting furnace and this method
JP2020020012A (en) Pig-iron manufacturing facility and method for manufacturing pig-iron using the same
CN103740873A (en) Blast furnace ironmaking system
JP7495023B1 (en) Manufacturing facilities and methods of operating manufacturing facilities
JP6468272B2 (en) Lance protection method in blast furnace tuyeres lance

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190930

R150 Certificate of patent or registration of utility model

Ref document number: 6604344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250